JPS62145733A - Etching - Google Patents

Etching

Info

Publication number
JPS62145733A
JPS62145733A JP28554385A JP28554385A JPS62145733A JP S62145733 A JPS62145733 A JP S62145733A JP 28554385 A JP28554385 A JP 28554385A JP 28554385 A JP28554385 A JP 28554385A JP S62145733 A JPS62145733 A JP S62145733A
Authority
JP
Japan
Prior art keywords
etching
ions
gas
molecules
collide against
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28554385A
Other languages
Japanese (ja)
Other versions
JPH0783010B2 (en
Inventor
Tokuo Kure
久礼 得男
Yoshifumi Kawamoto
川本 佳史
Tadao Morimoto
忠雄 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP60285543A priority Critical patent/JPH0783010B2/en
Publication of JPS62145733A publication Critical patent/JPS62145733A/en
Publication of JPH0783010B2 publication Critical patent/JPH0783010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce side etching caused by scattered ions substantially by employing mixed gas of heavy reactive gas and light rare gas. CONSTITUTION:A cathode coupling type reactive sputtering apparatus is employed as an etching apparatus and mixed gas composed of Br2 and He mixed in the ratio of 1 to 9 is employed as etching gas. As a result, the depth of side etching is less than 0.1mum and a quite vertically steep side wall can be obtained. When etching ions are scattered in reactive etching, most of the apponents of the collisions of the ions are etching gas molecules themselves. Therefore, in the case of Br2+90%He mixed gas, 10% of Br<+> ions produced by dissociation of Br2 molecules collide against Br2 molecules and 90% collide against He molecules. As the mass ratio of Br<+>/He=20, Br<+> ions which collide against He molecules hardly turn side from the direction of acceleration and enter a specimen surface. Therefore, in this case, the incident angle distribution of Br<+> ions is concentrated near zero degree and such etching is suitable for highly accurate work.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエツチング方法に係り、特に微細パターンを高
精度に形成するのに好適なドライエツチング方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an etching method, and particularly to a dry etching method suitable for forming fine patterns with high precision.

〔発明の背景〕[Background of the invention]

半導体集積回路などの微細パターンの加工には、近年、
反応ガスのプラズマを用いたドライエッチフグ法、特に
反応性スパッタ法が多く用いられている。この方法は、
ガスの反応性に基づくエツチング選択性(特定の材料だ
けを速くエッチする)とイオンの方向性(プラズマから
試料に向かって加速される)に基づく高精度加工に特徴
がある。
In recent years, in the processing of fine patterns such as semiconductor integrated circuits,
A dry etching method using reactive gas plasma, particularly a reactive sputtering method, is often used. This method is
It is characterized by high-precision processing based on etching selectivity based on gas reactivity (fast etching of only specific materials) and ion directionality (accelerated from the plasma toward the sample).

そして、この特徴を生かすためには、反応ガスの種類及
びプラズマ放電条件の最適化が必要である。
In order to take advantage of this feature, it is necessary to optimize the type of reaction gas and plasma discharge conditions.

従来、例えばSiのエツチングにはCC141Cli 
、 HC]及びこれらとArの混合ガスを用いる方法(
特開昭52−9648号公報)などが知られている。
Conventionally, for example, CC141Cli was used for etching Si.
, HC] and a method using a mixed gas of these and Ar (
Japanese Patent Laid-Open No. 52-9648) is known.

しかし従来の条件では一般にガス圧力がIPa程度より
も高く第1図に示したようなイオン1の衝突・散乱が比
較的高い確率で生じるため、側壁6もイオン衝突を受け
、サイドエツチングが生じやすい。1μm以下の非常に
微細なパターンを深く加工しようとすると、このような
散乱イオンによる斜め横方向へのエツチングが高精度加
工の障害となった。
However, under conventional conditions, the gas pressure is generally higher than about IPa and the collision and scattering of ions 1 as shown in FIG. . When attempting to deeply process a very fine pattern of 1 μm or less, diagonal horizontal etching caused by such scattered ions becomes an obstacle to high-precision processing.

これに対して、イオンの衝突を低減するため。In contrast, to reduce ion collisions.

ガス圧力をより低くしようとすると、反応性スパッタ装
置の放電が不安定になる。ガス供給・排気が不安定にな
るなどの問題があった。
If the gas pressure is lowered, the discharge of the reactive sputtering device becomes unstable. There were problems such as unstable gas supply and exhaust.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のような散乱イオンによるサイド
エツチングを大幅に低減するためのエツチング方法を提
供することにある。
An object of the present invention is to provide an etching method that can significantly reduce side etching caused by scattered ions as described above.

〔発明の概要〕[Summary of the invention]

上記目的達成のため、本発明は、重い反応ガスと軽い希
ガスの混合ガスを用いることによって、エツチングイオ
ンの散乱を小さくしかつエツチング装置の放電・排気を
安定に保つ。
To achieve the above object, the present invention uses a mixed gas of a heavy reactive gas and a light rare gas to reduce the scattering of etching ions and to maintain stable discharge and exhaust from the etching apparatus.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

エツチング装置としてカソードカップル型の反応性スパ
ッタ装置を用い、BrxとHeを1対9の割合で混合し
たガスをエツチングガスとした。
A cathode couple type reactive sputtering device was used as the etching device, and the etching gas was a mixture of Brx and He in a ratio of 1:9.

エツチングガス70cc/minの流量でエツチング室
に導入し、排気はメカニカルブースターポンプと油回転
ボンプデ行った。このときエラチング室内のガス圧力は
6Paであった。この状態で1.3.56MHzの高周
波電源により600IJ(0,3tl/d)のパワーを
投入しプラズマを発生させて、エツチング室内に置いた
Siウェーハをエツチングした。その結果、S t O
2をマスクとして1μm幅で5μm深さの孔を加工した
際の断面形状は、サイドエッチが0.1  μm以下で
非常に垂直に切り立った側壁を持つようになった。なお
、エツチングガスとしてBrs+だけを用い、同様に6
Paのガス圧力でエツチングした際には、第1図によう
な溝の側壁6がやや“<″の字形にサイドエッチされた
形状になった。また、このときには、溝幅が狭くなるほ
ど、もしくは細長い溝よりも円形に近い礼状の溝のほう
が、サイドエッチが増大する傾向にあった。さらに、溝
のアスペクト比(深さ7幅)が大きくなるにしたがって
、同じ時間エツチングしても所望の深さよりも浅い溝し
かできないという問題も顕在化してきた。
Etching gas was introduced into the etching chamber at a flow rate of 70 cc/min, and exhaust was performed using a mechanical booster pump and an oil rotary pump. At this time, the gas pressure in the erating chamber was 6 Pa. In this state, a power of 600 IJ (0.3 tl/d) was applied using a high frequency power source of 1.3.56 MHz to generate plasma to etch the Si wafer placed in the etching chamber. As a result, S t O
When a hole with a width of 1 μm and a depth of 5 μm was formed using No. 2 as a mask, the cross-sectional shape had a side etch of 0.1 μm or less and a very vertical side wall. In addition, using only Brs+ as the etching gas, 6
When etching was carried out at a gas pressure of Pa, the side wall 6 of the groove had a slightly side-etched "<" shape as shown in FIG. Further, in this case, the side etch tended to increase as the groove width became narrower, or in the case of a thank-you groove that was more circular than a long and narrow groove. Furthermore, as the aspect ratio of the groove (depth 7 width) increases, the problem has become apparent that even if etching is performed for the same amount of time, only a groove shallower than the desired depth can be formed.

このようなHe混合有無の差異は次のように考えられる
。反応性スパッタにおいてエラチングイオンが散乱され
る場合、イオンの衝突相手のほとんどはエツチングガス
分子そのものである。したがってBrzの解離によって
生じたBr+イオンは、Brz+9Q%He混合ガスの
場合、1割はBrzと衝突し9割はHeと衝突すること
になる。
Such a difference in the presence or absence of He mixing can be considered as follows. When etching ions are scattered in reactive sputtering, most of the collision partners of the ions are etching gas molecules themselves. Therefore, in the case of a mixed gas of Brz+9Q% He, 10% of Br+ ions generated by dissociation of Brz will collide with Brz and 90% will collide with He.

このような衝突を経てエツチング試料表面に入射するB
r+イオンの入射角分布を計算によって求めた結果が第
2図である。Brzと衝突したBr+イオンは、Br十
対Braの質量比が1対2であることから、加速方向か
ら大きくそれた方向に散乱されやすい。このため、入射
角度(試料面の法線とイオン入射方向との成す角度)は
、0度(垂直入射)から90度近くまでにわたって分布
する。
B that is incident on the surface of the etching sample after such a collision.
FIG. 2 shows the calculation results of the incident angle distribution of r+ ions. Since the mass ratio of 10 Br to Bra is 1:2, the Br+ ions collided with Brz are likely to be scattered in a direction largely deviating from the acceleration direction. Therefore, the incident angle (the angle between the normal to the sample surface and the ion incident direction) is distributed from 0 degrees (normal incidence) to nearly 90 degrees.

入射角度の大きいイオンが多く存在すると、微細溝の加
工においては、溝の底にイオンが到達しにくくなること
や側壁で反射したイオンによって対向する側壁がよりア
イドエツチされやすくなるといった問題が生じると考え
られる。一方Hθと衝突したBr+は、質量比Br+/
He=2Qであ・るため、はとんど加速方向からそれる
ことなく試斜面に入射する。したがってこの場合のBr
+は、0度に近いところに集中した入射角度分布をもち
、高精度加工に適する。以上より、同じガス圧力すなわ
ちほぼ同じ衝突確率をもつ状態であっても、Brzの純
ガスよりもHsを多量混合している方がはるかにイオン
の方向性が揃い、垂直な加工ができる。なお、He+イ
オンはHeまたはBr2と衡突して比較的大きな入射角
度分布をもつが、H8+のスパッタ作用が小さいためあ
まりサイドエツチングには寄与しなかったと考えられる
We believe that if there are many ions with large incident angles, problems will occur when processing microgrooves, such as making it difficult for the ions to reach the bottom of the groove and making it easier for the opposing sidewalls to be id-etched by ions reflected from the sidewalls. It will be done. On the other hand, Br+ that collided with Hθ has a mass ratio of Br+/
Since He=2Q, the beam almost never deviates from the direction of acceleration and enters the test slope. Therefore, in this case Br
+ has an incident angle distribution concentrated near 0 degrees and is suitable for high-precision machining. From the above, even if the gas pressure is the same, that is, the probability of collision is almost the same, mixing a large amount of Hs with a pure Brz gas will align the directionality of the ions much better, allowing vertical machining. It should be noted that although He+ ions collide with He or Br2 and have a relatively large incident angle distribution, it is thought that because the sputtering effect of H8+ is small, it does not contribute much to side etching.

Brzガスだけを用いる方法でも、例えばガス流量を数
c c / m i nと少なくすることによって、ガ
ス圧力を低くしイオンの散乱を少なくできる。
Even in a method using only Brz gas, the gas pressure can be lowered and ion scattering can be reduced by reducing the gas flow rate to, for example, several c c /min.

しかしエツチング室へのガス導入量を減少すると、放電
中にエツチング室内壁から放出される不純物ガスの影響
を受けやすくなり、エツチングの再現性を著しく損った
。Heを混合した方がポンプの動作圧が高いので、同じ
分圧のときBr2の流量をより多くできる。また、油拡
散ポンプなどを用いてエツチング室のガス圧力を大幅に
下げた場合には放電が不安定になった。これは、ガス分
子が非常に疎になったため放電の開始・維持に必要な電
離がエツチング室内で安定にできなくなるためである。
However, when the amount of gas introduced into the etching chamber was reduced, the etching chamber became susceptible to the influence of impurity gas released from the etching chamber wall during discharge, and the reproducibility of etching was significantly impaired. Since the operating pressure of the pump is higher when He is mixed, the flow rate of Br2 can be increased at the same partial pressure. Furthermore, when the gas pressure in the etching chamber was significantly lowered using an oil diffusion pump or the like, the discharge became unstable. This is because the gas molecules have become so sparse that the ionization necessary to start and maintain discharge cannot be stabilized in the etching chamber.

本実施例では、多量に混合したHaにより、ガスの供給
・排気及び放電状態を安定に保ちながら、イオンの方向
性は揃えることができるので、再現性よ(Siの微細溝
を高精度に加工できた。
In this example, by mixing a large amount of Ha, the directionality of the ions can be aligned while keeping the gas supply/exhaust and discharge conditions stable. did it.

Haと混合する反応ガスは、H8に対して十分に質量の
大きいイオンを発生するものが好ましく、CIやBrも
しくは■といった重いハロゲン元素の化合物が適する。
The reaction gas to be mixed with Ha is preferably one that generates ions having a sufficiently large mass compared to H8, and compounds of heavy halogen elements such as CI, Br, or ■ are suitable.

F化合物のなかでF x r S F s +CF4は
、Fイオンが軽いというだけでなく、中性のFラジカル
によるサイドエッチが生じやすい点でも、Sj高化度加
工に不適当である。Heと混合して良好な加工ができた
反応ガスは、CC1,4。
Among F compounds, F x r S F s +CF4 is unsuitable for SJ high-grade processing not only because the F ions are light but also because side etching is likely to occur due to neutral F radicals. The reaction gases that were mixed with He and successfully processed were CC1,4.

CC1a+Ox 、SiC]a 、HCl 、C1z、
HBr 。
CC1a+Ox, SiC]a, HCl, C1z,
HBr.

)(Br 2+及び同じく塩化物・臭化物であるがFも
CFの形で含まれるCC1a、CC12Fz +CC1
,sF、CBrFg、CzBrzFaなどであった。
) (Br 2+ and CC1a, CC12Fz +CC1, which are also chlorides and bromides but also contain F in the form of CF
, sF, CBrFg, CzBrzFa, etc.

また、Heの混合効果は、Heによる反応ガスの10倍
以−トの稀釈の際に顕著に認められた。すなわち、10
Pa以下程度の低ガス圧力エツチング条件においてさら
にHe稀釈によってイオンの平均自由行程を実質的に1
桁以」―増大することによって、顕著な加工精度の向上
を図ることができる。
Further, the mixing effect of He was significantly observed when the reaction gas was diluted with He by a factor of 10 or more. That is, 10
Under low gas pressure etching conditions of less than Pa, the mean free path of ions is substantially reduced by 1 by diluting He.
By increasing the number of orders of magnitude, it is possible to significantly improve machining accuracy.

なお、Haを多量に混合々する方法は、Siだけなでく
、S i O2やA1など他の材料の高精度加工におい
ても同様に有効であった。
Note that the method of mixing a large amount of Ha was similarly effective in high-precision machining not only of Si but also of other materials such as S i O2 and A1.

〔発明の効果〕〔Effect of the invention〕

以−ト述べたように、本発明によれば、同じエツチング
装置でもより高精度かつ安定にエツチングでき、Siを
始めとする材料の微細パターンをマスク寸法通りに加工
できるので、半導体装置の微細化・高集積化・高性能化
に多大な効果がある。
As described above, according to the present invention, etching can be performed with higher accuracy and stability even with the same etching equipment, and fine patterns of materials such as Si can be processed according to the mask dimensions, thereby facilitating miniaturization of semiconductor devices.・It has a great effect on high integration and high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエツチングの様子を示す加工部断面図、第2図
は本発明の原理を示す曲線図である。 1・・・イオン、2・・・ガス分子、3・・・Si、4
・・・マス第 1 閉 第 2 口
FIG. 1 is a sectional view of a processed part showing the state of etching, and FIG. 2 is a curve diagram showing the principle of the present invention. 1...Ion, 2...Gas molecule, 3...Si, 4
... Square 1st closed 2nd opening

Claims (1)

【特許請求の範囲】 1、真空容器内に置かれた被加工物を反応ガスのプラズ
マと接触させることによつて、パターン幅よりも深さが
大きくなるまで上記被加工物をエッチングかる方法にお
いて、上記反応ガスは90%以上のHeを含むことを特
徴とするエッチング方法。 2、上記被加工物はシリコンであり、上記反応ガスは塩
化物・臭化物であることを特徴とする特許請求の範囲第
1項記載のエッチング方法。
[Claims] 1. In this method, the workpiece placed in a vacuum container is etched by bringing the workpiece into contact with plasma of a reactive gas until the depth becomes greater than the pattern width. . An etching method, wherein the reaction gas contains 90% or more of He. 2. The etching method according to claim 1, wherein the workpiece is silicon and the reaction gas is chloride/bromide.
JP60285543A 1985-12-20 1985-12-20 Etching method Expired - Lifetime JPH0783010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285543A JPH0783010B2 (en) 1985-12-20 1985-12-20 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285543A JPH0783010B2 (en) 1985-12-20 1985-12-20 Etching method

Publications (2)

Publication Number Publication Date
JPS62145733A true JPS62145733A (en) 1987-06-29
JPH0783010B2 JPH0783010B2 (en) 1995-09-06

Family

ID=17692897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285543A Expired - Lifetime JPH0783010B2 (en) 1985-12-20 1985-12-20 Etching method

Country Status (1)

Country Link
JP (1) JPH0783010B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278339A (en) * 1986-12-19 1988-11-16 アプライド マテリアルズインコーポレーテッド Bromine and iodine etching for silicon and silicide
JPH01231326A (en) * 1988-03-11 1989-09-14 Hitachi Ltd Plasma etching
JP2007141918A (en) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd Dry etching method
CN100339967C (en) * 2001-12-28 2007-09-26 松下电器产业株式会社 Ion irradiating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147532A (en) * 1984-12-21 1986-07-05 Toshiba Corp Reactive ion etching method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147532A (en) * 1984-12-21 1986-07-05 Toshiba Corp Reactive ion etching method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278339A (en) * 1986-12-19 1988-11-16 アプライド マテリアルズインコーポレーテッド Bromine and iodine etching for silicon and silicide
US5874362A (en) * 1986-12-19 1999-02-23 Applied Materials, Inc. Bromine and iodine etch process for silicon and silicides
US6020270A (en) * 1986-12-19 2000-02-01 Applied Materials, Inc. Bomine and iodine etch process for silicon and silicides
JPH01231326A (en) * 1988-03-11 1989-09-14 Hitachi Ltd Plasma etching
CN100339967C (en) * 2001-12-28 2007-09-26 松下电器产业株式会社 Ion irradiating device
JP2007141918A (en) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd Dry etching method

Also Published As

Publication number Publication date
JPH0783010B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5015331A (en) Method of plasma etching with parallel plate reactor having a grid
US4734157A (en) Selective and anisotropic dry etching
US5302236A (en) Method of etching object to be processed including oxide or nitride portion
JP2634014B2 (en) Reactive ion etching method including hydrogen radical
US5024722A (en) Process for fabricating conductors used for integrated circuit connections and the like
US6004875A (en) Etch stop for use in etching of silicon oxide
D’Emic et al. Deep trench plasma etching of single crystal silicon using SF6/O2 gas mixtures
US5209803A (en) Parallel plate reactor and method of use
US6465159B1 (en) Method and apparatus for side wall passivation for organic etch
US4836886A (en) Binary chlorofluorocarbon chemistry for plasma etching
EP0820093A1 (en) Etching organic antireflective coating from a substrate
KR20040022168A (en) Method and apparatus for etching si
JPS62145733A (en) Etching
US4364793A (en) Method of etching silicon and polysilicon substrates
JPS60115231A (en) Etching method
JPH0612765B2 (en) Etching method
WO2000039839A2 (en) High aspect ratio sub-micron contact etch process in an inductively-coupled plasma processing system
JPH0485928A (en) Dry etching method
JPS60120525A (en) Method for reactive ion etching
JPH01181532A (en) Manufacture of semiconductor device
US5904862A (en) Methods for etching borophosphosilicate glass
EP0212585A2 (en) Selective and anisotropic dry etching
JP3167310B2 (en) Dry etching method
WO2002009198A1 (en) Etching apparatus having a confinement and guide object for gas flow of plasma and method for using same
JPH06120174A (en) Manufacture of semiconductor device