KR100542890B1 - Manufacturing method of guided polycrystalline silicon film_ - Google Patents

Manufacturing method of guided polycrystalline silicon film_ Download PDF

Info

Publication number
KR100542890B1
KR100542890B1 KR1019980056046A KR19980056046A KR100542890B1 KR 100542890 B1 KR100542890 B1 KR 100542890B1 KR 1019980056046 A KR1019980056046 A KR 1019980056046A KR 19980056046 A KR19980056046 A KR 19980056046A KR 100542890 B1 KR100542890 B1 KR 100542890B1
Authority
KR
South Korea
Prior art keywords
film
polycrystalline silicon
guided
silicon
substrate
Prior art date
Application number
KR1019980056046A
Other languages
Korean (ko)
Other versions
KR20000040413A (en
Inventor
고재석
김광일
이광철
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1019980056046A priority Critical patent/KR100542890B1/en
Publication of KR20000040413A publication Critical patent/KR20000040413A/en
Application granted granted Critical
Publication of KR100542890B1 publication Critical patent/KR100542890B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

본 발명은 마이크로센서 등의 마이크로 구조재료로 이용되는 인도핑 다결정 실리콘성막을 제조하는 방법에 관한 것으로서, 실리콘기판에 실리콘산화막으로 희생층막(SiO2)을 형성하는 단계와; 챔버의 상부에 큰 링형태인 원료가스 주입관(3), 그 중심측에는 작은 링형태인 베이스가스 주입관(7)을 배치한 다음, 상기 챔버 내에 희생막이 형성된 실리콘기판(4)을 장착하여 650∼700℃의 기판온도로 가열하고 1torr의 압력으로 규소함유가스 및 인함유가스를 동시에 상기 실리콘기판(4)에 분사주입하여 희생층막위에 인도핑 다결정 실리콘성막을 증착하는 단계 및; 상기 인도핑 다결정 실리콘성막이 형성된 기판을 환원성 분위기에서 900℃의 온도까지 급속가열하여 30∼60초동안 유지시키는 열처리단계를 실행하여 인도핑 다결정 실리콘성막을 제조함으로써 비저항과 잔류응력이 최소화된 인도핑 다결정 실리콘성막을 제조할 수 있으며, 이러한 다결정 실리콘성막은 마이크로머시닝 등의 구조체에 적용될 수 있는 유용한 효과가 있는 것이다.The present invention relates to a method of manufacturing a guided polycrystalline silicon film used as a micro structure material such as a microsensor, comprising: forming a sacrificial layer film (SiO 2 ) on a silicon substrate using a silicon oxide film; In the upper part of the chamber, a large ring-shaped raw material gas injection tube 3 is disposed, and at the center side thereof, a small ring-shaped base gas injection tube 7 is disposed, and then a silicon substrate 4 having a sacrificial film is mounted in the chamber. Heating to a substrate temperature of ˜700 ° C. and simultaneously injecting silicon-containing gas and phosphorus-containing gas into the silicon substrate 4 at a pressure of 1 torr to deposit a guided polycrystalline silicon film on the sacrificial layer film; Inducting with the specific resistivity and residual stress minimized by manufacturing a guiding polycrystalline silicon film by performing a heat treatment step of rapidly heating the substrate on which the guiding polycrystalline silicon film is formed to a temperature of 900 ° C. in a reducing atmosphere for 30 to 60 seconds. A polycrystalline silicon film can be produced, and such a polycrystalline silicon film has a useful effect that can be applied to a structure such as micromachining.

Description

인도핑 다결정 실리콘성막 제조방법Manufacturing method of guided polycrystalline silicon film

본 발명은 마이크로센서 등의 마이크로 구조재료로 이용되는 인도핑 다결정 실리콘성막을 제조하는 방법에 관한 것으로서, 보다 상세하게는 희생층 박막이 형성된 기판위에 바로 인도핑 다결정 실리콘성막을 증착하고 적절히 열처리하여 낮은 비저항 및 최소화된 내부 잔류응력을 유지할 수 있는 인도핑 다결정 실리콘성막 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a guided polycrystalline silicon film used as a microstructure material such as a microsensor, and more particularly, by depositing a guided polycrystalline silicon film directly on a substrate on which a sacrificial layer thin film is formed, A method of manufacturing a guided polycrystalline silicon film capable of maintaining resistivity and minimizing internal residual stress.

일반적으로 인도핑 다결정 실리콘은 집적회로나, 마이크로머시닝, 센서, 트랜지스터, 태양전지 등의 반도체 산업에 폭 넓게 사용되고 있는 재료이며, 최근 마이크로머시닝의 구조체를 제조하는데, 인도핑 다결정 실리콘의 사용성이 개시(8th Conference Sensor and Actuator. 25(1995)198)되면서 구조체의 민감성을 고려하여 가능한 두께가 두껍고(약 2∼10㎛), 비저항과 잔류응력이 적은 인도핑 다결정 실리콘성막이 요구되고 있는 실정에 있다.In general, guided polycrystalline silicon is a material widely used in the semiconductor industry such as integrated circuits, micromachining, sensors, transistors, solar cells, and the like. In recent years, the fabrication of micromachining structures has been disclosed. 8th Conference Sensor and Actuator. 25 (1995) 198) In view of the sensitivity of the structure, the thickness is as thick as possible (about 2 to 10㎛), and the in-situ polycrystalline silicon film with low specific resistance and low residual stress is required.

종래 인도핑 다결정 실리콘성막의 제조방법으로는 희생층 박막위에 실리콘 다결정막(undoped-poly Si film)을 증착하고 로에서 인을 확산하여 도핑하느냐, 바로 인도핑 실리콘 비정질막을 증착하느냐의 두가지 방법으로 나눌 수 있다. 먼저 도 1과 같이 실리콘기판 상에 희생층 박막인 실리콘산화막을 성장시키고, 희생층 박막위에 다결정 실리콘막(undoped-poly Si film)을 증착한 후에 로에서 다결정 실리콘막을 급속열처리 하여 인을 확산시켜 도핑하는 방법은 희생층막이 형성된 기판을 625∼650℃의 온도에서 실리콘 다결정막을 증착하고 열처리한 다음, 전기로에서 포클(POCI2)을 900∼1000℃확산시키는 것으로서, 확산 깊이에 따라 인의 농도분포와 잔류응력 분포가 일정치 않아 전체적인 비저항분포가 균일하지 않고, 잔류응력 중 큰 압축응력이 남는 단점이 있으므로 마이크로머시닝의 구조체로서 민감성이 떨어지는 문제점이 있었다.Conventionally, a method of manufacturing a guided polycrystalline silicon film is divided into two methods: depositing an undoped-poly Si film on a sacrificial layer thin film, doping with phosphorus in a furnace, or depositing a guided silicon amorphous film. Can be. First, as shown in FIG. 1, a silicon oxide film as a sacrificial layer thin film is grown on a silicon substrate, and an undoped-poly Si film is deposited on the sacrificial layer thin film, followed by rapid thermal treatment of a polycrystalline silicon film in a furnace to diffuse phosphorus. The method is to deposit a silicon polycrystalline film at a temperature of 625 to 650 ° C. and heat-treat the substrate on which the sacrificial layer film is formed, and then to diffuse the fockle (POCI 2 ) to 900 to 1000 ° C. in an electric furnace. Since the stress distribution is not uniform, the overall resistivity distribution is not uniform, and there is a disadvantage in that a large compressive stress remains among the residual stresses, so there is a problem in that the sensitivity is poor as a structure of micromachining.

다음으로 도 2와 같이 실리콘기판상에 희생층막인 실리콘산화막을 성장시키고, 희생층막위에 바로 인도핑 비정질 실리콘막을 증착시켜 이를 급속열처리 하여 마이크로머시닝의 구조체를 얻는 방법은 희생층막이 형성된 기판을 565∼610℃의 온도에서 0.1∼0.3torr의 압력으로 희생층막위에 인도핑 비정질 실리콘막을 형성한 다음 열처리하여 다결정화하는 것으로서, 잔류응력중 인장응력이 낮다는 잇점이 있으나 낮은 온도에서 인도핑 비정질 실리콘막을 형성하므로 증착률이 작아서 2㎛이상의 두께를 가지는 성막을 제조할때에는 공정시간을 길게 유지해야 하는 결점이 있었다. 통상적으로 공정시간이 길어지면 공정소스, 가스들의 소비량도 많고, 불필요한 입자들이 발생하여 오염원으로 작용 성막에 혼입될 수 있는 문제점이 있었다.Next, as shown in FIG. 2, a silicon oxide film, which is a sacrificial layer film, is grown on a silicon substrate, and a guided amorphous silicon film is deposited directly on the sacrificial layer film, followed by rapid thermal treatment to obtain a micromachining structure. A guiding amorphous silicon film is formed on the sacrificial layer film at a temperature of 610 ° C. at a pressure of 0.1 to 0.3 torr, and then subjected to heat treatment to polycrystallize. The advantage is that tensile stress is low in residual stress. Therefore, when manufacturing a film having a thickness of 2 μm or more due to the small deposition rate, there was a drawback that the process time should be kept long. In general, when the process time is long, a large amount of process source and gases are consumed, and unnecessary particles are generated, which may be incorporated into the film formation as a source of contamination.

본 발명은 상기한 실정을 감안하여 종래 인도핑 다결정 실리콘성막 제조방법이 갖는 문제점들을 해결하기 위하여 연구와 실험을 행하고 그 결과에 근거하여 발명한 것으로서, 전체적으로 일정하고 낮은 비저항과 최소 잔류응력을 갖는 인도핑 다결정 실리콘성막의 제조방법을 제공함에 그 목적이 있다.In view of the above circumstances, the present invention has been conducted based on the results of research and experiments to solve the problems of the conventional method of manufacturing a guiding polycrystalline silicon film, and has a constant, low specific resistance and minimum residual stress. Its purpose is to provide a method for producing a ping polycrystalline silicon film.

상기한 목적을 달성하기 위한 본 발명 인도핑 다결정 실리콘성막 제조방법은 실리콘기판에 실리콘산화막으로 희생층막(SiO2)을 형성하는 단계와; 챔버의 상부에 큰 링형태인 원료가스 주입관(3), 그 중심측에는 작은 링형태인 베이스가스 주입관(7)을 배치한 다음, 상기 챔버 내에 희생막이 형성된 실리콘기판(4)을 장착하여 650∼700℃의 기판온도로 가열하고 1torr의 압력으로 규소함유가스 및 인함유가스를 동시에 상기 실리콘기판(4)에 분사주입하여 희생층막위에 인도핑 다결정 실리콘성막을 증착하는 단계 및; 상기 인도핑 다결정 실리콘성막이 형성된 기판을 환원성 분위기에서 900℃의 온도까지 급속가열하여 30∼60초동안 유지시키는 열처리단계로 이루어짐을 특징으로 한다.In order to achieve the above object, the present invention provides a method of manufacturing a guided polycrystalline silicon film comprising: forming a sacrificial layer film (SiO 2 ) as a silicon oxide film on a silicon substrate; In the upper part of the chamber, a large ring-shaped raw material gas injection tube 3 is disposed, and at the center side thereof, a small ring-shaped base gas injection tube 7 is disposed, and then a silicon substrate 4 having a sacrificial film is mounted in the chamber. Heating to a substrate temperature of ˜700 ° C. and simultaneously injecting silicon-containing gas and phosphorus-containing gas into the silicon substrate 4 at a pressure of 1 torr to deposit a guided polycrystalline silicon film on the sacrificial layer film; The substrate on which the guided polycrystalline silicon film is formed is rapidly heated to a temperature of 900 ° C. in a reducing atmosphere.

상기 원료가스 주입관(3)으로는 규소함유가스를 주입시키고, 베이스가스 주입관(7)으로는 인함유가스를 주입하여 기판상에 규소함유가스와 인함유가스를 함께 분사주입하여 실리콘 기판상에 인도핑 다결정 실리콘성막을 증착하며, 상기 규소함유가스는 SiH4 또는 SiCl2H2중 어느하나이고, 인함유가스는 PH3이다.Silicon-containing gas is injected into the source gas injection pipe 3, phosphorus-containing gas is injected into the base gas injection pipe 7, and silicon-containing gas and phosphorus-containing gas are injected and injected together onto the substrate. An in-doped polycrystalline silicon film is deposited, wherein the silicon-containing gas is either SiH 4 or SiCl 2 H 2 , and the phosphorus-containing gas is PH 3 .

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 인도핑 다결정 실리콘성막에 잔류응력이 생기는 것은 1). 기판과 인도핑 다결정 실리콘성막과의 열팽창계수의 차이, 2). 다결정의 길이방향에 따른 인의 분포, 3). 인도핑 다결정 실리콘성막이 증착될 때 기판내의 반지름방향에 따라 증착온도의 차이가 발생하기 때문인 것으로 알려져 있다.Generally, residual stress occurs in the guided polycrystalline silicon film 1). Difference in thermal expansion coefficient between substrate and guided polycrystalline silicon film, 2). Distribution of phosphorus along the longitudinal direction of the polycrystal, 3). It is known that a difference in deposition temperature occurs in the radial direction of the substrate when the guided polycrystalline silicon film is deposited.

본 발명은 상기 잔류응력이 생기는 원인중에서 2).항과 3).항에 의한 원인을 가능한 억제하도록 인도핑 다결정 형성조건을 제어하고, 또한 불가피하게 발생하는 잔류응력을 최대한 줄이도록 열처리하는 것이다.The present invention is to control the guided polycrystalline formation conditions so as to suppress the causes caused by 2). And 3). Among the causes of the residual stresses, and to heat-treat to minimize the residual stresses inevitably generated.

즉, 본 발명은 실리콘기판에 실리콘산화막을 증착시켜 희생층막을 형성하였을 때 희생층막의 형성된 실리콘 기판위에 비저항과 잔류응력이 최소화 되는 2∼10㎛ 두께의 인도핑 다결정막을 제공하는데 그 특징이 있으며, 이는 본 발명의 인도핑 다결정 실리콘성막의 형성온도 및 압력에서 규소함유가스와 인함유가스를 분사하는 조건 그리고 잔류응력을 제거하는 열처리를 통하여 가능하게 된다.That is, the present invention has a feature of providing a 2-10 μm thick guided polycrystalline film having a minimum resistivity and residual stress on a silicon substrate on which a sacrificial layer film is formed by depositing a silicon oxide film on a silicon substrate. This is made possible through the heat treatment to remove the residual stress and the conditions for injecting the silicon-containing gas and phosphorus-containing gas at the formation temperature and pressure of the guided polycrystalline silicon film of the present invention.

본 발명에 따라 인도핑 다결정 실리콘성막을 형성하기 위해서는 먼저 실리콘 기판에 희생층막으로 실리콘 산화막을 형성하는 것이 필요하며, 이때의 실리콘 산화막형성은 통상의 방법인 건식산화법 및 습식산화법 어느 방법이나 가능하나 산화막을 두껍게 형성할 수 있는 습식산화법이 보다 유리하다.In order to form a guided polycrystalline silicon film according to the present invention, it is necessary to first form a silicon oxide film as a sacrificial layer film on a silicon substrate, and the silicon oxide film can be formed by any of the usual methods of dry oxidation and wet oxidation. The wet oxidation method that can form a thicker is more advantageous.

상기한 바와 같이 희생층막이 형성된 실리콘기판(4)을 도 3과 같은 매엽식 저압화학기상증착장비 챔버인 벨자(2)내의 반응실(1)에 장착하고, SiC히터(6)로 급속 가열시켜 서셉터(5)을 통한 열전달로 실리콘기판(4)을 가열한다. 이때 실리콘 기판의 길이와 반지름방향으로 온도차이 때문에 증착된 인도핑 다결정 실리콘성막은 잔류응력과 비저항차이가 매우 커질 수가 있다. 이를 방지하기 위하여 챔버의 상부에 큰 링형태인 원료가스 주입관(3), 그 중심측에는 작은 링형태인 베이스가스 주입관(7)을 배치한 다음, 650∼700℃의 기판온도에서 1torr의 압력을 유지하면서 SiH4 또는 SiCl2H2등의 규소함유가스는 원료가스 주입관(3)을 통해, PH3의 도핑 인함유가스는 베이스가스 주입관(7)을 통해 실리콘기판(4)에 분사주입하여 희생층막위에 인도핑 다결정막을 증착함으로써 기판내의 온도차이로 인하여 발생한 다결정막의 두께균일도는 매우 개선되고, 다결정막 내의 인분포는 균일하게 되어 막내의 잔류응력과 비저항차이는 줄어들게 된다. 또한 기판중심에 PH3가스를 주입분사하여 증착하기 때문에 다결정막 내의 인도핑량이 많아져 전체적인 비저항이 감소함과 더불어 잔류응력도 감소하게 된다.As described above, the silicon substrate 4 having the sacrificial layer film formed thereon is mounted in the reaction chamber 1 in the bell jar 2, which is a single-layer low pressure chemical vapor deposition equipment chamber as shown in FIG. 3, and is rapidly heated with a SiC heater 6. The silicon substrate 4 is heated by heat transfer through the susceptor 5. At this time, due to the temperature difference in the length and radial direction of the silicon substrate, the deposited stressed polycrystalline silicon film may have a very large difference in residual stress and resistivity. In order to prevent this, a large ring-shaped raw material gas injection tube 3 is disposed on the upper part of the chamber, and a small ring-shaped base gas injection tube 7 is disposed at the center thereof, and then a pressure of 1 torr is applied at a substrate temperature of 650 to 700 ° C. Silicon-containing gas such as SiH 4 or SiCl 2 H 2 is injected and injected into the silicon substrate 4 through the base gas injection tube 7 while the doped phosphorus-containing gas of PH 3 is injected through the base gas injection tube 7 while maintaining Therefore, by depositing the guided polycrystalline film on the sacrificial layer film, the thickness uniformity of the polycrystalline film generated due to the temperature difference in the substrate is greatly improved, and the phosphorus distribution in the polycrystalline film is uniform, thereby reducing the residual stress and the resistivity difference in the film. In addition, since PH 3 gas is injected and deposited in the center of the substrate, the amount of indoping in the polycrystalline film increases, thereby reducing the overall specific resistance and reducing the residual stress.

상기한 바와 같이 희생층막에 증착한 인도핑 다결정막을 열처리하여 도핑한 인원자가 격자자리를 찾아가도록 하여 비저항을 10배정도 줄임과 더불어 열응력에 의해 발생한 다결정막 내부의 잔류응력을 줄인다. 이러한 열처리 방법은 환원성 분위기에서 급속가열하는 것으로 급속가열은 다결정 실리콘성막의 결정립성장을 가능한 억제할 수 있는 속도이면 되며, 본 발명의 실시예에 의하면 100℃/sec이상으로 하는 것이 바람직 하였다. As described above, the doped personnel may heat the guided polycrystalline film deposited on the sacrificial layer film to find the lattice sites, thereby reducing the specific resistance by 10 times and reducing the residual stress inside the polycrystalline film caused by thermal stress. Such a heat treatment method is a rapid heating in a reducing atmosphere, and the rapid heating may be a speed capable of inhibiting grain growth of the polycrystalline silicon film as much as possible, and according to an embodiment of the present invention, it is preferable to set it to 100 ° C / sec or more.

그리고 상기한 바와 같이 급속가열하여 900℃의 온도까지 승온하고, 이 온도에서 30∼60초동안 유지시켜 비저항을 줄임과 더불어 잔류응력을 제거하는 것이 바람직한 바, 그 이유는 유지온도가 900℃미만이고, 유지시간이 30초미만인 경우 비저항을 줄이고 잔류응력을 제거하는 효과가 없으며, 그 이상의 온도 또는 유지시간이 60초 넘으면 오히려 인이 실리콘성막의 밖으로 확산되어 비저항이 증가할 수 있기 때문이다.As described above, it is preferable to rapidly heat up to a temperature of 900 ° C., and to maintain the temperature for 30 to 60 seconds to reduce the resistivity and to remove the residual stress, because the holding temperature is less than 900 ° C. If the holding time is less than 30 seconds, there is no effect of reducing the specific resistance and removing residual stress. If the temperature or the holding time is longer than 60 seconds, phosphorus may diffuse out of the silicon film and the specific resistance may increase.

다음에는 본 발명을 실시예를 통하여 구체적으로 설명한다.Next, the present invention will be described in detail through examples.

[실시예]EXAMPLE

본 실시예에 사용된 실리콘기판은 4인치 n형(100)기판으로서 열산화막을 습식산화방법으로 두께 1.5㎛로 성장시킨 기판이다. 이와 같이 준비된 실리콘기판을 매엽식 저압화학기상증착 장비의 챔버에 장착하여 장착한 실리콘기판만을 SiC발열체 히터로 가열하고, 비교재는 실리콘산화막 위에 650℃의 온도와 1torr의 압력에으로 SiH4의 규소함유가스만을 분사주입하여 실리콘다결정막(undoped-poly Si film)을 증착한 후에 급속열처리한 다음, 전기로에서 포클(POCI2)을 1000℃에서 1시간동안 확산시켰다. 또한 가스주입기를 챔버의 상부에 큰 링형태인 원료가스 주입관(3), 그 중심측에는 작은 링형태인 베이스가스 주입관(7)을 도 3과 같이 장착한 다음, 650℃의 온도에서 1torr의 압력을 유지시키면서 SiH4의 규소함유가스를 원료가스 주입관(3)을 통해, PH3의 도핑가스를 베이스가스 주입관(7)을 통해 분사주입하여 실리콘 산화막위에 인도핑 다결정 실리콘성막을 증착하였다. 단, 공정시에 SiH4의 유량은 60sccm으로 고정하였으며, PH3의 유량을 변화하여 PH3과 SiH4의 상대적인 몰비를 변화하도록 하였는바, PH3과 SiH4의 상대적인 몰비를 5.56×10-4에서 3.33×10-3으로 변화시켜 인도핑 다결정 실리콘성막을 증착하였다.The silicon substrate used in this embodiment is a 4-inch n-type (100) substrate, which is a substrate in which a thermal oxide film is grown to a thickness of 1.5 mu m by a wet oxidation method. Thus, heat only the silicon substrate is mounted attached to the chamber of the prepared single-wafer silicon substrate low-pressure chemical vapor deposition apparatus of SiC heating element heater and comparing material containing silicon of the SiH 4 to the temperature and the 1torr pressure of 650 ℃ on the silicon oxide film After spraying only the gas and depositing an undoped-poly Si film, rapid heat treatment was performed, and then the fockle (POCI 2 ) was diffused at 1000 ° C. for 1 hour in an electric furnace. In addition, the gas injector was equipped with a large ring-shaped raw material gas inlet tube 3 at the top of the chamber, and a small ring-shaped base gas inlet tube 7 at the center thereof as shown in FIG. While maintaining the pressure, a silicon-containing gas of SiH 4 was injected into the source gas injection tube 3 and a doping gas of PH 3 was injected through the base gas injection tube 7 to deposit a guided polycrystalline silicon film on the silicon oxide film. . However, the flow rate of SiH 4 at step was fixed at 60sccm, bar, PH 3 and a relative molar ratio of SiH 4 5.56 × 10 -4 hayeotneun to change the flow rate of PH 3 to change the relative molar ratio of PH 3 and SiH 4 The guided polycrystalline silicon film was deposited at 3.33 × 10 −3 .

상기한 바와 같이 인도핑 다결정 실리콘성막의 증착이 끝난 후, 급속열처리는 급속열처리 장치에서 100℃/sec의 속도로 승온하여 900℃의 온도에서 30∼60sec 동안 환원성 분위기에서 열처리하였다. 이와 같이 하여 제조된 인도핑 다결정 실리콘성막의 물성을 제조공정마다 측정하고 그 결과를 표 1에 나타냈다. 표 1에서 몰비는 PH3과 SiH4의 상대적인 몰비 즉, PH3/SiH4이다.After the deposition of the guided polycrystalline silicon film, as described above, the rapid heat treatment was performed at a rate of 100 ° C./sec in the rapid heat treatment apparatus and heat-treated in a reducing atmosphere at a temperature of 900 ° C. for 30 to 60 sec. The physical properties of the guided polycrystalline silicon film thus produced were measured for each manufacturing step, and the results are shown in Table 1. In Table 1 the molar ratio is the relative molar ratio of PH 3 and SiH 4 , ie PH 3 / SiH 4 .

구분division 증착조건(670℃, 1torr)Deposition conditions (670 ℃, 1torr) 증착속도(Å /min)Deposition rate (Å / min) 열처리전Before heat treatment 열처리후After heat treatment 확산후After diffusion 비저항(mΩ.cm)Resistivity (mΩ.cm) 잔류응력(MPa)Residual stress (MPa) 비저항(mΩ.cm)Resistivity (mΩ.cm) 잔류응력(MPa)Residual stress (MPa) 비저항(mΩ.cm)Resistivity (mΩ.cm) 잔류응력(MPa)Residual stress (MPa) 비교재 Comparative material 몰비=0.Molar ratio = 0. 420420 -- -160-160 -- -100-100 1.81.8 -45-45 본 발명재Invention material 몰비=5.56×10-4 Molar ratio = 5.56 × 10 -4 323323 1010 110110 0.750.75 -15-15 -- -- 몰비=3.33×10-3 Molar ratio = 3.33 × 10 -3 138138 1010 105105 0.580.58 -12-12 -- --

상기 표 1로부터 알수 있는 바와 같이 675℃, 1torr의 경우 도핑하지 않은 다결정 실리콘의 증착속도가 420Å/min, PH3과 SiH4의 몰비가 5.56×10-4일 때의 증착속도가 323Å/min임에 대하여 PH3과 SiH4의 몰비가 3.33×10-3으로 6배 증가하였을 때 138Å/min으로 감소하였음을 알 수 있다. 몰비가 증가함에 따라 증착률이 감소하는 경향은 증착속도가 빠른 고온에서 더욱 크게 나타남을 알 수 있다. PH3는 실리콘 기판 표면에 흡착력이 강하여 SiH4가 도달할 수 있는 표면의 자리수를 제한하여 다결정 실리콘의 성장에 필요한 핵 형성을 억제함으로 증착률이 감소하였다. 이와 같은 인도핑 다결정 실리콘성막은 증착된 상태에서의 비저항 값은 대략 10mΩ.cm정도이었으며, 900℃에서 60초 동안 급속열처리를 실시한 이후의 비저항 값은 대략 1mΩ.cm이하의 값으로 감소하였다.As can be seen from Table 1, the deposition rate of undoped polycrystalline silicon at 675 ° C. and 1torr is 420 Å / min, and the deposition rate is 323 Å / min when the molar ratio of PH 3 and SiH 4 is 5.56 × 10 −4. It can be seen that the molar ratio of PH 3 to SiH 4 decreased to 138 dl / min when the fold ratio was increased 6 times to 3.33 × 10 −3 . As the molar ratio increases, the deposition rate tends to decrease more at high temperatures with faster deposition rates. PH 3 has a high adsorption force on the surface of the silicon substrate, thereby limiting the number of digits on which the surface of SiH 4 can reach, thereby inhibiting nucleation required for growth of polycrystalline silicon, thereby reducing the deposition rate. The resistivity value of the guided polycrystalline silicon film in the deposited state was about 10 mΩ.cm, and the resistivity value after rapid heat treatment at 900 ° C. for 60 seconds decreased to about 1 mΩ.cm or less.

상술한 바와 같이 본 발명에 의하면 비저항과 잔류응력이 최소화된 인도핑 다결정 실리콘성막을 제조할 수 있으며, 이러한 다결정막은 마이크로머시닝 등의 구조체에 적용될 수 있는 유용한 효과가 있는 것이다.As described above, according to the present invention, it is possible to manufacture a guided polycrystalline silicon film having a minimum resistivity and residual stress, and the polycrystalline film has a useful effect that can be applied to a structure such as micromachining.

도 1은 종래 인도핑 다결정 실리콘성막 제조공정을 나타낸 하나의 공정순서도1 is a process flow chart showing a conventional guided polycrystalline silicon film manufacturing process

도 2는 종래 인도핑 다결정 실리콘성막 제조과정을 나타낸 다른 하나의 공정순서도Figure 2 is another process flow chart showing a conventional guided polycrystalline silicon film manufacturing process

도 3은 본 발명에 채용한 여매엽식 저압화학기상증착장비인 쳄버내의 가스 주입기를 보여주는 개략도Figure 3 is a schematic view showing a gas injector in the chamber which is a low-pressure chemical vapor deposition equipment employed in the present invention

도 4는 본 발명 인도핑 다결정 실리콘성막 제조과정을 나타낸 공정순서도이다.4 is a process flowchart showing a manufacturing process of the present invention-doped polycrystalline silicon film.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : 반응실 2 : 챔버1: reaction chamber 2: chamber

3 : 원료가스 주입관 4 : 실리콘기판3: source gas injection pipe 4: silicon substrate

5 : 서셉터 6 : SiC히터5: susceptor 6: SiC heater

7 : 베이스가스 주입관 3', 7' : 가스분사구7: base gas injection pipe 3 ', 7': gas injection port

Claims (4)

실리콘기판에 실리콘산화막으로 희생층막(SiO2)을 형성하는 단계와; 챔버의 상부에 큰 링형태인 원료가스 주입관(3), 그 중심측에는 작은 링형태인 베이스가스 주입관(7)을 배치한 다음, 상기 챔버 내에 희생막이 형성된 실리콘기판(4)을 장착하여 650∼700℃의 기판온도로 가열하고 1torr의 압력으로 규소함유가스 및 인함유가스를 동시에 상기 실리콘기판(4)에 분사주입하여 희생층막위에 인도핑 다결정 실리콘성막을 증착하는 단계 및; 상기 인도핑 다결정 실리콘성막이 형성된 기판을 환원성 분위기에서 900℃의 온도까지 급속가열하여 30∼60초동안 유지시키는 열처리단계로 이루어짐을 특징으로 하는 인도핑 다결정 실리콘 성막 제조방법.Forming a sacrificial layer film (SiO 2 ) on a silicon substrate with a silicon oxide film; In the upper part of the chamber, a large ring-shaped raw material gas injection tube 3 is disposed, and at the center side thereof, a small ring-shaped base gas injection tube 7 is disposed, and then a silicon substrate 4 having a sacrificial film is mounted in the chamber. Heating to a substrate temperature of ˜700 ° C. and simultaneously injecting silicon-containing gas and phosphorus-containing gas into the silicon substrate 4 at a pressure of 1 torr to deposit a guided polycrystalline silicon film on the sacrificial layer film; And a heat treatment step of rapidly heating the substrate on which the guided polycrystalline silicon film is formed to a temperature of 900 ° C. in a reducing atmosphere for 30 to 60 seconds. 제1항에 있어서, 상기 원료가스 주입관(3)으로는 규소함유가스를 주입시키고, 베이스가스 주입관(7)으로는 인함유가스를 주입하여 기판상에 규소함유가스와 인함유가스를 함께 분사주입하여 실리콘 기판상에 인도핑 다결정 실리콘성막을 증착하는 것을 특징으로 하는 인도핑 다결정 실리콘 성막 제조방법.2. The silicon-containing gas and the phosphorus-containing gas according to claim 1, wherein silicon-containing gas is injected into the source gas injection pipe 3, phosphorus-containing gas is injected into the base gas injection pipe 7, A method of manufacturing a guided polycrystalline silicon film, characterized in that a jet injection is used to deposit a guided polycrystalline silicon film on a silicon substrate. 제1항에 있어서, 상기 규소함유가스가 SiH4 또는 SiCl2H2중 어느하나이고, 인함유가스가 PH3임을 특징으로 하는 인도핑 다결정 실리콘 성막 제조방법.The method of claim 1, wherein the silicon-containing gas is either SiH 4 or SiCl 2 H 2 , and the phosphorus-containing gas is PH 3 . 제1항에 있어서, 상기 인함유 다결정 실리콘성막의 두께가 4∼7㎛인 것을 특징으로 하는 인도핑 다결정 실리콘 성막 제조방법.The method for producing a guided polycrystalline silicon film according to claim 1, wherein the phosphorus-containing polycrystalline silicon film has a thickness of 4 to 7 µm.
KR1019980056046A 1998-12-18 1998-12-18 Manufacturing method of guided polycrystalline silicon film_ KR100542890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980056046A KR100542890B1 (en) 1998-12-18 1998-12-18 Manufacturing method of guided polycrystalline silicon film_

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980056046A KR100542890B1 (en) 1998-12-18 1998-12-18 Manufacturing method of guided polycrystalline silicon film_

Publications (2)

Publication Number Publication Date
KR20000040413A KR20000040413A (en) 2000-07-05
KR100542890B1 true KR100542890B1 (en) 2006-05-09

Family

ID=19563644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980056046A KR100542890B1 (en) 1998-12-18 1998-12-18 Manufacturing method of guided polycrystalline silicon film_

Country Status (1)

Country Link
KR (1) KR100542890B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242307A (en) * 1978-07-11 1980-12-30 Societe Anonyme Dite: Compagnie Generale D'electricite Device for producing polycrystalline silicon
JPH05226263A (en) * 1992-02-18 1993-09-03 Nec Corp Vapor phase silicon epitaxial growth device
KR960005854A (en) * 1994-07-13 1996-02-23 제임스 조셉 드롱 Semiconductor thin film processing method
KR960039103A (en) * 1995-04-04 1996-11-21 고또 가즈오 Method for manufacturing individual substrate plates of semiconductor silicon wafers
KR100340587B1 (en) * 1997-12-24 2002-09-18 재단법인 포항산업과학연구원 A method for forming poly-Si thin film of ultra-thickness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242307A (en) * 1978-07-11 1980-12-30 Societe Anonyme Dite: Compagnie Generale D'electricite Device for producing polycrystalline silicon
JPH05226263A (en) * 1992-02-18 1993-09-03 Nec Corp Vapor phase silicon epitaxial growth device
KR960005854A (en) * 1994-07-13 1996-02-23 제임스 조셉 드롱 Semiconductor thin film processing method
KR960039103A (en) * 1995-04-04 1996-11-21 고또 가즈오 Method for manufacturing individual substrate plates of semiconductor silicon wafers
KR100340587B1 (en) * 1997-12-24 2002-09-18 재단법인 포항산업과학연구원 A method for forming poly-Si thin film of ultra-thickness

Also Published As

Publication number Publication date
KR20000040413A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
US6197669B1 (en) Reduction of surface defects on amorphous silicon grown by a low-temperature, high pressure LPCVD process
US5736423A (en) Method for depositing very thin PECVD SiO2 in 0.5 micron and 0.35 micron technologies
KR100777321B1 (en) In situ growth of oxide and silicon layers
WO2007075369B1 (en) Low temperature doped silicon layer formation
JPH06318551A (en) Formation of thin film and its apparatus
KR100775879B1 (en) Sic-formed material and method for manufacturing same
KR102482578B1 (en) Manufacturing method of epitaxial wafer
KR100542890B1 (en) Manufacturing method of guided polycrystalline silicon film_
KR101225477B1 (en) Method for manufacturing semiconductor device, and substrate processing apparatus
KR100440501B1 (en) Method for forming a gate oxide layer of a semiconductor device
KR20050107510A (en) Epitaxial semiconductor deposition methods and structrures
CN1115717C (en) Manufacturing process for semiconductor device
JP3213437B2 (en) Semiconductor device
US8158495B2 (en) Process for forming a silicon-based single-crystal portion
KR0165856B1 (en) Method for manufacturing deposited tunneling oxide
KR20100049996A (en) Silicon carbide coating method and the structure that form interface layer
KR100340587B1 (en) A method for forming poly-Si thin film of ultra-thickness
JPH021124A (en) Manufacture of dielectric film
KR100311691B1 (en) Method for forming poly-silicon thick film
US20070254450A1 (en) Process for forming a silicon-based single-crystal portion
KR100203297B1 (en) Method of formin mask film for semiconductor device
KR100737515B1 (en) Multiple layer epitaxial wafer and method for manufacturing the same
JPH06132281A (en) Manufacture of silicon oxide film
JP3112796B2 (en) Chemical vapor deposition method
JP2021031362A (en) Method for manufacturing silicon carbide polycrystal substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120105

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee