JPH02180554A - Method and device for notch grinding of semiconductor wafer - Google Patents

Method and device for notch grinding of semiconductor wafer

Info

Publication number
JPH02180554A
JPH02180554A JP33517988A JP33517988A JPH02180554A JP H02180554 A JPH02180554 A JP H02180554A JP 33517988 A JP33517988 A JP 33517988A JP 33517988 A JP33517988 A JP 33517988A JP H02180554 A JPH02180554 A JP H02180554A
Authority
JP
Japan
Prior art keywords
grindstone
semiconductor wafer
notch
moving
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33517988A
Other languages
Japanese (ja)
Other versions
JP2611829B2 (en
Inventor
Haruo Ozaki
尾崎 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMUTETSUKU KK
Original Assignee
EMUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMUTETSUKU KK filed Critical EMUTETSUKU KK
Priority to JP33517988A priority Critical patent/JP2611829B2/en
Publication of JPH02180554A publication Critical patent/JPH02180554A/en
Application granted granted Critical
Publication of JP2611829B2 publication Critical patent/JP2611829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To perform beveling even for almost V shaped notch with holding the flatness of a semiconductor wafer in good state and to prevent the generation of dust, by moving the semiconductor wafer held at the orthogonal position with a grindstone in the direction approaching to or separating from the grindstone with moving the grindstone in the rotating shaft direction. CONSTITUTION:A rotating discoid grindstone 4 and a semiconductor ware 2 ground by this grindstone 4 are arranged at the position where the respective face is orthogonal each other, the grindstone 4 is moved in the axial line direction of the rotating shaft 13 thereof and the semiconductor wafer 2 is moved in the direction approaching to the grindstone 4 or separating therefrom. Moreover, the beveling in the circumferential direction and plate thickness direction of the notch 2c of the semiconductor wafer 2 is performed by moving the grindstone 4 in the direction orthogonal with the axial line direction and approaching or separating direction. Thus the generation of dust can be prevented by beveling the notch 2c.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体ウェーハのノツチ研削方法及び装置に
係り、特に回転する円板状の砥石をその回転軸の軸線方
向(X方向)に移動させ、半導体ウェーハを砥石に接近
させ又はこれから離脱させる方向(Y方向)に移動させ
ると共に、該砥石を上記X方向及びY方向と直交するX
方向に移動させて半導体ウェーハのノツチの円周方向及
び板厚方向の面取加工を同時に能率よく行うことができ
、かつ板厚方向の面取りの大きさを任意に変更すること
ができる半導体ウェーハのノツチ研削方法及び装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for notch grinding a semiconductor wafer, and in particular moves a rotating disk-shaped grindstone in the axial direction (X direction) of its rotation axis. The semiconductor wafer is moved in the direction (Y direction) in which the semiconductor wafer approaches or leaves the grindstone, and the grindstone is moved in the direction of
To provide a semiconductor wafer which can simultaneously efficiently chamfer a notch of a semiconductor wafer in the circumferential direction and the thickness direction by moving the notch in the direction of the semiconductor wafer, and which can arbitrarily change the size of the chamfer in the thickness direction. The present invention relates to a notch grinding method and device.

従来の技術 半導体ウェーハ等のウェーハは、薄い円板状の半導体の
総称であり、通常第6図に示す如く円柱状に精製された
単体結晶母材から円板状に切り出され、その−表面は鏡
面研摩され、種々の半導体素子がその表面上にエツチン
グ法等により形成されるものである。半導体ウェーハで
は、例えばその寸法は、直径10〜400龍φ、厚さ2
00 tt信〜10鰭の薄い円板状のものであり、円周
方向の方位を容易に合わせ易くするため、外周部の一部
を直線状に研削したオリエンチーシリンフラット(OF
)又は略V字形状のノツチを形成する。
Background Art A wafer such as a semiconductor wafer is a general term for a thin disk-shaped semiconductor, and is usually cut into a disk shape from a single crystal base material refined into a cylindrical shape, as shown in FIG. It is mirror-polished, and various semiconductor elements are formed on the surface by etching or the like. For example, a semiconductor wafer has dimensions of 10 to 400 mm in diameter and 2 mm in thickness.
It is a thin disc-shaped object with 00 tt to 10 fins, and in order to easily align the circumferential direction, it is called an oriental cylinder flat (OF) with a part of the outer periphery ground into a straight line.
) or a roughly V-shaped notch.

一方、半導体ウェーハの表面に微細な加工を行う際に問
題となるのは、半導体ウェーハの表面や外周面から発゛
生ずるゴミであり、半導体ウェーハの外周面がシャープ
であると粉塵の発生が矛くなる。そこでオリエンテーシ
ョンフラット又はノツチと外周面との接続面、特にオリ
エンテーションフラット又はノツチの板厚方向のシャー
プエツジをなくすことは粉塵の発生を防止する上で有効
な手段となる。
On the other hand, when performing fine processing on the surface of a semiconductor wafer, the problem is dust generated from the surface and outer circumferential surface of the semiconductor wafer, and if the outer circumferential surface of the semiconductor wafer is sharp, the generation of dust becomes a problem. It becomes. Therefore, eliminating sharp edges in the thickness direction of the orientation flat or notch, especially at the connection surface between the orientation flat or notch and the outer circumferential surface, is an effective means for preventing the generation of dust.

また、オリエンテーションフラット又はノツチを正確な
寸法に加工することは、次工程の微細加工時の位置合せ
時間を短縮することができるので、高精度の研削加工が
要求される。
Furthermore, machining the orientation flat or notch to accurate dimensions can shorten the alignment time during the next step of micromachining, so high-precision grinding is required.

従来、略V字形状のノツチのシャープエツジ除去加工が
困難であるため、該加工の比較的容易なオリエンテーシ
ョンフラットが多く用いられていたが、該オリエンテー
ションフラットは欠落部分を多くとらなければならず、
高価な半導体ウェーハを有効に利用できない欠点があっ
た。
Conventionally, it has been difficult to process the sharp edges of a roughly V-shaped notch, so orientation flats, which are relatively easy to process, have often been used;
There was a drawback that expensive semiconductor wafers could not be used effectively.

ノツチの研削方法として、従来化学研摩法又は総量カッ
タ法が採用されていた。化学研摩法は、第6図に示す如
く円柱状の母材1からから円板状に切り出した半導体ウ
ェーハ2をエツチング液に浸漬してエツジ部2aを化学
的に除去するものであるが、第7図に示す如く、エツジ
部2aだけでなくエツチング液に浸漬した部分2bの全
体が浸食されて薄くなるので、ウェーハの平面度が悪く
なり、次工程の微細加工に悪影響を及ぼす欠点があった
。また、この方法による加工量は掻くわずかで、ILs
I等の加工をする時に問題となるサブミクロン単位のゴ
ミの発生を防止するには不十分な加工しかできない欠点
があった。
Conventionally, a chemical polishing method or a total cutter method has been adopted as a method for grinding notches. In the chemical polishing method, as shown in FIG. 6, a semiconductor wafer 2 cut into a disk shape from a cylindrical base material 1 is immersed in an etching solution to chemically remove the edge portion 2a. As shown in Fig. 7, not only the edge portion 2a but also the entire portion 2b immersed in the etching solution is eroded and becomes thinner, resulting in poor flatness of the wafer, which has the disadvantage of having a negative impact on microfabrication in the next step. . In addition, the amount of processing by this method is very small, and ILs
There is a drawback that processing is insufficient to prevent the generation of submicron dust, which is a problem when processing I and the like.

また総量カッタ法においては、ノツチ2Cの形状と同一
形状のカッタを作成してノツチ2Cを研削するため、ノ
ツチ2Cの形状が変更されると、その都度カッタを作成
しなければならず、また該カッタの形状は研削に伴なっ
て変ってしまい、ある程度使用したカッタは新しいカン
タに交換しなければならず、経済的に高価につく上に、
段取り作業に多くの工数を要する欠点があった。またV
字形のノツチ2Cとウェーハ2の外周部2dとの1大読
点の面取加工と、該ノツチ2Cの板厚方向の面取加工を
1個の砥石で加工することができないため、通常板厚方
向の面取加工のみ行い、次工程の微細加工を実施してい
るが、未加工の円周方向のエツジ部2aからの粉塵の発
生があるため、導線部の断線等の重大な影響を半導体素
子に与えてしまう欠点があった。
In addition, in the total cutter method, a cutter with the same shape as the notch 2C is created to grind the notch 2C, so if the shape of the notch 2C is changed, a cutter must be created each time, and the cutter must be created each time the shape of the notch 2C is changed. The shape of the cutter changes during grinding, and a cutter that has been used for some time must be replaced with a new one, which is not only economically expensive, but also
This method has the drawback of requiring a large number of man-hours for setup work. Also V
Since it is not possible to chamfer one major reading point between the letter-shaped notch 2C and the outer periphery 2d of the wafer 2, and to chamfer the notch 2C in the thickness direction with one grindstone, it is usually done in the thickness direction. Although only the chamfering process is performed and the next step is micromachining, dust is generated from the unprocessed circumferential edge part 2a, which may cause serious effects such as disconnection of the conductor part, etc. It had the disadvantage of giving away.

目  的 本発明は、上記した従来技術の欠点を除くためになされ
たものであって、その目的とするところはミ回転する円
板状砥石をその回転軸線方向に移動させながら、該砥石
と直交する位置に保持した半導体ウェーハを該砥石に接
近又は離脱する方向に移動させることにより、相対的に
略V字形のノツチの外形形状に沿わせるように砥石を移
動させ、該ノツチを研削することにより、従来加工の困
難であった部分についても次工程で微細加工を施す半導
体ウェーハの面の平面度を良好な状態に保ったまま、粉
塵の発生を防止するに十分な面取加工を行うことができ
るようにすることである。また他の目的は、ノツチの形
状が変更されても、砥石の交換を不要とすることで、段
取り作業のない能率のよい研削作業を行うことができる
ようにすることである。更に他の目的は、ノツチの円周
方向と板厚方向の面取加工を1個の大きな径の砥石で同
時に加工できるようにして作業能率を向上させると共に
、エツジ部からの粉塵の発生を防止し、半導体ウェーハ
に形成される半導体素子の特性に悪影舌を与えるのを防
止することである。
Purpose The present invention has been made in order to eliminate the drawbacks of the prior art described above, and its purpose is to move a rotating disc-shaped grindstone in the direction of its rotational axis while By moving the semiconductor wafer held at a position toward or away from the grindstone, the grindstone is moved so as to follow the outer shape of the relatively V-shaped notch, and the notch is ground. , it is now possible to perform sufficient chamfering to prevent the generation of dust while maintaining the flatness of the surface of the semiconductor wafer, which will be microfabricated in the next process, in a good condition, even in areas that were previously difficult to process. The goal is to make it possible. Another object is to eliminate the need to replace the grindstone even if the shape of the notch is changed, thereby enabling efficient grinding work without setup work. Another purpose is to improve work efficiency by making it possible to simultaneously chamfer the notch in the circumferential direction and the plate thickness direction using one large-diameter grindstone, as well as to prevent the generation of dust from the edge. However, the purpose is to prevent adverse effects on the characteristics of semiconductor elements formed on a semiconductor wafer.

構成 要するに本発明方法(請求項1)は、回転する円板上の
砥石と該砥石で研削する半導体ウェー八とを夫々の面が
互いに直交する位置に配設し、前記砥石をその回転軸の
軸線方向(X方向)に移動させ、前記半導体ウェーハを
前記砥石に接近させ又はこれから離脱させる方向(Y方
向)に移動させると共に、前記砥石を前記軸線方向(X
方向)及び前記接近又は離脱させる方向(Y方向)と直
交する方向(Z方向)に移動させて前記半導体ウェーハ
の前記ノツチの円周方向及び板厚方向の面取加工を行う
ことを特徴とするものである。
Configuration In short, the method of the present invention (claim 1) comprises disposing a grindstone on a rotating disc and a semiconductor wafer to be ground with the grindstone at positions where their respective surfaces are perpendicular to each other, and the grindstone is placed on the axis of rotation of the grindstone. The semiconductor wafer is moved in the axial direction (X direction) and moved in the direction (Y direction) in which the semiconductor wafer approaches or leaves the grindstone, and the grindstone is moved in the axial direction (X direction).
chamfering of the notch of the semiconductor wafer in the circumferential direction and thickness direction by moving the notch in the direction (Z direction) perpendicular to the approaching or separating direction (Y direction) and the approaching or separating direction (Y direction). It is something.

また本発明装置(請求項2)は、移動台上に回動自在に
配設された円板状の砥石と、前記移動台を該砥石の回転
軸の軸線方向(X方向)に移動させる第1の駆動装置と
、前記移動台を前記軸線方向(X方向)及び前記砥石で
研削する半導体ウェー八に該砥石を接近させ又はこれか
ら離脱させる方向(Y方向)に直交する方向(Z方向)
に移動させる第2の駆動装置と、前記半導体ウェー八を
前記砥石の面に直交する面内で回転可能に保持するワー
クホルダと、該ワークホルダ上の前記半導体ウェー八を
回転駆動する第3の駆動装置と、該ワークホルダを前記
砥石に接近させ又はこれから離脱させる方向(Y方向)
に移動させる第4の駆動装置とを備え、これらの第1、
第2、第3及び第4の駆動装置により前記砥石及び前記
半導体ウェーハを相対的に3軸方向(X、Y、Z方向)
に移動させて前記半導体ウェーハのノツチの円周方向及
び板厚方向の面取加工を行うように構成したことを特徴
とするものである。
The device of the present invention (claim 2) also includes a disc-shaped grindstone rotatably disposed on a movable table, and a grindstone that moves the movable table in the axial direction (X direction) of the rotation axis of the grindstone. 1 and a direction (Z direction) perpendicular to the axial direction (X direction) and the direction (Y direction) in which the grindstone approaches or leaves the semiconductor wafer to be ground by the grindstone (Y direction);
a second drive device that moves the semiconductor wafer to a surface of the grindstone; a work holder that rotatably holds the semiconductor wafer in a plane perpendicular to the surface of the grindstone; and a third drive device that rotationally drives the semiconductor wafer on the work holder. A driving device and a direction (Y direction) in which the work holder approaches or departs from the grindstone.
a fourth drive device for moving the first,
The grindstone and the semiconductor wafer are relatively moved in three axial directions (X, Y, and Z directions) by second, third, and fourth drive devices.
The present invention is characterized in that the notch of the semiconductor wafer is chamfered in the circumferential direction and the thickness direction by moving the notch.

以下本発明を図面に示す実施例に基いて説明する。本発
明に係る半導体ウェーハのノツチ研削装置3は、円板状
の砥石4と、砥石の回転駆動機構5と、該回転駆動機構
を積載する基台6と、第1の駆動装置8と、第2の駆動
装置9と、ワークホルダ10と、第3の駆動装置11と
、第4の駆動装置12とを備えている。
The present invention will be explained below based on embodiments shown in the drawings. A semiconductor wafer notch grinding device 3 according to the present invention includes a disc-shaped grindstone 4, a rotation drive mechanism 5 for the grindstone, a base 6 on which the rotation drive mechanism is mounted, a first drive device 8, and a first drive device 8. The present invention includes two drive devices 9, a work holder 10, a third drive device 11, and a fourth drive device 12.

砥石4は、金剛砂を固めて成形した砥石本体4aの周囲
にダイヤモンドの砥粒4bをメタルや電着で固めて形成
したものであって、回転軸13にナツト14により取り
外し可能に固定されている。
The whetstone 4 is formed by hardening diamond abrasive grains 4b with metal or electrodeposition around a whetstone main body 4a formed by solidifying diamond sand, and is removably fixed to a rotating shaft 13 with a nut 14. .

砥石4の回転駆動機構5は、砥石4を電動モータ15で
一方向に回転させるものであって、該電動モータ15の
回転軸13に固定した砥石4を例えば矢印A方向に回転
させるようになっている。
The rotational drive mechanism 5 for the grindstone 4 rotates the grindstone 4 in one direction with an electric motor 15, and rotates the grindstone 4 fixed to the rotating shaft 13 of the electric motor 15, for example, in the direction of arrow A. ing.

基台6は、案内台16及び移動台19とから構成されて
おり、案内台16上をこれに形成したアリ溝18に案内
された移動台19が一直線上を摺動移動できるようにな
っている。
The base 6 is composed of a guide stand 16 and a moving stand 19, and the moving stand 19 is guided by a dovetail groove 18 formed on the guide stand 16 so that it can slide in a straight line. There is.

第1の駆動装置8は、アリ溝18により案内された移動
台19を砥石4の回転軸13の軸線方向(X方向)に移
動させるようにしたものであって、例えばDCサーボモ
ータ20の回転軸20aに形成した送りねじ21が移動
台19に形成されためねじ22に回転可能に螺着されて
いる。
The first drive device 8 is configured to move a movable table 19 guided by a dovetail groove 18 in the axial direction (X direction) of the rotating shaft 13 of the grindstone 4, and is configured to drive, for example, the rotation of a DC servo motor 20. A feed screw 21 formed on the shaft 20a is rotatably screwed onto an internal screw 22 formed on the moving table 19.

第2の駆動装置9は、砥石4をZ方向に移動させるため
のものであって、案内台16に固着した送りナツト23
に回転可能に螺着された送りねじ24に回転軸25aを
直結したDCサーボモータ25として構成しである。
The second drive device 9 is for moving the grindstone 4 in the Z direction, and is driven by a feed nut 23 fixed to the guide table 16.
It is configured as a DC servo motor 25 in which a rotating shaft 25a is directly connected to a feed screw 24 which is rotatably screwed into the feed screw 24.

ワークホルダ10は、第1図から第3図に示すように、
複数個、例えば4個のエア吸引穴10aがその上面10
bに形成されており、該エア吸引穴10aは真空ポンプ
(図示せず)に連通接続されており、該真空ポンプの作
動によりエアがエア吸引穴10aから吸引されて半導体
ウェー八2を吸着するように構成されている。また上面
10bには半径方向に直交した一対の溝10c及び円周
方向の同心状の溝10dが形成されている。更にワーク
ホルダ10は移動台26に固定された支持円筒28によ
り回動自在に支持されており、第3の駆動袋M11によ
りワークホルダ10に吸着されたウェーハ2をゆっ(り
と回動させるように構成されている。
The work holder 10, as shown in FIGS. 1 to 3,
A plurality of, for example four, air suction holes 10a are provided on the upper surface 10.
b, and the air suction hole 10a is connected to a vacuum pump (not shown), and when the vacuum pump operates, air is sucked from the air suction hole 10a to adsorb the semiconductor wafer 2. It is configured as follows. Further, a pair of grooves 10c perpendicular to the radial direction and a concentric groove 10d in the circumferential direction are formed on the upper surface 10b. Further, the work holder 10 is rotatably supported by a support cylinder 28 fixed to a moving table 26, and the wafer 2 attracted to the work holder 10 is slowly rotated by the third driving bag M11. It is composed of

第4の駆動装置12は、ワークホルダlOを砥石4に接
近させ又はこれから離脱させるものであって第1及び第
2の駆動装置8,9と同様にDCサーボモータ29の回
転軸29aに固着した送りねじ30と、これに螺着され
た移動台26に配設した送りナツト3Fとから構成され
、送りねじ30を正逆回転させることによって、移動台
26をY方向に往復動させることができるようになって
いる。
The fourth drive device 12 moves the work holder lO closer to or away from the grinding wheel 4, and is fixed to the rotating shaft 29a of the DC servo motor 29 like the first and second drive devices 8 and 9. It is composed of a feed screw 30 and a feed nut 3F screwed onto the feed screw 30 and disposed on a moving table 26, and by rotating the feed screw 30 in forward and reverse directions, the moving table 26 can be reciprocated in the Y direction. It looks like this.

そして第1、第2、第3及び第4の駆動装置89.11
及び12は操作盤33を備えた制御装置32に電気的に
接続されている。
and first, second, third and fourth drive devices 89.11
and 12 are electrically connected to a control device 32 having an operation panel 33.

そして本発明に係る方法は、回転する円板状の砥石4と
該砥石で研削する半導体ウェーハ2とを夫々の面が互い
に直交する位置に配設し、砥石4をその回転軸13の軸
線方向(X方向)に移動させ、半導体ウェーハ2を砥石
4に接近させ又はこれから離脱させる方向(Y方向)に
移動させると共に、砥石4を軸線方向(X方向)及び上
記接近又は離脱させる方向(Y方向)と直交する方向(
X方向)に移動させて半導体ウェーハ2のノツチ2Cの
円周方向及び板厚方向の面取加工を行う方法である。
In the method according to the present invention, a rotating disc-shaped grindstone 4 and a semiconductor wafer 2 to be ground by the grindstone are arranged at positions where their surfaces are orthogonal to each other, and the grindstone 4 is rotated in the axial direction of its rotating shaft 13. (X direction), moves the semiconductor wafer 2 in the direction (Y direction) in which it approaches or leaves the grindstone 4, and moves the grindstone 4 in the axial direction (X direction) and the direction in which it approaches or leaves the grindstone 4 (Y direction). ) and the direction perpendicular to (
In this method, the notch 2C of the semiconductor wafer 2 is chamfered in the circumferential direction and the thickness direction by moving the notch 2C in the X direction.

作、 用 本発明は、上記のように構成されており、以下その作用
について説明する。第1図、第2図及び第6図を参照し
て、円柱状の母材lに略V字形のノツチlaをその軸線
方向にわたって加工したものを円板状に切断、分離した
半導体ウェーハ2をワークホルダ10の上面10bに載
せ、図示しない真空ポンプを作動させる。該真空ポンプ
は吸引穴10aより空気を吸引するので半導体ウェーハ
2は、ワークホルダ10に吸引固定されている。
The present invention is constructed as described above, and its operation will be explained below. Referring to FIGS. 1, 2, and 6, a semiconductor wafer 2 is obtained by cutting and separating a cylindrical base material l into a disk shape with a substantially V-shaped notch la formed in its axial direction. It is placed on the upper surface 10b of the work holder 10, and a vacuum pump (not shown) is operated. Since the vacuum pump sucks air through the suction hole 10a, the semiconductor wafer 2 is fixed to the work holder 10 by suction.

制御装置32の指令により、第3の駆動装置11を作動
させてワークホルダ10、即ち半導体ウェーハ2をゆっ
くりと矢印θ方向に回転させ、ノツチ2Cが砥石4に正
しく対向したことを図示しない検出装置で検出し、駆動
装置1]の作動を停止させる。
In response to a command from the control device 32, the third drive device 11 is operated to slowly rotate the work holder 10, that is, the semiconductor wafer 2 in the direction of the arrow θ, and a detection device (not shown) detects that the notch 2C is correctly opposed to the grindstone 4. is detected and the operation of the drive device 1 is stopped.

また、DCサーボモータ25を回転させて基台6を送り
ねじ24及び送りナツト23の作用によって矢印z、z
’方向に上下させて第4図に示す如(、半導体ウェーハ
2の板厚方向の略中央部と砥石4の回転軸13の軸心1
3aとを一致させる。
Further, by rotating the DC servo motor 25, the base 6 is moved in the directions of arrows z and z by the action of the feed screw 24 and the feed nut 23.
4, as shown in FIG.
Match 3a.

このときの砥石4と半導体ウェーハ2との位置は、第3
図に示す如(離れた位置関係にあり、半導体ウェーハ2
は、まだ加工されない。ここでDCサーボモータ29を
作動させて送りねじ30を矢印B方向に回転させると、
移動台26は矢印Y方向に移動して、砥石4に接近し、
回転している砥石4と半導体ウェーハ2とが接触する。
The position of the grindstone 4 and the semiconductor wafer 2 at this time is the third position.
As shown in the figure (separated positional relationship, semiconductor wafer 2
is not processed yet. When the DC servo motor 29 is operated to rotate the feed screw 30 in the direction of arrow B,
The moving table 26 moves in the direction of arrow Y and approaches the grindstone 4,
The rotating grindstone 4 and the semiconductor wafer 2 come into contact.

砥石4と半導体ウェーハ2とが接触してから予め定めら
れた距離分移動台26をさらに矢印Y方向に第4の駆動
装置12を作動させて送り、半導体ウェーハ2を加工す
る。そしてDCサーボモータ20をゆっくりと回転させ
て回転駆動装置5を配、設した移動台19をアリ溝18
に沿って矢印X又はX′力方向移動させて砥石4を第3
図における仮想線の位置に移動fiLXだけ移動させる
と共に、DCサーボモータ25も作動させて基台6を朱
−印Z又はZ′力方向第4図に示す移動量LZだけ移動
させる。そして3g>(方向及びX方向移動量を刻々と
制御装置32に伝達して、■字形のノツチ2Cの形状に
沿って加工するために移動台26の移動すべき距離を予
め制御装置32に記憶させた演算式に従って演算し、演
算結果に従ってDCサーボモータ29を回転させる。
After the grindstone 4 and the semiconductor wafer 2 come into contact, the moving table 26 is further moved in the direction of arrow Y by a predetermined distance, and the semiconductor wafer 2 is processed. Then, the DC servo motor 20 is slowly rotated, the rotary drive device 5 is arranged, and the movable table 19 is moved into the dovetail groove 18.
The grindstone 4 is moved in the direction of the arrow X or X' along the
The base 6 is moved by the distance fiLX to the position indicated by the virtual line in the figure, and the DC servo motor 25 is also operated to move the base 6 by the amount of movement LZ shown in the red mark Z or Z' force direction in FIG. 3g>( direction and the amount of movement in the The calculation is performed according to the calculated formula, and the DC servo motor 29 is rotated according to the calculation result.

上述した如く、X、Y及びX方向の3軸方向の制御を行
うことで、砥石4と半導体ウェーハ2とを相対的に第3
図に示す半導体ウェーハ2の円周方向には、ノツチ2C
の形状に沿って、また第4図に示す板厚方向には矢印C
方向に、即ちY方向にはLY、からLY、+まで相対的
に移動させて面取加工を行うので、円周方向はノツチ2
Cと外周部2dとの接続点2eに、またノツチ2cの谷
部2「には小さな円弧形状、例えば0.2〜2.5Rの
面取加工rが、また板厚方向では第5図に示す如く、エ
ツジ部2aに小さな円弧形状の面取加工を同時に行うこ
とができる。半導体ウェーハ2の半径R,は例えばlO
〜400龍であり、ノツチの谷部2fまでの半径R2は
例えば8〜394■−である。
As described above, by controlling the three axes of the X, Y, and X directions, the grindstone 4 and the semiconductor wafer 2 are relatively
There are notches 2C in the circumferential direction of the semiconductor wafer 2 shown in the figure.
along the shape of the arrow C, and in the thickness direction shown in Fig. 4.
In other words, in the Y direction, chamfering is performed by moving relatively from LY to LY, +, so in the circumferential direction, the notch 2
A small circular arc shape, for example, a chamfer of 0.2 to 2.5R, is formed at the connection point 2e between C and the outer circumference 2d, and at the valley 2'' of the notch 2c, and in the thickness direction, as shown in Fig. 5. As shown, the edge portion 2a can be chamfered into a small arc at the same time.The radius R of the semiconductor wafer 2 is, for example, lO
The radius R2 to the valley 2f of the notch is, for example, 8 to 394 mm.

また、ノツチ2cの角度αは製品によって異なり、50
″〜1506の角度が用いられるが、角度αの値が変っ
ても、該角度を操作盤33から入力するだけで、砥石4
を交換することなく面取加工を行うことができる。また
面取の大きさも砥石4を変えることなく任意に選択し加
工することができる。
Also, the angle α of the notch 2c varies depending on the product, and is 50
'' to 1506 angles are used, but even if the value of the angle α changes, simply inputting the angle from the operation panel 33 allows the grinding wheel 4 to
Chamfering can be performed without replacing. Furthermore, the size of the chamfer can be arbitrarily selected and processed without changing the grindstone 4.

なお、上記実施例においては、制御はX、Y及びZ方向
の制御を同時に行うものとして説明したが、制御はx、
y及びZ方向の制御を同時に行うものに限定されるもの
ではなく、DCサーボモータ25の回転を停止させ、Z
方向の移動を行わず、DCサーボモータ20及び29の
みを作動させ、即ちX方向及びY方向の2軸方向の制御
により、相対的にノツチ2cの形状に沿ってノツチ2c
の外周方向の研削を行い、次いでDCサーボモータ25
のみを作動させて矢印Z又はZ′方向にわずかに移動さ
せ、再びDCサーボモータ2o及び29でX方向及びY
方向の2方向制御によりノツチ2cの板厚方向の面取加
工を順次行うようにしたものであってもよい。この場合
の板厚方向の面取の形状はいわゆるC面取加工となる。
In addition, in the above embodiment, the control was explained as controlling in the X, Y, and Z directions simultaneously, but the control was performed in the x,
The control is not limited to simultaneous control in the y and Z directions;
The notch 2c is moved relatively along the shape of the notch 2c by operating only the DC servo motors 20 and 29 without moving in the direction, that is, by controlling the two axes in the X direction and the Y direction.
Grinding is performed in the outer circumferential direction, and then the DC servo motor 25
to move it slightly in the direction of the arrow Z or Z', and then move it again in the X direction and Y direction using the DC servo motors 2o and 29.
The chamfering process of the notch 2c in the plate thickness direction may be sequentially performed by controlling the notches 2c in two directions. In this case, the shape of the chamfer in the plate thickness direction is a so-called C-chamfering process.

また、本発明の方法によればノツチ2cの円周方向及び
板厚方向のエツジをすべて研削するので、母材lのノツ
チ1aの加工で発生した加工ひずみ層を除去することも
できる。
Furthermore, according to the method of the present invention, all the edges of the notch 2c in the circumferential direction and the plate thickness direction are ground, so that it is also possible to remove the processing strain layer generated in processing the notch 1a of the base material 1.

効果 本発明は、上記のように回転する円板状の砥石をその回
転軸線方向に移動させながら、該砥石と直交する位置に
保持した半導体ウェーハを該砥石に接近又は離脱する方
向に移動させることにより、相対的に略V字形のノツチ
外形形状に沿うように砥石を移動させてノツチを研削す
るようにしたので、半導体ウェーハの平面度を良好な状
態に保持したまま、従来加工の困難であった部分につい
ても粉塵の発生を防止するのに十分な大きさの面取加工
を行うことができると共に、ノツチの形状が変更されて
も、砥石の交換が不要となり、段取り作業のなし、1能
率のよい研削作業を行い得る効果がある。また面取の大
きさ、ノツチの形状を、砥石・を変更することなく、任
意に変えることができる効果がある。更にはノツチの円
周方向と板厚方向の面取加工を1個の大きな径の砥石で
同時に加工できるようにしたので、作業能率を向上させ
ることができると共に、エツジ部からの粉塵の発生を防
止し得、半導体ウェーハに形成される半導体素子の特性
に悪影響を与えることがないようにすることができる効
果がある
Effect The present invention is to move a rotating disc-shaped grindstone in the direction of its rotational axis as described above, while moving a semiconductor wafer held at a position orthogonal to the grindstone in a direction toward or away from the grindstone. As a result, the notch is ground by moving the whetstone along the relatively V-shaped outer shape of the notch, thereby maintaining the flatness of the semiconductor wafer in a good condition, which is difficult to do with conventional processing. It is possible to perform chamfering large enough to prevent the generation of dust on the notched parts, and even if the shape of the notch is changed, there is no need to replace the grindstone, and there is no setup work and one efficiency. This has the effect of allowing good grinding work to be performed. Additionally, the size of the chamfer and the shape of the notch can be changed arbitrarily without changing the grindstone. Furthermore, chamfering in the circumferential direction and thickness direction of the notch can be performed simultaneously using one large-diameter grindstone, which improves work efficiency and reduces the generation of dust from the edges. It has the effect of preventing adverse effects on the characteristics of semiconductor elements formed on semiconductor wafers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6図は本発明の実施例に係り、第1図は半
導体ウェーハ及び半導体ウェーハのノツチ研削装置の斜
視図、第2図は研削装置の要部平面図、第3図は半導体
ウェーハの円周方向の面取加工状態を示す要部拡大平面
図、第4図は半導体ウェーハの板厚方向の面取加工状態
を示す要部拡大部分縦断面側面図、第5図は板厚方向の
面取加工が施された半導体ウェーハの部分拡大縦断面図
、第6図は母材から切断、作成される半導体ウェーハの
状態を示す斜視図、第7図は従来例に係る化学研摩法に
よる面取加工のブレの状態を示す要部拡大縦断面図であ
る。 2は半導体ウェーハ、2Cはノツチ、3は半導体ウェー
ハの面取加工装置、4は砥石、8は第1の駆動装置、9
は第2の駆動装置、10はワークホルダ、11は第3の
駆動装置、12は第4の駆動装置、13は回転軸、19
は移動台である。 特許出願人   エムチック株式会社
1 to 6 relate to embodiments of the present invention, FIG. 1 is a perspective view of a semiconductor wafer and a notch grinding device for semiconductor wafers, FIG. 2 is a plan view of essential parts of the grinding device, and FIG. 3 is a semiconductor wafer notch grinding device. FIG. 4 is an enlarged plan view of the main part showing the state of chamfering in the circumferential direction of the wafer, FIG. 4 is an enlarged longitudinal sectional side view of the main part showing the state of chamfering in the thickness direction of the semiconductor wafer, and FIG. FIG. 6 is a partially enlarged vertical cross-sectional view of a semiconductor wafer that has been subjected to directional chamfering, FIG. 6 is a perspective view showing the state of the semiconductor wafer cut and created from the base material, and FIG. 7 is a conventional chemical polishing method. FIG. 3 is an enlarged vertical cross-sectional view of a main part showing a state of blurring in chamfering. 2 is a semiconductor wafer, 2C is a notch, 3 is a semiconductor wafer chamfering device, 4 is a grindstone, 8 is a first drive device, 9
10 is a second drive device, 10 is a work holder, 11 is a third drive device, 12 is a fourth drive device, 13 is a rotating shaft, 19
is a moving platform. Patent applicant Mtic Co., Ltd.

Claims (1)

【特許請求の範囲】 1 回転する円板上の砥石と該砥石で研削する半導体ウ
ェーハとを夫々の面が互いに直交する位置に配設し、前
記砥石をその回転軸の軸線方向(X方向)に移動させ、
前記半導体ウェーハを前記砥石に接近させ又はこれから
離脱させる方向(Y方向)に移動させると共に、前記砥
石を前記軸線方向(X方向)及び前記接近又は離脱させ
る方向(Y方向)と直交する方向(Z方向)に移動させ
て前記半導体ウェーハの前記ノッチの円周方向及び板厚
方向の面取加工を行うことを特徴とする半導体ウェーハ
のノッチ研削方法。 2 移動台上に回動自在に配設された円板状の砥石と、
前記移動台を該砥石の回転軸の軸線方向(X方向)に移
動させる第1の駆動装置と、前記移動台を前記軸線方向
(X方向)及び前記砥石で研削する半導体ウェーハに該
砥石を接近させ又はこれから離脱させる方向(Y方向)
に直交する方向(Z方向)に移動させる第2の駆動装置
と、前記半導体ウェーハを前記砥石の面に直交する面内
で回転可能に保持するワークホルダと、該ワークホルダ
上の前記半導体ウェーハを回転駆動する第3の駆動装置
と、該ワークホルダを前記砥石に接近させ又はこれから
離脱させる方向(Y方向)に移動させる第4の駆動装置
とを備え、これらの第1、第2、第3及び第4の駆動装
置により前記砥石及び前記半導体ウェーハを相対的に3
軸方向(X、Y、2方向)に移動させて前記半導体ウェ
ーハのノッチの円周方向及び板厚方向の面取加工を行う
ように構成したことを特徴とする半導体ウェーハのノッ
チ研削装置。
[Scope of Claims] 1. A grindstone on a rotating disc and a semiconductor wafer to be ground by the grindstone are arranged at positions where their surfaces are orthogonal to each other, and the grindstone is placed in the axial direction of its rotation axis (X direction). move it to
The semiconductor wafer is moved in a direction (Y direction) in which the semiconductor wafer approaches or leaves the grindstone, and the grindstone is moved in a direction (Z direction) orthogonal to the axial direction (X direction) and the direction (Y direction) in which it approaches or leaves the grindstone. 1. A method for grinding a notch in a semiconductor wafer, the method comprising: chamfering the notch of the semiconductor wafer in the circumferential direction and the thickness direction by moving the notch in the semiconductor wafer direction. 2. A disc-shaped grindstone rotatably arranged on a movable table,
a first drive device that moves the movable table in the axial direction (X direction) of the rotating shaft of the grindstone; and a first drive device that moves the movable table in the axial direction (X direction) and the grindstone to approach the semiconductor wafer to be ground by the grindstone. Direction to move or move away from (Y direction)
a second drive device that moves the semiconductor wafer in a direction perpendicular to the grinding wheel (Z direction); a work holder that rotatably holds the semiconductor wafer in a plane perpendicular to the surface of the grindstone; A third drive device that rotationally drives the work holder, and a fourth drive device that moves the work holder in a direction (Y direction) in which the work holder approaches or leaves the grindstone, and these first, second, and third drive devices and a fourth driving device to relatively move the grindstone and the semiconductor wafer by 3.
A notch grinding device for a semiconductor wafer, characterized in that it is configured to chamfer the notch of the semiconductor wafer in the circumferential direction and the board thickness direction by moving in the axial direction (X, Y, two directions).
JP33517988A 1988-12-31 1988-12-31 Notch grinding method and apparatus for semiconductor wafer Expired - Lifetime JP2611829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33517988A JP2611829B2 (en) 1988-12-31 1988-12-31 Notch grinding method and apparatus for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33517988A JP2611829B2 (en) 1988-12-31 1988-12-31 Notch grinding method and apparatus for semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH02180554A true JPH02180554A (en) 1990-07-13
JP2611829B2 JP2611829B2 (en) 1997-05-21

Family

ID=18285641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33517988A Expired - Lifetime JP2611829B2 (en) 1988-12-31 1988-12-31 Notch grinding method and apparatus for semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2611829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490811A (en) * 1991-06-12 1996-02-13 Shin-Etsu Handotai Co., Ltd. Apparatus for chamfering notch of wafer
US6174222B1 (en) * 1995-06-09 2001-01-16 Hitachi, Ltd. Process for fabrication of semiconductor device, semiconductor wafer for use in the process and process for the preparation of the wafer
CN107249818A (en) * 2015-05-22 2017-10-13 日本电气硝子株式会社 The method for grinding of glass substrate
CN110587428A (en) * 2019-10-09 2019-12-20 青岛高测科技股份有限公司 Device and method for calibrating center of Notch groove formed in semiconductor crystal bar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144834B2 (en) * 2000-07-12 2008-09-03 株式会社日平トヤマ Semiconductor wafer notch grinding equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490811A (en) * 1991-06-12 1996-02-13 Shin-Etsu Handotai Co., Ltd. Apparatus for chamfering notch of wafer
US6174222B1 (en) * 1995-06-09 2001-01-16 Hitachi, Ltd. Process for fabrication of semiconductor device, semiconductor wafer for use in the process and process for the preparation of the wafer
CN107249818A (en) * 2015-05-22 2017-10-13 日本电气硝子株式会社 The method for grinding of glass substrate
CN107249818B (en) * 2015-05-22 2020-06-16 日本电气硝子株式会社 Grinding method of glass substrate
CN110587428A (en) * 2019-10-09 2019-12-20 青岛高测科技股份有限公司 Device and method for calibrating center of Notch groove formed in semiconductor crystal bar

Also Published As

Publication number Publication date
JP2611829B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US5185965A (en) Method and apparatus for grinding notches of semiconductor wafer
JP2613504B2 (en) Wafer notch chamfering method and apparatus
TWI600496B (en) Wafer chamfering processing method,wafer chamfering processing device and gringstone angle adjustment device
KR100706626B1 (en) Method and device for grinding double sides of thin disk work
JP2571477B2 (en) Wafer notch chamfering device
JP7234317B2 (en) Truing method and chamfering device
JP5112703B2 (en) Wafer chamfering method and apparatus
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JPH02180554A (en) Method and device for notch grinding of semiconductor wafer
JP2007044853A (en) Method and apparatus for chamfering wafer
JPH11347953A (en) Wafer chamfering grinding wheel
WO2002016076A1 (en) Sheet peripheral edge grinder
JP2652090B2 (en) Wafer notch chamfering device
JPS6315100B2 (en)
JPH06104228A (en) Method and apparatus for rounding notch part in semiconductor wafer
JP2001062686A (en) Index type edge polisher
JPH0590234A (en) Polishing method and device for end face of semiconductor wafer
JP4650678B2 (en) Truing method of chamfering grindstone
JP3801780B2 (en) Truing tool and wafer chamfering device with truing tool
JPH08336741A (en) Method of grinding surface
JPS62264858A (en) Surface grinding method
JP2002025951A (en) Double-sided machining apparatus and truing method of grinding means
JP3373486B2 (en) Notch grinding device for semiconductor wafer
JP2762200B2 (en) Wafer Chamfer Polishing Buff Form Grooving Machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

EXPY Cancellation because of completion of term