JPH0218363B2 - - Google Patents

Info

Publication number
JPH0218363B2
JPH0218363B2 JP59101784A JP10178484A JPH0218363B2 JP H0218363 B2 JPH0218363 B2 JP H0218363B2 JP 59101784 A JP59101784 A JP 59101784A JP 10178484 A JP10178484 A JP 10178484A JP H0218363 B2 JPH0218363 B2 JP H0218363B2
Authority
JP
Japan
Prior art keywords
skin pass
strength
rolled
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59101784A
Other languages
Japanese (ja)
Other versions
JPS60245728A (en
Inventor
Koichi Hashiguchi
Minoru Nishida
Norisuke Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10178484A priority Critical patent/JPS60245728A/en
Publication of JPS60245728A publication Critical patent/JPS60245728A/en
Publication of JPH0218363B2 publication Critical patent/JPH0218363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 主として自動車用構造部材に適合する高張力鋼
板の製造方法に関連してこの明細書で述べる技術
内容は、引張強度60Kg/mm2以上で降伏比が70%以
上と高く、かつ延性の良好なP添加高強度混合組
織鋼板の有利な製造についての開発効果を提案す
るところにある。 近年自動車の安全性や軽量化の観点から、バン
パーやドアガードバーなどの強度部材に引張強さ
50Kgf/mm2以上の高強度鋼板が多用されている。 このような用途に適用される材料の特性として
は、より引張強さ、降伏点が高いと同時に延性が
良好なことが要求される。 (従来技術) このような用途には例えば特開昭48−81721号
公報に示されるようなNb,Ti及びVなどの析出
細粒化強化型の元素を添加した鋼板が使われてい
たが延性が充分でない。 その後さらに高延性を有することに特徴づけら
れるフエライトと、マルテンサイトなどの低温変
態生成物から成る混合組織鋼板が開発され、多用
されつつあるが、これらの混合組織鋼板は、高引
張強さ、高延性であるがそれと同時に低降伏点と
いう共通の性質がありこの点、例えば特開昭58−
19441号又、同58−22332号各公報に示されるよう
に、混合組織鋼では一般に降伏点と引張強さの比
として定義される降伏比が65あるいは60%以下と
低い。 以上述べたようにNb,Ti及びVなどを添加し
た析出細粒化強化型の高張力鋼板では降伏点、引
張強さともに高いが延性が劣り、一方混合組織鋼
板では引張強さ、延性ともに良好であるが降伏点
が低く、かくして高降伏点、高延性をあわせて必
要とする用途に適する薄鋼板の製造は、従来不可
能であつたのである。 一方において、Pを用いた高強度鋼板として古
くから特開昭50−23316号、同50−60419号各公報
などが提案されている。これらはP添加冷延鋼板
を連続焼鈍後スキンパス圧延を施すことを開示し
ているが、スキンパス圧延前の組織がフエライ
ト・カーバイドから成り、低温変態生成物を含む
混合組織を得ることができない。 また上に触れた特開昭58−22332号公報並びに
特開昭57−137452号公報には、それぞれ冷延薄板
及び熱延薄板とにつき、この発明の基本とする混
合組織を得ることが開示されているけれども低降
伏比が余儀なくされていたのである。 (発明が解決しようとする問題点) 通常、焼鈍後における鋼板の降伏点を上げる方
法としてはスキンパス圧延が、適合するところ、
一般にはスキンパス圧延によつて、延性の劣化が
伴われる。 しかるに実際上、この方法を混合組織鋼板に適
用したところ、特定条件で製造した混合組織板に
あつては、スキンパス圧延しても延性劣化が少な
いことが発見された。 上記知見の活用によつて、高降伏点と高延性を
兼備した高張力鋼板の製造方法を確立することが
この発明の目的である。 (問題点を解決するための手段) この発明は C:0.03〜0.20wt% Mn:0.8〜3.0wt% P:0.04〜0.15wt% S:0.01wt%以下 Al:0.10wt%以下 を基本組成とし、熱間圧延のまま、又はその後の
冷間圧延後連続焼鈍することによつて製造され
た、5%以下の低温変態生成物相と残りフエライ
ト相とからなる混合組識を有する熱延薄板又は冷
延薄板を、該混合組織とする熱処理に引続き、該
熱処理で得られる初期降伏比YR0に応じて下記式
を満たす伸び率SK(%)の範囲内にマスキンパス
圧延することから成る、引張強さ60Kgf/mm2
上、降伏比70%以上でかつ延性の良好な高張力鋼
板の製造方法 5.25−0.075×YR0SK(%)3(%) である。 先ずこの発明の完成を導いた実験結果について
説明する。表1に示す条件で製造したフエライ
ト・マルテンサイトから成る混合組織冷延鋼板
(1.2mm厚)について伸び率5%までのスキンパス
圧延を施し引張特性を調べ、その結果を第1図に
示す。
(Industrial Application Field) The technical contents described in this specification are mainly related to the manufacturing method of high-strength steel sheets that are suitable for automotive structural members. The purpose of this invention is to propose development effects for the advantageous production of P-added high-strength mixed-structure steel sheets with good ductility. In recent years, tensile strength has been added to strength components such as bumpers and door guard bars from the perspective of automobile safety and weight reduction.
High-strength steel plates of 50Kg f /mm2 or higher are often used. Materials used for such applications are required to have high tensile strength and yield point, as well as good ductility. (Prior art) Steel sheets to which precipitation fine grain strengthening elements such as Nb, Ti, and V are added have been used for such applications, as shown in Japanese Patent Application Laid-open No. 48-81721, but steel sheets containing precipitation-refined grain strengthening elements such as Nb, Ti, and V have been used, but the ductility is not sufficient. Subsequently, mixed-structure steel sheets consisting of ferrite, which is characterized by high ductility, and low-temperature transformation products such as martensite have been developed and are being widely used.These mixed-structure steel sheets have high tensile strength and high They have a common property of being ductile but at the same time having a low yield point.
As shown in No. 19441 and No. 58-22332, mixed structure steels generally have a yield ratio defined as the ratio of yield point to tensile strength, which is as low as 65 or 60% or less. As mentioned above, precipitation fine-grain strengthened high-strength steel sheets with additions of Nb, Ti, V, etc. have a high yield point and tensile strength, but have poor ductility, while mixed-structure steel sheets have good tensile strength and ductility. However, it has been impossible to manufacture thin steel sheets that have a low yield point and are suitable for applications that require both a high yield point and high ductility. On the other hand, high-strength steel plates using P have been proposed for a long time, such as in Japanese Patent Application Laid-Open Nos. 50-23316 and 50-60419. These disclose that P-added cold-rolled steel sheets are subjected to skin pass rolling after continuous annealing, but the structure before skin pass rolling consists of ferrite carbide, making it impossible to obtain a mixed structure containing low-temperature transformation products. Furthermore, JP-A-58-22332 and JP-A-57-137452 mentioned above disclose how to obtain a mixed structure, which is the basis of the present invention, for cold-rolled thin sheets and hot-rolled thin sheets, respectively. However, a low yield ratio was inevitable. (Problems to be Solved by the Invention) Normally, skin pass rolling is suitable as a method for increasing the yield point of a steel plate after annealing.
Generally, skin pass rolling is accompanied by deterioration of ductility. However, when this method was actually applied to a mixed texture steel sheet, it was discovered that mixed texture steel sheets manufactured under specific conditions had little deterioration in ductility even when subjected to skin pass rolling. It is an object of the present invention to utilize the above knowledge to establish a method for manufacturing a high-strength steel plate that has both a high yield point and high ductility. (Means for Solving Problems) This invention has a basic composition of C: 0.03 to 0.20 wt%, Mn: 0.8 to 3.0 wt%, P: 0.04 to 0.15 wt%, S: 0.01 wt% or less, Al: 0.10 wt% or less. , a hot-rolled thin sheet having a mixed structure consisting of 5% or less of a low-temperature transformation product phase and the remaining ferrite phase, produced as hot-rolled or by continuous annealing after subsequent cold rolling; or The tensile strength method consists of heat-treating the cold-rolled sheet to form the mixed structure, and then masking pass rolling it within the elongation rate SK (%) that satisfies the following formula according to the initial yield ratio YR 0 obtained by the heat treatment. 5.25-0.075×YR 0 SK ( % ) 3 (%). First, the experimental results that led to the completion of this invention will be explained. A mixed structure cold-rolled steel sheet (1.2 mm thick) made of ferrite-martensite produced under the conditions shown in Table 1 was subjected to skin pass rolling to an elongation rate of 5%, and its tensile properties were investigated. The results are shown in Figure 1.

【表】 いずれの材料でもスキンパスでの伸び率の増加
に伴い降伏比が急激に増加することが第1図に明
らかである。 降伏比が70%以上となる臨界のスキンパス伸び
率は、第1図に併記した右下りの直線、つまりス
キンパス前の連続焼鈍ままでの降伏比YR0との間
で次式、 SK(%)=5.25−0.075×YR0(%) の関係が与えられる。 一方スキンパス伸び率増加に伴い、第1図に示
すように伸びは低下傾向を示すが、この発明のP
添加鋼A,Bでは、スキンパスの伸び率が3%以
下のとき延性劣化は少なく、3%をこえてはじめ
て急激に劣化する。なおPを事実上含まない比較
鋼Cではスキンパスによる延性劣化が著しいこと
がわかる。 この実験は、上掲特開昭58−22332号公報に示
されたところに従う冷延後の熱処理により、混合
組織を得た場合についてのスキンパスの影響を調
査したわけであるが、その成績に対し、上記特開
昭57−137452号公報に示された混合組織熱圧延薄
板に対して同様なスキンパスを施したとき、ほぼ
同等な降伏比の増強が確保されることがたしかめ
られた。 (作 用) 次にこの発明の成分範囲限定の理由について説
明する。 C:0.03〜0.20wt% Cは連続焼鈍後のマルテンサイトなど低温変態
生成物の量を通して引張強さを支配するため重要
であり、C量が0.03wt%より低いと高引張強さが
得られないだけでなくAc1変態点が急激に上昇し
焼鈍時の温度制御が困難になるため下限を0.03%
とした。 一方C量の増加は強度を増加させるため好まし
いが、0.20wt%を越えるとスポツト溶接性が急激
に劣化するため上限を0.20wt%とした。 Mn:0.8〜3.0wt% Mnは固溶強化元素であり、強度を確保するた
めに必要であるが、この発明ではPとともに低温
変態生成物形成のためにも重要であり、この発明
の前提としての混合組織を得るために最低0.8wt
%を要する。Mnの増量は強度を上げるため好ま
しいが、多用しすぎるとコストアツプと溶接性劣
化をもたらすため3.0wt%を上限とした。 P:0.04〜0.15wt% Pは固溶強化、低温変態生成促進作用があり、
またコストも安価であるため望ましい元素であ
る。とくにこの発明では理由は不明であるがスキ
ンパスに伴う延性劣化を少なくする効果が大であ
ることから重要な元素であり、この効果をもたら
すためには、0.04wt%以上を必要とし、一方
0.15wt%をこえるPの過量は脆化、溶接性劣化を
もたらすため0.15wt%を上限とした。 S:0.01wt%以下 SはMnSとして鋼中に存在し延性劣化をもた
らすため極力少なくすることが好ましいが、極低
S量達成が困難な場合たとえば、Ce,Laなどの
希土類元素又は、Caを添加し、硫化物の形状制
御を行うことによつて延性劣化を防ぐことができ
るので、その限度において上限を0.01wt%とし
た。 Al:0.10wt%以下 Alは脱酸元素として必要であるが過剰のAlは
アルミナクラスターを形成して、表面性状を劣化
させ、また熱間割れのおそれが高くなるため上限
を0.10wt%とした。 上記C,Mn,P,S及びAlの各限定量をもつ
てこの発明の高強度鋼板の基本成分とするが、他
に強度増加を目的として2%以下のSiや、1%以
下のCr及びMo、0.1%以下のNb,Ti及びVをそ
れぞれ1種又は、2種以上添加してもこの発明の
目的は損われない。とくにNb,Ti,,Vなどの
添加は混合組織鋼板においても析出細粒化の効果
があり、強度増加と焼鈍ままでの降伏比増加をも
たらし、その結果降伏比を70%以上とするに必要
なスキンパス伸び率を少なくするために好まし
い。 上記の如く成分組成を限定した鋼は熱延または
冷延後連続焼鈍され、それぞれ熱延鋼板又は、冷
延鋼板とされる。この場合の熱延又は、焼鈍条件
については次のとおりである。 まず熱延薄板は、上記の成分範囲が満たされる
ように溶製した鋼スラブの加熱温度を、通常の圧
延の場合とほぼ同様に1100〜1250℃とする。また
最終仕上圧延を750〜900℃にて終了した後通常の
冷却速度(10〜200℃/sec)で冷却するだけで格
別な冷却パターンの規制を要しない。 熱間圧延後のコイル巻取り温度(CT)は450℃
以下がのぞましい。すなわち上記冷却後の初期際
伏比YR0が上記熱延条件の範囲内ではほぼC.T.の
みによつてきまり、また450℃よりも高い温度で
巻取つた場合もパーライト変態が生じTSが低下、
YR0が70%以上となる。C.T.が450℃以下の場合
にはこの発明の成分の鋼の場合は70%以上のフエ
ライトが巻取り時まで生成するためオーステナイ
ト相にCが濃縮し、Mnの効果とあいまつて巻取
り後もしくは巻取り前にマルテンサイト変態が生
じる。 次に冷延薄板については通常の熱間圧延をした
のち酸洗を行つてから冷間圧延をし、次いで連続
焼鈍を行う。 熱延は通常の条件で行なわれるが、高強度を得
るためには600℃以下の低温巻取りが好ましい。
次に焼鈍条件は重要であり、まずその加熱温度は
低温変態生成物相の母相であるオーステナイト相
を得るためAc1点以上としなければならない。ま
たAc1点以上においては温度の高い程γ相の量が
増し、その結果冷却後の低温変態生成物相の量が
増し、より高強度が得られるため高温焼鈍は好ま
しいけれども950℃を超えると強度増加は飽和す
ると同時にテンパーカラーやピツクアツプが発生
するため950℃にとどめる。ここにピツクアツプ
というには連続焼鈍ラインなどで先行の鋼帯から
落下した酸化スケールが後続の鋼帯に付着する現
象をいう。 Nb,Ti及びVなどの元素を含む場合にはα―
γ域の低温側でより高強度が得られるためα―γ
域の低温焼鈍が好ましい。 加熱時間は所定量のγ相を現出させるため10秒
以上の保持が必要であり、また10分をこえて保持
するには焼鈍炉の均熱帯を長くするとか通板速度
を低下させる必要を伴い、いずれもコストアツプ
をもたらすために上限を10分とした。 この加熱温度からの冷却は耐2次加工ぜい性に
大きな影響を与えるため重要である。すなわち冷
却速度が15℃/sec未満では混合組織が得られて
も、耐2次加工ぜい性が向上しない。更に混合組
織鋼板の引張強さは冷却速度が大きいほど高くな
り、同一組成でより高強度を得るためには30℃/
s以上の冷却速度が好ましい。 なお、上記の冷却速度はいずれも600〜300℃間
の平均速度であるが、延性向上を得るためにはフ
エライト中の固溶C量を低減する必要があり、そ
のためには600℃以上の高温域につき20℃/sec以
下の冷却速度で徐冷するのが好ましい。 以上述べたようにして得られるP添加高強度熱
延鋼板又は冷延鋼板に対し、特定範囲内のスキン
パス圧延を施すことがこの発明のとくに重要な点
である。 一般にスキンパス圧延は熱延のまま、又は焼鈍
のままで残留する降伏伸びを消し、かつ鋼板形
状、表面性状を調整する目的で施される。 ところがこの発明のスキンパス圧延は、鋼板形
状、表面性状調整以外とくに鋼板に歪を付与し降
伏点を増加させ、熱延のまま、又は連続焼鈍のま
まで65%又は70%未満であつた降伏比を、70%以
上とする重要な目的がある。 多くの実験結果により降伏比を70%以上とする
に必要な最小のスキンパスにおける伸び率SK
(%)はスキンパス前の初期降伏比YR0と相関が
あることが明らかとなり、次式で求まるスキンパ
ス伸び率SK(%)を下限とする。 SK(%)=5.25−0.075×初期降伏比% スキンパス伸び率増加に伴ない第1図に示すよ
うに降伏比は上昇する。この場合鋼板の引張強さ
の変化は少なく、この降伏比変化は降伏点変化に
対応する。したがつて高降伏点を得るためにはス
キンパス伸び率増加が好ましいが、第1図に示す
ように3%以上のスキンパス伸び率では伸びが急
激に劣化するため上限を3%とした。 (実施例) 表2にこの発明に従つて得られる混合組織薄鋼
板の組成、製造条件及び引張特性を比較例と対比
して示す。
[Table] It is clear from Figure 1 that the yield ratio of any material increases rapidly as the elongation rate in the skin pass increases. The critical skin pass elongation rate at which the yield ratio is 70 % or more is determined by the following formula: SK (%) The following relationship is given: =5.25−0.075×YR 0 (%). On the other hand, as the skin pass elongation rate increases, the elongation tends to decrease as shown in Figure 1.
In additive steels A and B, ductility deterioration is small when the elongation rate of the skin pass is 3% or less, and it deteriorates rapidly only when it exceeds 3%. It can be seen that Comparative Steel C, which contains virtually no P, suffers from significant ductility deterioration due to skin passes. This experiment investigated the effect of skin pass on the case where a mixed structure was obtained by heat treatment after cold rolling as shown in the above-mentioned Japanese Patent Application Laid-Open No. 58-22332. It has been confirmed that when a similar skin pass is applied to the hot-rolled thin sheet with a mixed structure shown in the above-mentioned Japanese Patent Application Laid-Open No. 57-137452, substantially the same increase in yield ratio is secured. (Function) Next, the reason for limiting the range of components of this invention will be explained. C: 0.03-0.20wt% C is important because it controls tensile strength through the amount of low-temperature transformation products such as martensite after continuous annealing, and high tensile strength can be obtained when the C amount is lower than 0.03wt%. Not only that, but also the Ac1 transformation point rises rapidly, making it difficult to control the temperature during annealing, so the lower limit is set to 0.03%.
And so. On the other hand, increasing the amount of C is preferable because it increases the strength, but if it exceeds 0.20 wt%, spot weldability deteriorates rapidly, so the upper limit was set at 0.20 wt%. Mn: 0.8-3.0wt% Mn is a solid solution strengthening element and is necessary to ensure strength, but in this invention it is also important for the formation of low-temperature transformation products together with P, and as a premise of this invention minimum 0.8wt to obtain a mixed tissue of
% is required. Increasing the amount of Mn is preferable in order to increase strength, but if too much is used, it will increase costs and deteriorate weldability, so the upper limit was set at 3.0 wt%. P: 0.04-0.15wt% P has solid solution strengthening and low-temperature transformation formation promotion effects,
Further, it is a desirable element because it is inexpensive. In particular, in this invention, although the reason is unknown, it is an important element because it has a large effect of reducing ductility deterioration caused by skin passes.In order to bring about this effect, 0.04wt% or more is required;
An excessive amount of P exceeding 0.15 wt% causes embrittlement and deterioration of weldability, so the upper limit was set at 0.15 wt%. S: 0.01wt% or less S exists in steel as MnS and causes ductility deterioration, so it is preferable to reduce it as much as possible. However, if it is difficult to achieve an extremely low S content, for example, rare earth elements such as Ce and La or Ca may be added. Since ductility deterioration can be prevented by adding sulfide and controlling the shape of the sulfide, the upper limit was set at 0.01 wt%. Al: 0.10wt% or less Al is necessary as a deoxidizing element, but excessive Al forms alumina clusters, deteriorates the surface quality, and increases the risk of hot cracking, so the upper limit was set at 0.10wt%. . The above-mentioned limited amounts of C, Mn, P, S, and Al are the basic components of the high-strength steel sheet of the present invention, but in addition, 2% or less of Si, 1% or less of Cr and The object of the present invention is not impaired even if Mo, 0.1% or less of Nb, Ti, and V are added individually or in combination. In particular, the addition of Nb, Ti, V, etc. has the effect of refining the precipitate grains even in mixed-structure steel sheets, resulting in increased strength and yield ratio in as-annealed state, and as a result, it is necessary to increase the yield ratio to 70% or more. This is preferable in order to reduce the skin pass elongation rate. Steel with a limited composition as described above is hot-rolled or cold-rolled and then continuously annealed to produce a hot-rolled steel sheet or a cold-rolled steel sheet, respectively. The hot rolling or annealing conditions in this case are as follows. First, for hot-rolled thin sheets, the heating temperature of the steel slab, which is melted so that the above-mentioned component ranges are satisfied, is 1100 to 1250°C, which is almost the same as in the case of normal rolling. Further, after the final finish rolling is completed at 750 to 900°C, cooling is performed at a normal cooling rate (10 to 200°C/sec), and no special regulation of the cooling pattern is required. Coil winding temperature (CT) after hot rolling is 450℃
The following is desirable. In other words, the initial relief ratio YR 0 after cooling is determined almost solely by CT within the range of the hot rolling conditions described above, and when coiling is performed at a temperature higher than 450°C, pearlite transformation occurs, resulting in a decrease in TS.
YR 0 is 70% or more. When the CT is below 450°C, in the case of the steel with the composition of this invention, more than 70% of ferrite is generated until the time of winding, so C is concentrated in the austenite phase, and combined with the effect of Mn, it occurs after the winding or after the winding. Martensitic transformation occurs before desorption. Next, the cold-rolled sheet is subjected to normal hot rolling, pickling, cold rolling, and then continuous annealing. Hot rolling is carried out under normal conditions, but low temperature winding of 600°C or less is preferred in order to obtain high strength.
Next, the annealing conditions are important; first, the heating temperature must be set to Ac1 point or higher in order to obtain the austenite phase, which is the parent phase of the low-temperature transformation product phase. In addition, at Ac1 point or higher, the higher the temperature, the more the amount of γ phase increases, and as a result, the amount of low-temperature transformation product phase increases after cooling, and higher strength can be obtained. Temper color and pick-up occur at the same time as saturation occurs, so the temperature should be kept at 950°C. Here, pick-up refers to a phenomenon in which oxide scale that has fallen from a preceding steel strip in a continuous annealing line or the like adheres to the succeeding steel strip. When containing elements such as Nb, Ti and V, α-
Since higher strength can be obtained on the low temperature side of the γ region, α-γ
Low temperature annealing in the range is preferred. It is necessary to hold the heating time for 10 seconds or more in order to reveal a predetermined amount of γ phase, and to hold it for more than 10 minutes, it is necessary to lengthen the soaking zone of the annealing furnace or reduce the threading speed. Accordingly, the upper limit was set at 10 minutes in order to increase costs in both cases. Cooling from this heating temperature is important because it has a large effect on the resistance to secondary processing embrittlement. That is, if the cooling rate is less than 15° C./sec, even if a mixed structure is obtained, the secondary processing brittleness is not improved. Furthermore, the tensile strength of a mixed structure steel sheet increases as the cooling rate increases, and in order to obtain higher strength with the same composition,
A cooling rate of s or more is preferred. Note that the above cooling rates are all average rates between 600 and 300°C, but in order to improve ductility, it is necessary to reduce the amount of solid solute C in ferrite, and for that purpose, cooling at a high temperature of 600°C or higher is necessary. It is preferable to perform slow cooling at a cooling rate of 20°C/sec or less per area. A particularly important point of the present invention is to subject the P-added high-strength hot-rolled steel sheet or cold-rolled steel sheet obtained as described above to skin pass rolling within a specific range. Generally, skin pass rolling is performed for the purpose of eliminating yield elongation remaining after hot rolling or annealing, and adjusting the shape and surface properties of the steel sheet. However, the skin pass rolling of this invention, in addition to adjusting the steel sheet shape and surface texture, particularly applies strain to the steel sheet to increase the yield point, and improves the yield ratio which was less than 65% or 70% when hot rolled or continuously annealed. There is an important objective to increase this to 70% or more. According to many experimental results, the minimum skin pass elongation rate SK required to achieve a yield ratio of 70% or more
(%) is found to have a correlation with the initial yield ratio YR 0 before the skin pass, and the skin pass elongation rate SK (%) determined by the following formula is set as the lower limit. SK (%) = 5.25 - 0.075 x initial yield ratio % As the skin pass elongation rate increases, the yield ratio increases as shown in Figure 1. In this case, the change in tensile strength of the steel plate is small, and the change in yield ratio corresponds to the change in yield point. Therefore, in order to obtain a high yield point, it is preferable to increase the skin pass elongation rate, but as shown in FIG. 1, if the skin pass elongation rate is 3% or more, the elongation deteriorates rapidly, so the upper limit was set at 3%. (Example) Table 2 shows the composition, manufacturing conditions, and tensile properties of a mixed structure thin steel sheet obtained according to the present invention in comparison with a comparative example.

【表】【table】

【表】 (発明の効果) この発明によれば従来の析出細粒強化型高強度
鋼板と同等の降伏点、引張強さとより優れた延性
が、又、従来の混合組織鋼と同等の引張強さ、延
性とより高い降伏点が得られることが明らかであ
る。
[Table] (Effects of the invention) According to the present invention, the yield point and tensile strength are equivalent to those of conventional precipitation fine-grain strengthened high-strength steel sheets, as well as superior ductility, and the tensile strength is equivalent to that of conventional mixed structure steel. It is clear that ductility and higher yield points are obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表1に示す供試鋼のスキンパス圧延に
よる降伏点の向上効果を示す比較グラフである。
FIG. 1 is a comparative graph showing the effect of improving the yield point of the test steels shown in Table 1 by skin pass rolling.

Claims (1)

【特許請求の範囲】 1 C:0.03〜0.20wt% Mn:0.8〜3.0wt% P:0.04〜0.15wt% S:0.01wt%以下 Al:0.10wt%以下 を基本組成とし、熱間圧延のまま、又はその後の
冷間圧延後連続焼鈍することにより、製造され
た、5%以上の低温変態生成物相と残りフエライ
ト相とからなる混合組織を有する熱延薄板又は冷
延薄板を、該混合組織とする熱処理に引続き該熱
処理で得られる初期降伏比YR0に応じて下記式を
満たす伸び率SK(%)の範囲内にてスキンパス圧
延することから成る、引張強さ60Kgf/mm2以上、
降伏比70%以上で、かつ延性の良好な高張力鋼板
の製造方法。 記 5.25−0.075×YR0SK(%)3%
[Claims] 1 C: 0.03 to 0.20 wt% Mn: 0.8 to 3.0 wt% P: 0.04 to 0.15 wt% S: 0.01 wt% or less Al: 0.10 wt% or less, as hot rolled or a hot-rolled thin sheet or a cold-rolled thin sheet having a mixed structure consisting of 5% or more of a low-temperature transformation product phase and the remaining ferrite phase, which is produced by continuous annealing after cold rolling. A tensile strength of 60 Kgf/mm 2 or more, consisting of heat treatment followed by skin pass rolling within the range of elongation SK (%) that satisfies the following formula according to the initial yield ratio YR 0 obtained by the heat treatment,
A method for producing high-strength steel plates with a yield ratio of 70% or more and good ductility. Note 5.25−0.075×YR 0 SK (%) 3%
JP10178484A 1984-05-22 1984-05-22 Manufacture of high tension steel sheet having not less than 70% yield ratio and high ductility Granted JPS60245728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10178484A JPS60245728A (en) 1984-05-22 1984-05-22 Manufacture of high tension steel sheet having not less than 70% yield ratio and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10178484A JPS60245728A (en) 1984-05-22 1984-05-22 Manufacture of high tension steel sheet having not less than 70% yield ratio and high ductility

Publications (2)

Publication Number Publication Date
JPS60245728A JPS60245728A (en) 1985-12-05
JPH0218363B2 true JPH0218363B2 (en) 1990-04-25

Family

ID=14309807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10178484A Granted JPS60245728A (en) 1984-05-22 1984-05-22 Manufacture of high tension steel sheet having not less than 70% yield ratio and high ductility

Country Status (1)

Country Link
JP (1) JPS60245728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001084A1 (en) * 2002-06-25 2003-12-31 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607950B2 (en) * 1989-02-13 1997-05-07 株式会社神戸製鋼所 Method for producing high-strength cold-rolled steel sheet with alloyed molten zinc with excellent workability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131325A (en) * 1981-02-04 1982-08-14 Kawasaki Steel Corp Production of low yield ratio, high tensile cold rolled steel plate having good gamma value

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131325A (en) * 1981-02-04 1982-08-14 Kawasaki Steel Corp Production of low yield ratio, high tensile cold rolled steel plate having good gamma value

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001084A1 (en) * 2002-06-25 2003-12-31 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
US7559997B2 (en) 2002-06-25 2009-07-14 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same

Also Published As

Publication number Publication date
JPS60245728A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JP4530606B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
JPS6240405B2 (en)
US4830686A (en) Low yield ratio high-strength annealed steel sheet having good ductility and resistance to secondary cold-work embrittlement
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
JPS59159932A (en) Production of high tensile steel plate having excellent strength and toughness
JPH0312131B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
CN111465710B (en) High yield ratio type high strength steel sheet and method for manufacturing same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH0582458B2 (en)
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0218363B2 (en)
JPH0557332B2 (en)
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property
JPS6367524B2 (en)
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JP3212346B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent toughness
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPS6142766B2 (en)
JPH04293719A (en) Production of high strength steel plate for structural use excellent in toughness at low temperature and having high young's modulus
JPH08232016A (en) Production of high tensile strength steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees