JPH02178921A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02178921A
JPH02178921A JP33333888A JP33333888A JPH02178921A JP H02178921 A JPH02178921 A JP H02178921A JP 33333888 A JP33333888 A JP 33333888A JP 33333888 A JP33333888 A JP 33333888A JP H02178921 A JPH02178921 A JP H02178921A
Authority
JP
Japan
Prior art keywords
silica
layer
spin
glass
rosette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33333888A
Other languages
Japanese (ja)
Inventor
Masao Akimoto
正男 秋元
Haruhiko Hosaka
保坂 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP33333888A priority Critical patent/JPH02178921A/en
Publication of JPH02178921A publication Critical patent/JPH02178921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable Sb silica-spin-on that the silica resistance can be lowered enough and besides rosette does not occur by applying vitrification temperature while supplying only O2 of specific pressure in the process that the layer Sb- vetrifies after Sb silica application. CONSTITUTION:After applying Sb containing silica solution on the main surface of a semiconductor substrate 1, an Sb containing silica application layer 3 is heated to 200-500 deg.C in pure oxygen gas atmosphere of 1 atmospheric pressure or more and is dried. Since Sb glass 3 is Sb2O3 or Sb2O5 and rosette is in the form of Sb-O-Si, enough O2 is supplied to the Sb silica application layer. As a result, the Sb glass 3 changes from the form of Sb2O3, which is strongly sublimable, to that of Sb2O5, which is free of sublimation property, and the coupling becomes firm, so activity becomes high and it becomes easy to diffuse, and furthermore it becomes hard to give O to the bonding of Sb-Si-. Hereby, Sb silica-spin-on, that generation of rosette is small and low sheet is obtained, can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法における、アンチモン
(Sb)拡散、詳しくは、sbシリノドスピン・オン工
法のプロセスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to antimony (Sb) diffusion in a method of manufacturing a semiconductor device, and more specifically to the process of sb silinode spin-on method.

従来の技術 近年、半導体装置の製造方法において、拡散マスク上に
拡散すべき不純物をスピン・オン塗布し、選択拡散する
低コストな工法が多用されてきている。拡散不純物の一
つであるsbは、伯の不純物に比べ、オート・ドープ現
象が少ないため、特に埋め込み層形成に良く使用される
が、2ゾーン工法という、コストの極めて高い方法に依
らなければならなかったが、前記スピン・オン工法を用
いることで約1/3のコストで実施できるようになった
BACKGROUND OF THE INVENTION In recent years, in semiconductor device manufacturing methods, a low-cost method of selectively diffusing impurities by spin-on coating of impurities to be diffused onto a diffusion mask has been frequently used. SB, which is one of the diffusion impurities, has less auto-doping phenomenon than dopant impurities, so it is often used especially for forming buried layers, but it requires an extremely expensive method called the two-zone construction method. However, by using the above-mentioned spin-on method, the cost can now be reduced to about 1/3.

以下に従来のsbシリカ・スピン・オン拡散工法につい
て説明する。従来のsbシリカ・スピン・オン工法は、
sbを含有しているシリカ/有機物溶液(以下、sbシ
リカ溶液と略記)を、シリコン(Si)基板主表面上に
選択的に形成された拡散マスク上にスピン・オン塗布し
、カラス化した後、熱拡散する工法である。第3図は、
従来のsbスピン・オン拡散工法により製造されたSi
基板の断面を示したものである。ここで、1はSi基板
、2は81基板主表面上に選択的に形成されたSiO2
の拡散マスク、3はスピン・オン塗布した後ガラス化さ
れたsbガラス層、4は拡散層である。
The conventional sb silica spin-on diffusion method will be explained below. The conventional sb silica spin-on method is
A silica/organic solution containing sb (hereinafter abbreviated as sb silica solution) is applied by spin-on onto a diffusion mask selectively formed on the main surface of a silicon (Si) substrate, and then glassed. , is a construction method that uses heat diffusion. Figure 3 shows
Si manufactured by conventional sb spin-on diffusion method
It shows a cross section of the substrate. Here, 1 is a Si substrate, 2 is a SiO2 selectively formed on the main surface of the 81 substrate.
, 3 is a sb glass layer vitrified after spin-on coating, and 4 is a diffusion layer.

発明が解決しようとする課題 ところで、従来のsbスピン・オン拡散工法では、ロー
ゼットと一般的に呼ばれている結晶性の異物が発生し易
く、これは、前記拡散マスクを突き抜けて、本来拡散層
を形成しない領域く以下、非拡散領域と略記)に、拡散
層を作ってしまう。
Problems to be Solved by the Invention However, in the conventional sb spin-on diffusion method, crystalline foreign matter commonly called rosettes are likely to occur, and these can penetrate through the diffusion mask and disintegrate into the diffusion layer. A diffusion layer is created in a region where a diffusion layer is not formed (hereinafter abbreviated as a non-diffusion region).

(以下、この現象を、不要拡散と略記。)又、拡散領域
にも発生し、この上にエピタキシャル層を形成するよう
な場合には、結晶欠陥を生じさせてしまう。これらの問
題は、いずれも半導体装置において、耐圧不良、リーク
不良として現れ、歩留まりを低下させる要因となる。か
つ、sbは、AsやBと比較し、S】に対する固溶限が
低く、かつ、前記sbカラス層からsbが昇華し易いた
め、拡散層のシート抵抗を下げにくいという問題もあっ
た。
(Hereinafter, this phenomenon will be abbreviated as unnecessary diffusion.) It also occurs in the diffusion region, and when an epitaxial layer is formed thereon, it causes crystal defects. All of these problems appear in semiconductor devices as breakdown voltage defects and leakage defects, and become factors that reduce yield. In addition, sb has a lower solid solubility limit for S than As and B, and sb easily sublimates from the sb glass layer, so there is also the problem that it is difficult to lower the sheet resistance of the diffusion layer.

第3図中、5はローゼット、6は不要拡散層である。こ
の日−ゼット5については、sb−。
In FIG. 3, 5 is a rosette and 6 is an unnecessary diffusion layer. For this day-Z5, sb-.

Siの化合物であり、極めてエツチング除去しに<<、
一般に、拡散層のシート抵抗を低くしようとすると発生
し易いということ以外、その発生メカニズム等はほとん
と解明されていない。
It is a compound of Si and is extremely difficult to remove by etching.
In general, the mechanism by which this phenomenon occurs has not been fully elucidated, other than that it tends to occur when trying to lower the sheet resistance of the diffusion layer.

そのため、ローゼットの発生を制御するため、拡散層の
シート抵抗を低くてきす、用途が限定されてしまう、き
いう欠点を有していた。
Therefore, in order to control the generation of rosettes, the sheet resistance of the diffusion layer must be lowered, which has the drawback of limiting its applications.

本発明は上記従来の問題点を解決するもので、前記シー
ト抵抗を約10数Ωcmと十分低くてき、しかもローゼ
ットが発生しないsbシリカ・スピン・オン工法を提供
することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide an sb silica spin-on method in which the sheet resistance can be sufficiently low to about 10-odd Ωcm, and rosettes do not occur.

課題を解決するための手段 この目的を達成するために本発明のsbシリカ・スピン
・オン工法は、sb塗布層に十分な02を供給するプロ
セスを提供するものである。
Means for Solving the Problems To achieve this object, the sb silica spin-on method of the present invention provides a process that supplies sufficient 02 to the sb coating layer.

すなわち、本発明の第1は、sbシリノ1塗布層がsb
カラス化してゆく過程で1気圧以上の02のみ供給しな
がら、カラス化温度を印加するものである。
That is, the first aspect of the present invention is that the sb silino 1 coating layer is sb
During the process of glassing, the glassing temperature is applied while supplying only 02 at a pressure of 1 atm or higher.

本発明の第2は、sbシリカ塗布層と81基板との界面
から加熱する製造方法である。
The second aspect of the present invention is a manufacturing method in which heating is performed from the interface between the sb silica coating layer and the 81 substrate.

作用 本プロセスは、発明者らの研究結果、sbカラス層に十
分な02を供給してやることで、sbカラス層中のsb
の昇華性を抑制でき、かつ活性化できる。しかもローゼ
ットの発生を抑止できることが判明した。この理論的な
根拠はまだ明確になっていないが、sbカラスが5b2
03,5b205であり、また、ローゼットがsb−〇
−3iの形であることから、sbシリカ塗布層に十分な
02を供給することて、sbカラスが昇華性の強い5b
203から昇華性のない5b205の形に変わり、結合
が強固になるため、活性が高くなり拡散し易くなり、し
かも5b−0−8iの結合にOを向えにくくなる。すな
わち、ローゼットが発生しにくくなると推定している。
Effect This process is based on the research results of the inventors, and by supplying sufficient 02 to the sb crow layer, the sb in the sb crow layer is reduced.
The sublimation property of can be suppressed and activated. Moreover, it was found that the occurrence of rosettes could be suppressed. The theoretical basis for this is not yet clear, but the sb crow is 5b2
03,5b205, and since the rosette is in the form of sb-〇-3i, by supplying sufficient 02 to the sb silica coating layer, the sb glass becomes 5b, which has strong sublimation properties.
203 changes to the non-sublimable 5b205 form, and the bond becomes stronger, resulting in higher activity and easier diffusion, and moreover, it becomes difficult for O to direct toward the 5b-0-8i bond. In other words, it is estimated that rosettes are less likely to occur.

実施例 以下本発明の実施例について、図面を参照しながら説明
する。第1図〜第2図は各本発明の一実施例で、第1図
は本発明1の製造プロセスを示しておりS】基板主表面
上のsbシリカ塗布層に、1気圧以」二の純酸素雰囲気
中て200〜5000Cの熱処理を加えてカラス化する
工程である。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. Figures 1 and 2 show one embodiment of each of the present inventions, and Figure 1 shows the manufacturing process of present invention 1. This is a process of adding heat treatment at 200 to 5000 C in a pure oxygen atmosphere to make it glass.

以上のような製造プロセスを用いた場合について、以下
その作用・動作を説明する。sbシリカ塗布層がsbカ
ラス化する途上、ポーラスな状態になるが、その時、0
2がsbシリカ塗布層に浸透し、拡散に依らず取入れさ
せることができるので02を十分含んだ、しかも、ち密
なsbガラス層を作ることができる。
In the case where the manufacturing process as described above is used, its function and operation will be explained below. While the sb silica coating layer becomes sb glass, it becomes porous, but at that time, 0
Since 02 can penetrate into the sb silica coating layer and be incorporated without relying on diffusion, it is possible to create a dense sb glass layer that sufficiently contains 02.

第2図は、本発明の第2の方法を実現するための製造装
置の一実施例である。ここで、7はカセット」二に並へ
られたSi基板、8は前期カセット、9は熱伝導の良い
材料から成るプレート、10は加熱のためのヒーター、
11は石英等の材料から成るペルジャー 12は02カ
スの注入口、13は排気口である。本実施例では、排気
口13より注入口12の口径を大きくして、ヘルシャー
内の○2ガス圧を1気圧以−にに高めている。
FIG. 2 shows an embodiment of a manufacturing apparatus for implementing the second method of the present invention. Here, 7 is a cassette, Si substrates arranged in two rows, 8 is a first cassette, 9 is a plate made of a material with good thermal conductivity, 10 is a heater for heating,
11 is a Pelger made of a material such as quartz; 12 is an inlet for 02 dregs; and 13 is an exhaust port. In this embodiment, the diameter of the inlet 12 is made larger than that of the exhaust port 13 to increase the ○2 gas pressure in the Hölscher to 1 atmosphere or more.

以」二のように構成された製造装置を、本発明の第1の
製造プロセスに適用した場合の作用・動作を以下に説明
する。S bシリカ溶液を塗布したSi基板、ノ7セッ
I・に並へて乗せ、プレート」二に設置する。ペルジャ
ーを閉め、Qカス注入口より、純酸素を注入すると、排
気口の[コ径が注入口より小さいため、ヘルシャー内は
純酸素で満たされ、1気圧より高い圧力を持つようにな
る。この時点て、ヒーターに通電し、Si基板を200
〜500℃の間の任意の温度まて昇温する。ところで、
sbシリカ塗布層中には、有機物が含まれているが、こ
れがsbカラス化の過程で燃焼し、燃焼カスはsbガラ
ス塗布層中を拡散しながら外部に逃げてゆく。この時、
前記有機物がsbカラス中に残ると、ローゼットが発生
したり、炭素が拡散する不具合が起こるが、本実施例製
造装置では、Si基板とsbシリノJ塗布層界面から加
熱されるため、界面からカラス化が起こり、Si基板表
層はポーラスな状態であるため、前記燃焼カスがsbカ
ラス中に取り残されることがない。
The functions and operations when the manufacturing apparatus configured as described above is applied to the first manufacturing process of the present invention will be described below. Place the Si substrate coated with the Sb silica solution side by side on the plate, and set it on the plate. When the Pelger is closed and pure oxygen is injected from the Q-cass injection port, the diameter of the exhaust port is smaller than the injection port, so the inside of the Hölscher is filled with pure oxygen and has a pressure higher than 1 atmosphere. At this point, the heater is energized and the Si substrate is
Raise the temperature to any temperature between ~500°C. by the way,
The sb silica coating layer contains organic matter, which is burned during the sb glassing process, and the combustion residue escapes to the outside while diffusing in the sb glass coating layer. At this time,
If the organic matter remains in the sb glass, problems such as rosettes and carbon diffusion will occur, but in the manufacturing apparatus of this embodiment, heating is performed from the interface between the Si substrate and the sb silino J coating layer, so the glass is removed from the interface. Since the surface layer of the Si substrate is in a porous state, the combustion residue is not left behind in the sb glass.

発明の効果 以」二のように本発明の製造プロセスによれば、sbシ
リカ塗布層形成〜sbカラス層形成〜拡散の工程のうち
、sbカラス層形成工程に関するもので、sbガラス形
成時に、200〜500℃のガラス化に最適な加熱をお
こなう工程、及び、1気圧以上の圧力を有する純酸素雰
囲気中で前記加熱処理を行なう工程、sbシリノ1塗布
層とS]基板界面より加熱する工程、を備えることによ
り、ローゼッI・の発生が少なく、かつ、低シートが得
られる優れた半導体装置の製造方法、詳しくは、sbシ
リカスピン・オン工法を実現できるものである。
Effects of the Invention According to the manufacturing process of the present invention, as described in ``2'', among the steps of sb silica coating layer formation to sb glass layer formation to diffusion, the process relates to the sb glass layer formation process, and when forming the sb glass, 200 A step of performing heating optimal for vitrification at ~500 ° C., a step of performing the heat treatment in a pure oxygen atmosphere having a pressure of 1 atmosphere or more, a step of heating from the interface of the sb silino 1 coating layer and the S] substrate, By providing this, it is possible to realize an excellent method of manufacturing a semiconductor device, in particular, the sb silica spin-on method, which reduces the occurrence of rosette I and provides a low sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における、半導体装置の製造方
法のプロセスを示すフロー図、第2図は同半導体装置の
製造方法で用いた製造装置の基本構成図、第3図は従来
のsbスピン・オン拡散工法によって製造された、半導
体装置のS】基板の断面図である。 ]・・・・・・Si基板、2・・・・・・拡散マスク、
3・旧・・sbカラス層、4・・・・・・拡散層、5・
・・・・・ローゼッ]・、6・・・・・・不要拡散層、
7・・・・・・ツノセット」二に並へられたSi基板、
8・・・・・・カセット、9・・・・・・プレーI・、
1゜・・・・・・加熱ヒータ、11・旧・・ペルジャー
 12・・・・・・02力ス注入口、13・・・・・・
排気口。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 第2図
FIG. 1 is a flow diagram showing the process of a semiconductor device manufacturing method in an embodiment of the present invention, FIG. 2 is a basic configuration diagram of a manufacturing apparatus used in the semiconductor device manufacturing method, and FIG. 3 is a conventional SB 1 is a cross-sectional view of a substrate of a semiconductor device manufactured by a spin-on diffusion method. ]... Si substrate, 2... Diffusion mask,
3. Old... sb crow layer, 4... Diffusion layer, 5.
...Rozet]...6...Unnecessary diffusion layer,
7...Tsunoset" Si substrates arranged in two rows,
8...Cassette, 9...Play I...
1゜・・・Heater, 11・Old Pelger 12・・・・・・02 Force inlet, 13・・・・・・
exhaust port. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板主表面上に、アンチモン含有シリカ溶
液を塗布した後に、前記アンチモン含有シリカ塗布層を
、1気圧以上の純酸素ガス雰囲気中で200〜500℃
に加熱乾燥する工程を備えたことを特徴とする半導体装
置の製造方法。
(1) After applying an antimony-containing silica solution onto the main surface of a semiconductor substrate, the antimony-containing silica coating layer is heated at 200 to 500°C in a pure oxygen gas atmosphere of 1 atm or more.
1. A method for manufacturing a semiconductor device, comprising a step of heating and drying.
(2)半導体基板主表面上に、アンチモン含有シリカ溶
液を塗布した後に、前記アンチモン含有シリカ塗布層と
前記半導体基板界面から乾燥し始めるように熱を印加す
ることを特徴とする半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device, comprising applying an antimony-containing silica solution onto the main surface of a semiconductor substrate, and then applying heat so as to start drying from the interface between the antimony-containing silica coating layer and the semiconductor substrate. .
JP33333888A 1988-12-29 1988-12-29 Manufacture of semiconductor device Pending JPH02178921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33333888A JPH02178921A (en) 1988-12-29 1988-12-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33333888A JPH02178921A (en) 1988-12-29 1988-12-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02178921A true JPH02178921A (en) 1990-07-11

Family

ID=18264996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33333888A Pending JPH02178921A (en) 1988-12-29 1988-12-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02178921A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117A (en) * 1981-06-25 1983-01-05 Fujitsu Ltd Manufacture of semiconductor device
JPS63237411A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117A (en) * 1981-06-25 1983-01-05 Fujitsu Ltd Manufacture of semiconductor device
JPS63237411A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP5398168B2 (en) Method and apparatus for manufacturing silicon carbide semiconductor element
JP4961633B2 (en) Method for manufacturing silicon carbide semiconductor device
WO1991013461A1 (en) Method of treating semiconductor substrate surface and device therefor
JPH02178921A (en) Manufacture of semiconductor device
JPS5917243A (en) Manufacture of semiconductor device
KR100230429B1 (en) Method for forming silicon oxynitride in semiconductor device
JPH02178920A (en) Manufacture of semiconductor device
JPH07153778A (en) Formation of transistor with emitter having reinforced efficiency
JPH0834193B2 (en) Method for manufacturing semiconductor device
JP2583962B2 (en) Method for manufacturing semiconductor device
JPH049371B2 (en)
JP2578880B2 (en) Method for manufacturing semiconductor device
JPH03266434A (en) Manufacture of semiconductor device
JPH0736389B2 (en) Method for forming electrode wiring of semiconductor device
KR100542890B1 (en) Manufacturing method of guided polycrystalline silicon film_
JPH02177535A (en) Manufacture of semiconductor device
JP2000223488A (en) Manufacture of semiconductor device
JPH01283821A (en) Manufacture of semiconductor device
JPH11195612A (en) Formation of semiconductor thermal diffusion layer
JPH05152236A (en) Manufacture of semiconductor device
JPH027516A (en) Method of diffusing impurity in semiconductor
JP2003017428A (en) Method for diffusing impurity in semiconductor wafer, semiconductor wafer and silicon epitaxial wafer
JPH1187334A (en) Manufacture of semiconductor device
JP2004356361A (en) Method of manufacturing semiconductor device
JP2002184774A (en) Method of forming silicon oxide film and semiconductor wafer, method of manufacturing wafer for mos device and wafer for mos device