JPH02170309A - Superconductor provided with b1 type superconductive layer - Google Patents

Superconductor provided with b1 type superconductive layer

Info

Publication number
JPH02170309A
JPH02170309A JP63324541A JP32454188A JPH02170309A JP H02170309 A JPH02170309 A JP H02170309A JP 63324541 A JP63324541 A JP 63324541A JP 32454188 A JP32454188 A JP 32454188A JP H02170309 A JPH02170309 A JP H02170309A
Authority
JP
Japan
Prior art keywords
superconducting
superconductor
base material
substrate
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63324541A
Other languages
Japanese (ja)
Inventor
Mikio Nakagawa
中川 三紀夫
Yasuhiro Iijima
康裕 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63324541A priority Critical patent/JPH02170309A/en
Publication of JPH02170309A publication Critical patent/JPH02170309A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high level of characteristic with a high critical temperature and critical current density by forming a superconductor layer consisting of B1 type superconductor over a long, line- or tape-shaped substrate with the substrate formed with a specific crystallized oxide. CONSTITUTION:The outer circumferential surface of a substrate 11 made of crystallized oxide such as MgO or Al2O3 and having a circular cross section is covered with a thin film-state superconductor layer 2 made of B1 type superconductor such as NbN. The substrate 1 is of a fiber state formed by spinning crystallized oxide such as MgO or Al2O3. The superconductive layer 2 is made to coat the outer circumferential surface of the substrate 1 with high frequency sputtering process or with gaseous phase process such as vacuum deposition. This suppresses the deterioration of superconductor characteristic associated with heating and the crystal matching with the superconductive layer is improved by the use of crystallized oxide of cubic structure such as MgO.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は電力輸送用あるいは超電導マグネット用など
としての応用開発が進められているNbN等の131型
の超7I導層を備えた超電導導体に関1−る。
[Detailed Description of the Invention] "Field of Industrial Application" This invention is applicable to superconducting conductors equipped with 131-type super 7I conductive layers such as NbN, which are being developed for applications such as power transportation or superconducting magnets. Seki 1-ru.

「従来の技術」 超電導体においては、臨界温度と臨界磁界および臨界電
流密度の3つの臨界値が存在し、これらの値が大きいほ
ど超電導体の利用価値は高められることか知られている
。そこで従来から、これらの臨界値の高い超電導材料を
求めて材料開発が進められ、種々の超電導材料が開発さ
れるに至−)ている。
"Prior Art" It is known that there are three critical values in a superconductor: a critical temperature, a critical magnetic field, and a critical current density, and the larger these values are, the higher the utility value of the superconductor is. Therefore, material development has been carried out in search of superconducting materials with high critical values, and various superconducting materials have been developed.

ところが、超電導材料を実島に用いて超電導マグネット
などを形成するには、前記臨界特性に優れた上に、マグ
ネットを形成するためなどのために機械加工が可能で歪
に強いこと、あるいは、速い磁界変化に対し安定である
ことなどの制約があり、これらの背景を基に現在まで実
用化に至−)でいる超電導材料の代表例として、Nb−
Tiを代表とする合金系超電導材料、Nb3Snを代表
とするA+5型化合物系超電導材料などが知らメtでい
る。
However, in order to form superconducting magnets using superconducting materials, in addition to the above-mentioned excellent critical properties, it is necessary that machining is possible and resistant to distortion for forming magnets, or that machining is possible and fast. Nb-
Alloy-based superconducting materials, typified by Ti, and A+5 type compound-based superconducting materials, typified by Nb3Sn, are well-known.

前記合金系の超電導材料は、加工か可能であって、約1
0に程度の臨界温度と約tITの上部臨界磁界を示す。
The alloy-based superconducting material can be processed and has a processability of about 1
It exhibits a critical temperature of the order of 0 and an upper critical magnetic field of about tIT.

また、AI5型化合物超電導材料は、15に以上の臨界
温度を示すものが知られており、上部臨界磁界において
も20 ’I’を超すものが知られているが、極めて硬
く脆い機械的性質を有することが欠点である。
In addition, AI5 type compound superconducting materials are known to exhibit a critical temperature of 15 or higher, and are known to exceed 20'I' even in the upper critical magnetic field, but they have extremely hard and brittle mechanical properties. Having it is a drawback.

そこでこれらの合金系超電導材料あるいはAt5型化合
物系超電導材料の他に、更に有望な超電導材料の実用化
が進められており、この種の乙のの中でNbNを代表す
るBl型構造の超電導材料が知られている。
Therefore, in addition to these alloy-based superconducting materials or At5-type compound-based superconducting materials, more promising superconducting materials are being put into practical use. It has been known.

このBi型の超電導材料は、ABの組成比を有し、Na
C1型化合物とも呼ばれるもので、元素Aとして、’r
 i、Z r、Hr、V 、N b、T a Moなど
が知られ、元素BとしてN、Cなどが知られている。そ
して、Bl型の超電導材料は、臨界温度が15Kを超え
る乙のがあり、上部臨界磁界が高く、高磁界中で高い臨
界電流密度を示すととしに、優れた歪特性と耐放射線特
性を有することが知られている。
This Bi-type superconducting material has a composition ratio of AB and Na
It is also called a C1 type compound, and as element A, 'r
i, Zr, Hr, V, Nb, TaMo, etc. are known, and as the element B, N, C, etc. are known. Bl-type superconducting materials have a critical temperature exceeding 15K, a high upper critical magnetic field, a high critical current density in a high magnetic field, and have excellent strain characteristics and radiation resistance. It is known.

従来、この種のBl型超電導体を製造する場合には、ス
パッタリング法あるいは真空蒸着法などの気相法を用い
、金属製あるいは石英製の線状の基材の外面に、薄膜状
の超電導層を形成することで製造している。ここで、前
記基材用の材料として知られているのは、ハステロイな
どのNi基合金、S i Otを主成分とする石英ファ
イバなどである。なお、前記の超電導層においては、成
膜時に700℃程度の高温に加熱することにより、臨界
温度と臨界電流密度を向上できることが知られている。
Conventionally, when manufacturing this type of Bl-type superconductor, a thin film-like superconducting layer is deposited on the outer surface of a linear base material made of metal or quartz using a vapor phase method such as a sputtering method or a vacuum evaporation method. It is manufactured by forming. Here, known materials for the base material include Ni-based alloys such as Hastelloy, quartz fibers containing SiOt as a main component, and the like. It is known that the critical temperature and critical current density of the superconducting layer can be improved by heating it to a high temperature of about 700° C. during film formation.

「発明が解決しようとする課題」 ところが、前記のように石英ファイバ芯線や金属芯線の
周囲にBl型の超電導層を形成した場合に加熱処理を行
うと、芯線と超電導層との間で元素の拡散あるいは反応
が進行し、超電導特性が劣化する問題があった。特に、
Ni合金から基材を形成した場合、Niが磁性元素であ
ることから、磁性元素が超電導体側に拡散すると、磁性
元素が有する磁気モーメントによって超電導電子のクー
パー電子ベアがくずされるので超電導特性の劣化が生じ
る問題がある。また、前記のスパッタリング法あるいは
真空蒸着法などの気相法においては、通常、成膜時に加
′熱されて超電導層が数百℃になることがあり、この加
熱が原因となって前述の拡散と反応が生じて超電導特性
が劣化する問題があった。
``Problems to be Solved by the Invention'' However, when heat treatment is performed when a B1 type superconducting layer is formed around a quartz fiber core wire or a metal core wire as described above, elemental exchange occurs between the core wire and the superconducting layer. There was a problem that diffusion or reaction progressed and the superconducting properties deteriorated. especially,
When the base material is formed from a Ni alloy, since Ni is a magnetic element, when the magnetic element diffuses into the superconductor side, the Cooper electron bears of the superconducting electrons are destroyed by the magnetic moment of the magnetic element, resulting in deterioration of the superconducting properties. There are problems that arise. In addition, in vapor phase methods such as the sputtering method or vacuum evaporation method mentioned above, the superconducting layer is usually heated to several hundred degrees Celsius during film formation, and this heating causes the above-mentioned diffusion. There was a problem that a reaction occurred and the superconducting properties deteriorated.

本発明は、前記課題を解決するためになされたちので、
臨界温度と臨界電流密度が高い高特性のBl型超電導層
を備えた超電導導体を提供することを目的とする。
The present invention has been made to solve the above problems, and therefore,
It is an object of the present invention to provide a superconducting conductor having a high-performance Bl type superconducting layer with high critical temperature and high critical current density.

「課題を解決するだめの手段」 本発明は、前記課題を解決するために、NbNなとのB
l型の超電導体からなる超電導層を線状あるいはテープ
状の長尺の括材上に形成してなり、前記基材をMgO,
Δl!03などの結晶化酸化物から形成してなるもので
ある。
"Means for Solving the Problems" In order to solve the problems mentioned above, the present invention provides B
A superconducting layer made of an L-type superconductor is formed on a linear or tape-like long bracket, and the base material is made of MgO,
Δl! It is formed from a crystallized oxide such as 03.

1作用 」 Bl型の超電導層との間の反応性が低く、拡散ら小さい
結晶化酸化物から基材を形成するので、加熱に伴う超電
導特性の劣化が抑制される。また、結晶化酸化物の中で
もMgOなどの立方晶構造を有するしのを使用するなら
ば、超電導層との結晶整合性が良好になる。
1 Effect: Since the base material is formed from a crystallized oxide that has low reactivity with the Bl-type superconducting layer and has little diffusion, deterioration of superconducting properties due to heating is suppressed. Further, among crystallized oxides, if a metal having a cubic crystal structure such as MgO is used, the crystal consistency with the superconducting layer will be good.

「実施例」 第1図は本発明の一実施例の超電導導体へを示すらので
、この超電導導体Aは、MgO9Alz03なとの結晶
化酸化物からなる断面円形状の基材1の外周面に、Nb
NなどのBl型超電導体からなる薄膜状の超電導層2を
被覆して構成されている。
``Example'' FIG. 1 shows a superconducting conductor according to an embodiment of the present invention. This superconducting conductor A is formed on the outer peripheral surface of a base material 1 having a circular cross section and made of a crystallized oxide such as MgO9Alz03. ,Nb
It is constructed by covering a thin film-like superconducting layer 2 made of a Bl type superconductor such as N.

前記基材1は、MgOなどの結晶化酸化物を溶融紡糸し
て形成されたファイバ状のものである。
The base material 1 is a fiber-like material formed by melt-spinning a crystallized oxide such as MgO.

また、超電導層2は、高周波スパッタリング法、あるい
は真空蒸着法などの気相法により基材lの外周面に被覆
されたものである。前記超電導層2の厚さは0.1〜1
0μm程度が好ましい。厚さがO1μm以下であると、
断面積が少なく、臨界電流密度の低下を生じるとともに
臨界電流が小さいために好ましくなく、10μm以上で
あると、臨界電流密度が低下するととらに、成膜時間が
長くなるため好ましくない。
Further, the superconducting layer 2 is coated on the outer peripheral surface of the base material 1 by a high frequency sputtering method or a vapor phase method such as a vacuum evaporation method. The thickness of the superconducting layer 2 is 0.1 to 1
Approximately 0 μm is preferable. When the thickness is 01 μm or less,
If the cross-sectional area is small, the critical current density decreases and the critical current is small, which is undesirable. If the cross-sectional area is 10 μm or more, the critical current density decreases and the film-forming time increases, which is undesirable.

第2図は基材lに超電導層2を形成するために用いるス
パッタリング装置の一例を示すものであり、このスパッ
タリング装置Sは、垂直上下方向に配置された円筒型の
ターゲット5とこのターゲット5の内側に配置された複
数本(この例では3本)のアノード6を囲む円筒状の真
空容器7を主体として構成され、真空容器7は図示略の
真空ポンプに接続されてその内部を真空引きできるよう
に構成されている。
FIG. 2 shows an example of a sputtering device used to form a superconducting layer 2 on a base material L. This sputtering device S includes a cylindrical target 5 arranged vertically in the vertical direction, and a cylindrical target 5 arranged in the vertical direction. It is mainly composed of a cylindrical vacuum container 7 that surrounds a plurality of anodes 6 (three in this example) arranged inside, and the vacuum container 7 is connected to a vacuum pump (not shown) so that the inside can be evacuated. It is configured as follows.

前記ターゲット5の構成材料は形成すべき超電導層の組
成に応じて決定されるので例えばNbN超電導層を生成
する場合は、NbあるいはNbNからターゲットを形成
する。ここでターゲット材料としてNbを用いた場合は
スパッタリング雰囲気にN、ガスを送るようにする。ま
た、前記ターゲット5とアノード6は図示略の高周波電
源に接続されていて、高周波電源を作動させることによ
ってターゲット5とアノード6の間に電場と磁場を発生
させてターゲット5の構成原子をスパッタリングできる
ようになっている。なお、前記真空容器7の上部には基
材1を真空容器7内部に供給する送出装置が、また、真
空容器7の下部には基材lを真空容器7の内部から引き
出す引出装置が接続されている。
The constituent material of the target 5 is determined depending on the composition of the superconducting layer to be formed, so for example, when producing a NbN superconducting layer, the target is formed from Nb or NbN. If Nb is used as the target material, N and gas are supplied to the sputtering atmosphere. Further, the target 5 and the anode 6 are connected to a high frequency power source (not shown), and by operating the high frequency power source, an electric field and a magnetic field are generated between the target 5 and the anode 6, so that atoms constituting the target 5 can be sputtered. It looks like this. A feeding device for supplying the base material 1 into the vacuum container 7 is connected to the upper part of the vacuum container 7, and a drawing device for pulling out the base material 1 from the inside of the vacuum container 7 is connected to the lower part of the vacuum container 7. ing.

前記構成の真空容器7の内部に前記送出装置から芯材l
を送り出し、前記ターゲット5の中心軸に沿って基材1
を垂直に走行させなからスパッタリングを行うと、基材
1の外周に均一に超電導層2を被覆することができ、被
覆後に引出装置で真空容器7から引き出すことにより第
1図に示す超電導導体Aを得ることができる。なお、N
bのターゲットを用いてスパッタリングを行う場合は、
真空容器7の内部にN、ガスを送り込み、N、ガス雰囲
気でスパッタリングを行うことによりNbN超電導層を
形成することができる。
A core material l is supplied from the delivery device to the inside of the vacuum container 7 configured as described above.
The base material 1 is sent out along the central axis of the target 5.
If sputtering is performed without running the base material 1 vertically, the outer periphery of the base material 1 can be uniformly coated with the superconducting layer 2. After coating, the superconducting conductor A shown in FIG. can be obtained. In addition, N
When performing sputtering using target b,
A NbN superconducting layer can be formed by feeding N and gas into the vacuum container 7 and performing sputtering in the N and gas atmosphere.

このように製造された超電導導体Aは、融点が高く、成
膜時の700°C程度の加熱によっては元素拡散が生じ
難い結晶化酸化物を用いて基材lを形成しているので、
成膜時に加熱されても超電導B2と基材1との間で元素
の反応なとがほとんと生じないので超電導特性の劣化が
生じない。しからMgOなどの立方晶の結晶化酸化物か
ら基材1を形成するならば、基材lと超電導層2を双方
立方晶で形成するので、基材lの結晶に対する超電導層
2の結晶の整合性も良好になり、結晶構造の整った超電
導層2を生成させることができる。
In the superconducting conductor A manufactured in this way, the base material l is formed using a crystallized oxide that has a high melting point and is unlikely to undergo elemental diffusion when heated to about 700°C during film formation.
Even when heated during film formation, almost no reaction of elements occurs between the superconductor B2 and the base material 1, so that the superconducting properties do not deteriorate. However, if the base material 1 is formed from a cubic crystallized oxide such as MgO, both the base material l and the superconducting layer 2 are formed of cubic crystals, so that the crystals of the superconducting layer 2 with respect to the crystals of the base material l are The matching is also improved, and a superconducting layer 2 with a well-organized crystal structure can be generated.

第3図は本発明の超電導導体の第2実施例を示すもので
、この実施例の超電導導体Bはテープ状の基材10の上
面に超電導層11を形成してなるものである。前記基材
lOを形成する材料は先の実施例の基材1と同等の材料
であり、超電導層11を構成する材料ら先の実施例の超
電導層2と同等の材1である。
FIG. 3 shows a second embodiment of the superconducting conductor of the present invention, and the superconducting conductor B of this embodiment is formed by forming a superconducting layer 11 on the upper surface of a tape-shaped base material 10. The material forming the base material IO is the same material as the base material 1 of the previous example, and the material forming the superconducting layer 11 is the same material 1 as the superconducting layer 2 of the previous example.

この形状の超電導導体Bを形成するには、第4図に示す
スパッタリング装置Stを用いる。このスパッタリング
装置S、は、点線で囲まれた真空雰囲気中に対向状態で
配置された板状のターゲット13とアノードI4を備え
、ターゲットI3とアノード14に接続された高周波電
源Tを有し、ターゲット13とアノード14の間に送出
装置16で基材lOを送り込み、次いで巻取装置17で
巻き取ることができるようになっている。
To form the superconducting conductor B having this shape, a sputtering apparatus St shown in FIG. 4 is used. This sputtering apparatus S is equipped with a plate-shaped target 13 and an anode I4 arranged facing each other in a vacuum atmosphere surrounded by a dotted line, and has a high-frequency power supply T connected to the target I3 and the anode 14. The base material 10 is fed between the anode 13 and the anode 14 by a feeding device 16, and can then be wound up by a winding device 17.

このスパッタリング装置S、を用いて超電導導体Bを製
造するには、送出装置16でターゲット13とアノード
14の間に基材lOを送り込み、歯周rii源Tを作動
させてスパッタリングした後に、巻取装置17で巻き取
る操作を連続的に行えば良い。1))記ターゲット13
は先に説明したターゲット5と同等の1料から形成する
In order to manufacture the superconducting conductor B using this sputtering device S, the base material 10 is fed between the target 13 and the anode 14 with the feeding device 16, the periodontal rii source T is activated to perform sputtering, and then the material is rolled up. The winding operation may be performed continuously using the device 17. 1)) Target 13
is formed from the same material as the target 5 described above.

以上の操作を行うことによって超電導導体Bを製造する
ことができる。
Superconducting conductor B can be manufactured by performing the above operations.

この超電導導体Bは前記の実施例の超7u導導体八と同
等の優れた超電導特性を発揮する。
This superconducting conductor B exhibits excellent superconducting properties equivalent to those of the super 7u conductor 8 of the above-mentioned embodiment.

なお、第5図に示すように、基材10の上下両面に超電
導層11を形成して超電導導体Cを形成してら差し支え
ない。
Note that, as shown in FIG. 5, superconducting conductors C may be formed by forming superconducting layers 11 on both upper and lower surfaces of the base material 10.

「製造例」 円筒型のNbNターゲットを備えた高周波スパッタリン
グ装置を用い、Ni合金(ハステロイ)製の線材と5i
Oy製の石英ファイバとMgO製のファイバとAltO
=製のファイバを各)j基材として使用し、これらの各
基材の周面に高周波スパッタリングにより厚さ2−00
0人のNbN超1且導と、うを形成して超電導導体を得
た。
"Manufacturing example" Using a high frequency sputtering device equipped with a cylindrical NbN target, Ni alloy (Hastelloy) wire rod and 5i
Oy quartz fiber, MgO fiber, and AltO
= fibers were used as base materials, and the peripheral surface of each of these base materials was coated with a thickness of 2-00 mm by high-frequency sputtering.
A superconducting conductor was obtained by forming a superconducting layer with 0 NbN superconductors.

得られた各超電導導体の臨界温度と臨界電流密度(外部
磁場10T、4.2Kにおいて)を測定した結果を第1
表に示す。
The results of measuring the critical temperature and critical current density (in an external magnetic field of 10 T and 4.2 K) of each superconducting conductor obtained are shown in the first table.
Shown in the table.

第1表 第1表に示す結果から明らかなように、MgOあるいは
AlzO5などの結晶化酸化物からなる基材上に超電導
層を形成した超電導導体の超電導特性が優秀であること
が判明した。
As is clear from the results shown in Table 1, it was found that the superconducting conductor in which a superconducting layer was formed on a base material made of a crystallized oxide such as MgO or AlzO5 had excellent superconducting properties.

「発明の効果」 以上説明したように本発明は、融点が高く、成膜時の加
熱温度では元素の拡散や反応を生じ難い結晶化酸化物か
ら基材を形成したので、成膜時に高温に加熱されても基
材上の超電導層に不要元素が侵入したり、元素の反応が
進行することがなくなり、超電導特性が良好で歪に強く
耐放射線特性にも優れた超電導層を備えたBl型超電導
導体を製造できる効果がある。
"Effects of the Invention" As explained above, the present invention has a base material made of a crystallized oxide that has a high melting point and is difficult to cause element diffusion or reaction at the heating temperature during film formation. Even when heated, unnecessary elements will not invade the superconducting layer on the base material, and reactions of elements will not proceed, and the BL type has a superconducting layer that has good superconducting properties, is resistant to strain, and has excellent radiation resistance. This has the effect of producing superconducting conductors.

また、各種の結晶化酸化物においてMgOなどの立方晶
構造を有するものから基材を形成するならば、立方晶の
Bi型超超電導層基材との結晶整合性も良好になるので
、超電導特性の優れた超電導導体を得ることができる効
果がある。
In addition, if the base material of various crystallized oxides is formed from one having a cubic crystal structure such as MgO, the crystal consistency with the cubic Bi-type superconducting layer base material will be good, so the superconducting properties will be improved. This has the effect of making it possible to obtain an excellent superconducting conductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の超電導導体の断面図、第
2図は第1図に示す超電導導体を製造する装置の一例を
示す断面図、第3図は本発明の第2実施例の超電導導体
の断面図、第4図は第3図に示す超電導導体を製造する
装置の一例を示す構成図、第5図は本発明の第3実施例
の超電導導体の断面図である。 l、10・・・基材、2.11・・・超電導層、5.1
3・・・ターゲット、6,14・・・アノード、7・・
・真空容器、S、S、・・・スパッタリング装置、16
・・・送出装置、17・・・巻取装置。
1 is a sectional view of a superconducting conductor according to a first embodiment of the present invention, FIG. 2 is a sectional view showing an example of an apparatus for manufacturing the superconducting conductor shown in FIG. 1, and FIG. 3 is a sectional view of a second embodiment of the present invention FIG. 4 is a block diagram showing an example of an apparatus for manufacturing the superconducting conductor shown in FIG. 3, and FIG. 5 is a cross-sectional view of a superconducting conductor according to a third embodiment of the present invention. l, 10... Base material, 2.11... Superconducting layer, 5.1
3...Target, 6,14...Anode, 7...
・Vacuum container, S, S, ... sputtering device, 16
... Sending device, 17... Winding device.

Claims (1)

【特許請求の範囲】[Claims] NbNなどのB1型の超電導体からなる超電導層が線状
あるいはテープ状の長尺の基材上に形成されてなり、前
記基材がMgO、Al_2O_3などの結晶化酸化物か
ら形成されてなることを特徴とする超電導導体。
A superconducting layer made of a B1 type superconductor such as NbN is formed on a linear or tape-shaped elongated base material, and the base material is formed from a crystallized oxide such as MgO or Al_2O_3. A superconducting conductor characterized by
JP63324541A 1988-12-22 1988-12-22 Superconductor provided with b1 type superconductive layer Pending JPH02170309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324541A JPH02170309A (en) 1988-12-22 1988-12-22 Superconductor provided with b1 type superconductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324541A JPH02170309A (en) 1988-12-22 1988-12-22 Superconductor provided with b1 type superconductive layer

Publications (1)

Publication Number Publication Date
JPH02170309A true JPH02170309A (en) 1990-07-02

Family

ID=18166954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324541A Pending JPH02170309A (en) 1988-12-22 1988-12-22 Superconductor provided with b1 type superconductive layer

Country Status (1)

Country Link
JP (1) JPH02170309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317456A (en) * 1991-04-15 1992-11-09 Yoshibumi Sakai Production of ordinary temperature superconductive material and molded body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317456A (en) * 1991-04-15 1992-11-09 Yoshibumi Sakai Production of ordinary temperature superconductive material and molded body thereof

Similar Documents

Publication Publication Date Title
JP5630941B2 (en) Biaxially oriented film deposition for superconductor coated tapes
US4866032A (en) Method and apparatus for producing thin film of high to superconductor compound having large area
US20100065417A1 (en) Methods for forming superconducting conductors
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JPH02170309A (en) Superconductor provided with b1 type superconductive layer
JP2008130255A (en) Superconducting wire and manufacturing method therefor
JPH1153967A (en) Oxide polycrystalline basic material and oxide superconducting conductor and manufacture thereof
JP3897550B2 (en) Preparation method of boride superconductor thin film
JP2585366B2 (en) Oxide superconducting wire
JPS63193410A (en) Manufacture of superconductive wire
JP2721322B2 (en) Oxide superconducting compact
US3988178A (en) Method for preparing superconductors
JPH01260717A (en) Method and apparatus for manufacture of metal oxide superconducting material layer
JP2813257B2 (en) Superconducting member manufacturing method
JPH08106827A (en) Manufacture of superconductive wire
JP2575442B2 (en) Method for producing oxide-based superconducting wire
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JP3152689B2 (en) Superconducting material
KR20100013594A (en) Apparatus and method for manufacturing mgb2 superconducting multi-core wire/tapes and mgb2 superconducting multi-core wire/tapes thereof
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JP2011249162A (en) Method for manufacturing superconducting wire rod
JPS6324505A (en) Superconductive material with high critical temperature
JPH04149008A (en) Production of superconducting material
JPH01184266A (en) Manufacture of oxide superconductor formed body