JPH02170954A - Production of copper alloy having good bendability - Google Patents

Production of copper alloy having good bendability

Info

Publication number
JPH02170954A
JPH02170954A JP32188288A JP32188288A JPH02170954A JP H02170954 A JPH02170954 A JP H02170954A JP 32188288 A JP32188288 A JP 32188288A JP 32188288 A JP32188288 A JP 32188288A JP H02170954 A JPH02170954 A JP H02170954A
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
copper alloy
less
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32188288A
Other languages
Japanese (ja)
Inventor
Yasuo Hirano
康雄 平能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP32188288A priority Critical patent/JPH02170954A/en
Publication of JPH02170954A publication Critical patent/JPH02170954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce low-zinc-content brass having good bendability by controlling the working rate of cold rolling in a copper alloy having specific compsn. and its grains at the time of annealing. CONSTITUTION:A copper alloy material contg., by weight, 1.5 to <25% Zn and the balance Cu with inevitable impurities is cold-rolled at >=35% working rate. After that, the material is annealed so that the average grains are regulated to 10 to 35mum as well as the ratio of the maximum grains to the minimum grains is regulated to <=2. The material is furthermore cold-rolled at >=35% working rate and is thereafter annealed so that the average are regulated to 2 to <10mum. After that, the material is cold-rolled and is thereafter suitably subjected to strain relieving annealing. As the result, low-brass having excellent bendability is produced, which is suitable for the production of the alloy having high strength and excellent bendability and corresponding to the need for the miniaturization of electrical and electronic parts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は丹銅の曲げ加工性を改筈するための製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a manufacturing method for modifying the bending workability of red copper.

[従来の技術] 丹銅は光沢が美しく、展延性、絞り加工性、耐食性に優
れる銅合金として、従来から建築用、装身具、化粧品ケ
ース等に用いられてきた。また、最終圧延後、歪取焼鈍
を施し、ばね強度を向上させたものは、コネクター、端
子といったばね銅合金としても用いられている。一方、
近年、電気・電子部品の小型化の要求が強くなっており
、この要求に答えるには従来よりも厳しい曲げ加工を行
う8云が生じている。又、同時に部品の高1b頼性も要
求されており、これに答えるにも、繰り返し曲げにif
 Lで破断しにくいといった曲げ加工性のよい材料が求
められている。
[Prior Art] Red copper is a copper alloy with a beautiful luster and excellent malleability, drawability, and corrosion resistance, and has traditionally been used for construction, jewelry, cosmetic cases, and the like. Furthermore, after final rolling, strain relief annealing is performed to improve spring strength, and this alloy is used as a spring copper alloy for connectors and terminals. on the other hand,
In recent years, the demand for miniaturization of electrical and electronic components has become stronger, and in order to meet this demand, bending processes that are more severe than before have become necessary. At the same time, high 1B reliability is also required for parts, and to meet this requirement, it is necessary to
There is a need for a material that has good bending properties and is difficult to break at L.

[発明が解決しようとする課題] 従来の丹銅を用いて、これらの要求に答えるべく曲げ加
工性をよくする為には、強度をおとして伸びを出すか、
曲げRを大きくするといった設計変更を行うしか方法は
なかった。しかし、材料強度を低下させると部品として
の強度も低下するため、材料の薄肉化、部品の小型化は
できず製品レベルもドげることとなる。又、曲げRを大
きくするという方法は、部品設計上の制約条件となるた
め、製品の小型化はできなくなる。
[Problem to be solved by the invention] In order to improve bending workability to meet these demands using conventional red copper, it is necessary to reduce the strength and increase elongation.
The only option was to make design changes such as increasing the bending radius. However, if the strength of the material is reduced, the strength of the part will also be reduced, so it will not be possible to make the material thinner or the part smaller, and the quality of the product will be lowered. Furthermore, the method of increasing the bending radius imposes constraints on component design, making it impossible to miniaturize the product.

このことから、従来の丹銅のもつ優れた諸特性を維持し
たまま、曲げ加工性を改善する方法が強く求められてい
るのが現状である。
For this reason, there is currently a strong need for a method to improve bending workability while maintaining the excellent properties of conventional red copper.

[課題を解決するための手段〕 本発明はかかる点に鑑みなされたしので、従来の丹銅の
曲げ加工性を改善し、主に電気・電子部品用材料として
好適な材料の製造方法を提供しようとするものである。
[Means for Solving the Problems] The present invention was made in view of the above points, and therefore provides a method for producing a material that improves the bending workability of conventional red copper and is suitable mainly as a material for electrical and electronic parts. This is what I am trying to do.

すなわち本発明はZnl、5重量%以上25重−5未満
あるいはさらに副成分としてP s S n sS i
SN is M g % T t SCr SZ r 
s A 11Fe、Pb、Mn、Coの中から18又は
2種以上を0.001〜5 vL%含み、残部Cu及び
不可避的不純物からなる銅合金材料を35%以上の加工
度で冷間圧延を行った後、平均結晶粒が10〜35μm
でしかも最大結晶粒(Xmax)と最小結晶粒(X−r
。)の比(Xmax/Xmin)が2以下となる様に焼
鈍を行い、その後さらに35%以上の加工度で冷間圧延
を行った後、平均結晶粒が2μm以上10μm未満とな
る様に焼鈍を行った後、冷間圧延を行い、その後適宜歪
取焼鈍を行うことを特徴とする曲げ加工性の良好な銅合
金の製造方法である。
That is, the present invention provides Znl, 5% by weight or more and less than 25% by weight - 5, or further as a subcomponent PsSnsSi
SN is M g % T t SCr SZ r
s A A copper alloy material containing 0.001 to 5 vL% of 18 or two or more of 11Fe, Pb, Mn, and Co, with the balance being Cu and unavoidable impurities, is cold rolled at a working degree of 35% or more. After the process, the average grain size is 10-35 μm.
Moreover, the maximum crystal grain (Xmax) and the minimum crystal grain (X-r
. ) is annealed so that the ratio (Xmax / This is a method for producing a copper alloy with good bending workability, which is characterized by cold rolling and then appropriately strain relief annealing.

Cu−Znの成分からなる丹銅は、展延性、絞り加工性
、耐食性に優れた銅合金であることが周知である。本発
明において、Znの含有量を1.5重量%以上25重二
%未満とするのは、強度を向上させるためであり、Zn
が1.51二%未満では丹銅として要求される強度が得
られず、又、25重量%以上では、丹銅として要求され
る加工性、耐応力腐食割れ性が劣化するためである。ま
た、第2発明において、副成分としてPlS n SS
 + −、M g SN i%T t s Cr % 
Z r sAl、Fe、Pb、Mn5Coを0.001
〜5重量%添加する理由は、強度を向上させ、さらに結
晶粒を微細化して曲げ加工性を向上させるためであるが
、その瓜が0.0011fik%未満ではその効果がな
く、5重量%を越えると、加工性、はんだ付は性が劣化
する。
It is well known that red copper, which is composed of Cu-Zn components, is a copper alloy with excellent malleability, drawability, and corrosion resistance. In the present invention, the reason why the Zn content is 1.5% by weight or more and less than 25% by weight is to improve the strength.
If it is less than 1.512%, the strength required for red copper cannot be obtained, and if it is more than 25% by weight, the workability and stress corrosion cracking resistance required for red copper deteriorate. Further, in the second invention, PlS n SS as a subcomponent
+ −, M g SN i% T t s Cr %
Z r sAl, Fe, Pb, Mn5Co 0.001
The reason for adding ~5% by weight is to improve the strength and further refine the crystal grains to improve bending workability, but if the melon is less than 0.0011 fik%, there is no effect, and 5% by weight is added. If this value is exceeded, workability and soldering properties will deteriorate.

冷間圧延の加工度を3506以上とする理由は35あり
、混粒になると、曲げ加工性が劣化するためである。
There are 35 reasons why the degree of workability in cold rolling is set to 3506 or more, and this is because when the grains become mixed, the bending workability deteriorates.

最初の焼鈍における結晶粒を平均結晶粒が10〜35μ
mでしかも最大結晶粒(X□1)と最小結晶粒(X、+
、)の比(X□、/X、。)が2以ドとなる様に焼鈍を
行う理由は、・lと均結晶粒が10μm未満では応力緩
和特性が劣化し、35μmを越えると製品表面の粗さが
粗くなり、強度が低下し、次の焼鈍で混粒は生じ品くな
るためである。またX□K / X a l nを2以
下にする理由は2を越えると混粒組織となり、曲げ加り
性が著しく劣化するためである。また2以下にするため
には焼鈍温度、焼鈍前の冷間圧延の加工度を検討するこ
とにより可能である。
The average grain size in the first annealing is 10 to 35μ.
m, and the largest crystal grain (X□1) and the smallest crystal grain (X, +
The reason why annealing is performed so that the ratio (X□, /X, .) of This is because the roughness of the steel becomes coarse, the strength decreases, and mixed grains are generated in the next annealing, resulting in poor quality. The reason why X□K/X a l n is set to 2 or less is that if it exceeds 2, a mixed grain structure will result, and the bendability will be significantly deteriorated. In addition, it is possible to make it 2 or less by examining the annealing temperature and the working degree of cold rolling before annealing.

最終焼鈍における平均結晶粒を2μm以上10μ1未満
とする理由は、2μ■未満では混粒になり易く、また末
再結晶部が残り、曲げ加−L性が著しく劣化するためで
ある。10μ1未満とするのは10μ■以上でもやはり
曲げ加工性が悪くなり肌荒れし晶くなるためである。
The reason why the average crystal grain in the final annealing is set to 2 .mu.m or more and less than 10 .mu.l is that if it is less than 2 .mu.m, mixed grains tend to form, and end recrystallized portions remain, which significantly deteriorates the bendability. The reason why it is set to be less than 10 μl is that even if it is 10 μl or more, the bending workability deteriorates and the surface becomes rough and crystallized.

そして最終焼鈍後要求される強度にするため、冷間圧延
を行い、さらに曲げ加工性、ばね特性を向上させるため
適宜焼鈍を行う。
After final annealing, cold rolling is performed to obtain the required strength, and appropriate annealing is performed to improve bending workability and spring properties.

[実施例コ 第1表に示した成分のインゴット(30mn+ X G
[Example 1 Ingot (30 mn + X G
.

■X 9 ; 2kg)を大気中にて溶解鋳造し、皮削
り後熱間圧延を行い8■mの厚さとした。この材料を皮
削り後冷間圧延した後、焼鈍、圧延を繰り返し、最後に
歪取焼鈍を行い、0.3■厚さの板とした。これらの材
料について引張強さ伸び、硬さ、曲げ性の調査を行った
■X 9 ; 2 kg) was melted and cast in the air, skinned and hot rolled to a thickness of 8 μm. This material was skinned and cold-rolled, then annealed and rolled repeatedly, and finally strain-relief annealed to obtain a plate with a thickness of 0.3 mm. The tensile strength, elongation, hardness, and bendability of these materials were investigated.

引張強さ、伸びは圧延方向に平行方向にJI85号引張
試験片を採取し、引張試験を行い測定した。
Tensile strength and elongation were measured by taking a JI No. 85 tensile test piece in a direction parallel to the rolling direction and performing a tensile test.

硬さは材料表面からビッカース硬さを測定した。The hardness was measured by Vickers hardness from the material surface.

曲げ性はCES  MOOO2に準じ、内側曲げ半径0
.3mm (−板厚)のW曲げ試験を行い、外観を観察
することにより評価した。評価はA;非常に良好、B;
良好、C;肌荒れ小、D;肌荒れ大、E;割れ発生、F
;割れ貫通とし、曲げ方向は曲げ軸を圧延方向に対し直
角方向(GoodWay) 、平行方向(1eadνa
y)の2方向で調べた。
Bendability is according to CES MOOO2, inner bending radius 0
.. A 3 mm (-plate thickness) W bending test was conducted, and the appearance was evaluated by observing the appearance. Rating: A; Very good; B;
Good, C: Slightly rough skin, D: Severely rough skin, E: Cracking occurred, F
; The crack is penetrating, and the bending direction is the bending axis perpendicular to the rolling direction (Good Way), parallel direction (1 eadνa
It was investigated in two directions: y).

第1表中には0.3■の厚さで歪取焼鈍を行う前の焼鈍
(2回口の焼鈍)後の平均結晶粒、その前の冷間圧延(
2回口冷間圧延)の加工度、そしてその前の焼鈍(1回
口の焼鈍)後の平均結晶粒と最大結晶粒(X□1) 最
小結晶粒(X、1. )の比(X、、、/X−1゜)、
そして、その前の冷間圧延(1回目冷間圧延)の加工度
を記載した。第1表中の例は2回[」焼鈍の後40%の
加工度で冷間圧延を行い、その後歪取焼鈍を行った例で
ある。
Table 1 shows the average grain size after annealing (two-time annealing) before strain relief annealing at a thickness of 0.3cm, and the average grain size after the previous cold rolling (
The ratio of the average crystal grain to the maximum crystal grain (X□1) to the minimum crystal grain (X, 1.) after the previous annealing (first-pass annealing) ,,,/X-1゜),
Then, the working degree of the previous cold rolling (first cold rolling) was described. The example in Table 1 is an example in which cold rolling was performed at a workability of 40% after annealing twice, and then strain relief annealing was performed.

第1表中、No、1、No、2は丹銅2種、丹銅3Fr
!であり、本発明の製造方法により、良好な曲げ性を有
することが分かる。また、No、3〜N o、 9は丹
銅2FI、丹銅3種に添加元素を加えたものであるが、
丹銅2種、丹銅38に比べて強度が向上し、しかも曲げ
性も良好であることが分かる。No、10〜No、15
は比較例である。
In Table 1, No, 1, No, 2 are red copper type 2, red copper 3Fr
! It can be seen that the manufacturing method of the present invention has good bendability. In addition, No. 3 to No. 9 are red copper 2FI and red copper 3 types with additional elements added,
It can be seen that the strength is improved compared to red copper type 2 and red copper 38, and the bendability is also good. No, 10 ~ No, 15
is a comparative example.

No、IOは1回目の冷間圧延の加■−度が低く、従っ
て(X、、、、/X、1.)が大きく、混粒組織となり
、曲げ性はあまり良好でない。No、11は1回口の焼
鈍時に結晶粒が大きく、しかも混粒となった例であり、
2回口の焼かむ時に平均結晶粒を4μmとしても、混粒
組織であるため曲げ性は良好でない。No、12は2回
目冷間圧延の加工度が低く、2回口焼鈍で平均結晶粒を
4μlとしても混粒組織となり、曲げ性が良好ではない
For No. IO, the degree of hardening in the first cold rolling is low, and therefore (X, , , /X, 1.) is large, resulting in a mixed grain structure, and the bendability is not very good. No. 11 is an example in which the crystal grains were large and mixed grains during the first annealing.
Even if the average crystal grain is 4 μm during the second baking process, the bendability is not good because of the mixed grain structure. No. 12 has a low workability in the second cold rolling, and even if the average grain size in the second round annealing is 4 μl, it becomes a mixed grain structure and has poor bendability.

No、13は2回口焼鈍時の結晶粒が粗大であるため、
曲げた際に肌荒れし、曲げ性はあまり良好ではない。N
o、I4は2回IEI焼鈍を行わず、さらに冷間圧延を
行った例であるが、1回口焼鈍時の平均結晶粒が20μ
lである。すなわち、最終位1i! (他の例では2回
口焼鈍)時の結晶粒が20μ自と大きく、最終焼鈍後7
696の加工度で冷間圧延した例であり、加工度が高い
ため、かなり高強度となるが、曲げ性は非常に悪い。N
o、15は1回目の焼鈍後の結晶粒を微細にした例であ
るが、結晶粒が微細でかつ均一とはならないため、2回
口焼鈍で4μ備と微細結晶粒にしても、混粒組織である
ため、曲げ性は悪い。
No. 13 has coarse grains during second annealing, so
The surface becomes rough when bent, and the bendability is not very good. N
o, I4 is an example in which cold rolling was performed without performing IEI annealing twice, but the average crystal grain at the first mouth annealing was 20μ
It is l. In other words, final place 1i! (In other examples, the crystal grains are as large as 20 μm during two-time annealing), and after the final annealing, the crystal grains are as large as 20 μm.
This is an example of cold rolling with a working degree of 696, and because the working degree is high, the strength is considerably high, but the bendability is very poor. N
No. 15 is an example in which the crystal grains are made fine after the first annealing, but since the crystal grains are fine and not uniform, even if the grains are made fine to 4μ in the second annealing, mixed grains will not be produced. Since it is a tissue, its bendability is poor.

これらの例から本発明の製造方法により曲げ性、特にB
ad Way  (曲げ軸が圧延方向に毛行方向)方向
の曲げ性がかなり良好となることが判る。
These examples show that the manufacturing method of the present invention improves bendability, especially B
It can be seen that the bendability in the ad way direction (the bending axis is in the rolling direction in the grain direction) is quite good.

すなわち、本発明の方法により、曲げ加工性を改良した
丹銅が製造可能であり、電気、電子部品の小型化のニー
ズに十分答えられる高強度で、かつ曲げ加工性に優れた
合金を製造する最適の方法である。
That is, by the method of the present invention, red copper with improved bending workability can be produced, and an alloy with high strength and excellent bending workability can be produced that can sufficiently meet the needs for miniaturization of electrical and electronic parts. This is the best method.

[発明の効果] 本発明の製造方法、すなわち、冷間圧延の加工度および
焼鈍時の結晶粒をコントロールすることにより、曲げ加
工性の良好な丹銅を製造することができる。すなわち、
本発明の合金組成および製造工程により、曲げ性の良好
な丹銅を製造することができるわけであり、本発明中、
最初の冷間圧延前の製造工程は特に規定しない。
[Effects of the Invention] By the manufacturing method of the present invention, that is, by controlling the workability of cold rolling and the crystal grains during annealing, red copper having good bending workability can be manufactured. That is,
The alloy composition and manufacturing process of the present invention make it possible to manufacture red copper with good bendability.
The manufacturing process before the first cold rolling is not particularly specified.

本発明の製造方法により製造した丹銅は、従来の黄銅に
比べて曲げ加工性が良好であるため、ばね用部品等の曲
げをより厳しくし、部品の小型化ができる。
Since the red bronze manufactured by the manufacturing method of the present invention has better bending workability than conventional brass, bending of spring parts and the like can be made more severe and the parts can be made smaller.

Claims (1)

【特許請求の範囲】 (1)Zn1.5重量%以上25重量%未満を含み、残
部Cu及び不可避的不純物からなる銅合金材料を35%
以上の加工度で冷間圧延を行った後、平均結晶粒が10
〜35μmでしかも最大結晶粒(X_m_a_x)と最
小結晶粒(X_m_i_n)の比(X_m_a_x/X
_m_i_n)が2以下となる様に焼鈍を行い、その後
さらに35%以上の加工度で冷間圧延を行った後、平均
結晶粒が2μm以上10μm未満となる様に焼鈍を行っ
た後、冷間圧延を行い、その後適宜歪取焼鈍を行うこと
を特徴とする曲げ加工性の良好な銅合金の製造方法。 (2)Zn1.5重量%以上25重量%未満を含み、さ
らに副成分としてP、Sn、Si、Ni、Mg、Ti、
Cr、Zr、Al、Fe、Pb、Mn、Coの中から1
種又は2種以上を 0.001〜5wt%含み、残部Cu及び不可避的不純
物からなる銅合金材料を35%以上の加工度で冷間圧延
を行った後、平均結晶粒が10〜35μmでしかも最大
結晶粒(X_m_a_x)と最小結晶粒(X_m_i_
n)の比(X_m_a_x/X_m_i_n)が2以下
となる様に焼鈍を行い、その後さらに35%以上の加工
度で冷間圧延を行った後、平均結晶粒が2μm以上10
μm未満となる様に焼鈍を行った後、冷間圧延を行い、
その後適宜歪取焼鈍を行うことを特徴とする曲げ加工性
の良好な銅合金の製造方法。
[Claims] (1) 35% copper alloy material containing 1.5% by weight or more and less than 25% by weight of Zn, and the balance consisting of Cu and unavoidable impurities.
After cold rolling with a working degree of above, the average grain size is 10
~35 μm and the ratio of the largest crystal grain (X_m_a_x) to the smallest crystal grain (X_m_i_n) (X_m_a_x/X
_m_i_n) is 2 or less, then cold rolling is performed with a workability of 35% or more, annealing is performed so that the average grain size is 2 μm or more and less than 10 μm, and then cold rolling is performed so that the average grain size is 2 μm or more and less than 10 μm. A method for producing a copper alloy with good bending workability, which comprises rolling and then appropriately strain-relieving annealing. (2) Contains 1.5% by weight or more and less than 25% by weight of Zn, and further contains P, Sn, Si, Ni, Mg, Ti,
1 from Cr, Zr, Al, Fe, Pb, Mn, Co
After cold rolling a copper alloy material containing 0.001 to 5 wt% of one or more species and the remainder Cu and unavoidable impurities at a workability of 35% or more, the material has an average crystal grain size of 10 to 35 μm. The largest crystal grain (X_m_a_x) and the smallest crystal grain (X_m_i_
Annealing is performed so that the ratio (X_m_a_x/X_m_i_n) of n) is 2 or less, and then cold rolling is performed at a workability of 35% or more, and the average grain size is 2 μm or more.10
After annealing to less than μm, cold rolling is performed,
A method for producing a copper alloy with good bending workability, the method comprising appropriately performing strain relief annealing thereafter.
JP32188288A 1988-12-22 1988-12-22 Production of copper alloy having good bendability Pending JPH02170954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32188288A JPH02170954A (en) 1988-12-22 1988-12-22 Production of copper alloy having good bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32188288A JPH02170954A (en) 1988-12-22 1988-12-22 Production of copper alloy having good bendability

Publications (1)

Publication Number Publication Date
JPH02170954A true JPH02170954A (en) 1990-07-02

Family

ID=18137459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32188288A Pending JPH02170954A (en) 1988-12-22 1988-12-22 Production of copper alloy having good bendability

Country Status (1)

Country Link
JP (1) JPH02170954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
WO2006016442A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains
JP2010126777A (en) * 2008-11-28 2010-06-10 Dowa Metaltech Kk Copper alloy sheet, and method for producing the same
JP2012153961A (en) * 2011-01-28 2012-08-16 Mitsui Sumitomo Metal Mining Brass & Copper Co Ltd Copper-zinc alloy linear sheet and method for manufacturing the copper-zinc alloy linear sheet
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
WO2006016442A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains
US7909946B2 (en) 2004-08-10 2011-03-22 Mitsubishi Shindoh Co., Ltd. Copper alloy
US9328401B2 (en) 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
US10570483B2 (en) 2004-08-10 2020-02-25 Mitsubishi Shindoh Co., Ltd. Copper-based alloy casting in which grains are refined
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
JP2010126777A (en) * 2008-11-28 2010-06-10 Dowa Metaltech Kk Copper alloy sheet, and method for producing the same
JP4563480B2 (en) * 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP2012153961A (en) * 2011-01-28 2012-08-16 Mitsui Sumitomo Metal Mining Brass & Copper Co Ltd Copper-zinc alloy linear sheet and method for manufacturing the copper-zinc alloy linear sheet

Similar Documents

Publication Publication Date Title
KR101667812B1 (en) Copper alloy plate and method for producing same
EP1179606B1 (en) Silver containing copper alloy
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
US20090183803A1 (en) Copper-nickel-silicon alloys
JPH0841612A (en) Copper alloy and its preparation
WO2002053790A1 (en) High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JPS639007B2 (en)
JPS63266049A (en) Production of high tensile copper based alloy
JP2008007839A (en) Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JPH07166279A (en) Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
CN111378869B (en) Fine-grain reinforced brass strip for connector and processing method thereof
JPH02170954A (en) Production of copper alloy having good bendability
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JP4831969B2 (en) Brass material manufacturing method and brass material
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JPH07258804A (en) Production of copper alloy for electronic equipment
JPH02170955A (en) Production of copper alloy having good bendability
JPH02170953A (en) Production of copper alloy having good bendability
JPS61119659A (en) Manufacture of aluminum alloy material having high electric conductivity and strength
JP2619326B2 (en) Special alloy gold material
JPS6393837A (en) Copper alloy for electronic equipment and its production