JPH02163973A - Insulated-gate type bipolar transistor - Google Patents

Insulated-gate type bipolar transistor

Info

Publication number
JPH02163973A
JPH02163973A JP31789288A JP31789288A JPH02163973A JP H02163973 A JPH02163973 A JP H02163973A JP 31789288 A JP31789288 A JP 31789288A JP 31789288 A JP31789288 A JP 31789288A JP H02163973 A JPH02163973 A JP H02163973A
Authority
JP
Japan
Prior art keywords
layer
type
resistance
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31789288A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31789288A priority Critical patent/JPH02163973A/en
Publication of JPH02163973A publication Critical patent/JPH02163973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Abstract

PURPOSE:To increase an extraction speed of electrons remaining in an n-type high-resistance layer in an OFF state and, as a result, to enhance an OFF speed by a method wherein a part, of a drain layer, facing a source electrode is made thin. CONSTITUTION:A p-type base layer 4 is formed selectively on the surface part on one side of an n-type high-resistance layer 3; an n-type low-resistance source layer 5 is formed selectively on the surface part of the base layer 4; a gate electrode 8 is formed, via an insulating film 71, on the surface of a channel formation region 6 of the base layer 4 sandwiched between the n-type highresistance layer 3 and the source layer 5. A source electrode 9 is brought into contact with the base layer 4 which is situated on the side opposite to and to be adjacent to the channel formation region 6 of the source layer 5; a p-type low-resistance drain layer 1 is formed on the other side of the n-type high-resistance layer 3 via an n-type low-resistance buffer layer 2; a drain electrode 11 is brought into contact with the p-type drain layer 1. In this assembly, a region, of the p-type drain layer 1, facing the source electrode 9 is made thin; regions 1, 12 in its circumference is made thick.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力用MO3FETのドレイン層の電子と正
孔の2種のキャリア伝導度変調を利用して導通状態での
電圧降下を小さくする絶縁ゲート型バイポーラトランジ
スタ (以下MBTと略す)に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes two types of carrier conductivity modulation of electrons and holes in the drain layer of a power MO3FET to reduce the voltage drop in a conductive state. The present invention relates to an insulated gate bipolar transistor (hereinafter abbreviated as MBT).

〔従来の技術〕[Conventional technology]

MBTは、従来の電力用たて型MOS F ETと同様
な構造でありながら、バイポーラトランジスタを内部に
含み、いわゆる伝導度変調を利用することによって導通
状態での電圧降下を小さくできる利点を持たせたもので
ある。その断面構造は第2図に示す通りで、ドレイン層
lとしてのp′基板上にn゛バフ21層2介してれ一高
抵抗層3がエピタキシャル法で積層され、このn−高抵
抗層3の表面部にp形ベース層4が、さらにその表面部
にn゛ソース115形成されている。このソース層5と
高抵抗層3の間の表面層6にnチャネルを形成するため
、ゲート絶縁膜71を介して多結晶シリコンゲート電極
8が設けられている。このゲート1陽の設けられる側の
半導体素体表面からはAuが拡散されている。そして、
ソース層5の一部とその間のベース層4には、ゲート電
18を覆うwA緑腹膜72開口部でソース電極9が接触
するが、ベース層4の表面部にはこの接触部を含めてp
゛領域10が設けられている。このソース電極9に対向
して、p゛ ドレイン層1にはドレイン電極11が接触
している。このような半導体素子は、ゲート″を極8に
ソース電極9に対して正の電圧を印加すると、ゲート絶
縁膜71直下のp形ベース層4の表面1!6にnチャネ
ルが形成され、ソース層5から電子がチャネル6を通り
、高抵抗層3と低抵抗層2からなる0層を通ってp゛層
l注入され、それに呼応してp゛ ドレイン層1からn
゛バフフ1層2通ってn−層3に正孔が注入され、n=
層3が伝導度変調をおこして低抵抗となる。また、ゲー
)1it8i8をソース電極9と同電位または負にバイ
アスすることによってチャネルが消滅し、阻止状態とな
り、いわゆるスイッチング素子としてのはたらきを持つ
Although the MBT has a structure similar to a conventional power vertical MOSFET, it contains a bipolar transistor inside and has the advantage of reducing voltage drop in the conductive state by using so-called conductivity modulation. It is something that Its cross-sectional structure is as shown in FIG. 2, in which a high-resistance layer 3 is epitaxially laminated on a p' substrate as a drain layer l with an n-buff 21 layer 2 interposed therebetween. A p-type base layer 4 is formed on the surface thereof, and an n source 115 is further formed on the surface thereof. In order to form an n-channel in the surface layer 6 between the source layer 5 and the high resistance layer 3, a polycrystalline silicon gate electrode 8 is provided with a gate insulating film 71 interposed therebetween. Au is diffused from the surface of the semiconductor element on the side where the gate 1 is provided. and,
The source electrode 9 contacts a part of the source layer 5 and the base layer 4 between them at the opening of the wA green peritoneum 72 that covers the gate electrode 18, but the surface part of the base layer 4 including this contact part
A region 10 is provided. Opposed to this source electrode 9, a drain electrode 11 is in contact with the p-drain layer 1. In such a semiconductor element, when a positive voltage is applied to the source electrode 9 with the gate as the pole 8, an n-channel is formed on the surfaces 1 to 6 of the p-type base layer 4 directly under the gate insulating film 71, and the source Electrons from the layer 5 pass through the channel 6 and are injected into the p' layer l through the zero layer consisting of the high-resistance layer 3 and the low-resistance layer 2, and in response, the p' drain layer 1 to n
゛Hole is injected into n- layer 3 through buff 1 layer 2, n=
Layer 3 causes conductivity modulation and has low resistance. Furthermore, by biasing the gate electrode 1it8i8 to the same potential as the source electrode 9 or to a negative bias, the channel disappears and becomes a blocking state, so that it functions as a so-called switching element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このMBTは、MO3型構造を有しているがゆえに、バ
イポーラトランジスタに比較して高速性能を有しており
、例えば600 V 、 100 A素子でオン時10
0〜200ns 、オフ時1μS程度のスイッチング速
度が得られている。この高速化を図ることによりさらに
多くの用途が期待される。スイッチング速度は素子のオ
ンする速度とオフする速度で決まるが、特にオフ速度は
、n−層3に存在する電子を引きぬく速度に支配される
。従って如何に電子を速く引きぬくかという点に問題が
存在する。
Because this MBT has an MO3 type structure, it has high-speed performance compared to bipolar transistors.
A switching speed of 0 to 200 ns and about 1 μS when off is obtained. By increasing this speed, even more applications are expected. The switching speed is determined by the speed at which the element turns on and the speed at which it turns off, and the off speed in particular is dominated by the speed at which electrons present in the n-layer 3 are extracted. Therefore, the problem is how to extract electrons quickly.

本発明の課題は、上記の問題に対応して電子を速く引き
ぬくことができるnチャネルMBTを提供することにあ
る。
An object of the present invention is to provide an n-channel MBT that can quickly extract electrons in response to the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、高抵抗のn形層
の一側の表面部に選択的にp形のベース層を、さらにそ
のベース層の表面部に選択的にn形の低抵抗ソース層を
備え、高抵抗のn形層とソース層の間にはさまれたベー
ス層のチャネル形成領域表面上に絶縁膜を介してゲート
電極が設けられ、ソース層のチャネル形成領域と反対側
およびそれにliJ接するベース層の表面にソース電極
が接触し、前記高抵抗のn形層の他側には低抵抗のn形
バンファ層を介して低抵抗のp形ドレイン層が設けられ
、そのp形ドレイン層にドレイン電極が接触するMBT
において、p形ドレイン層はソース電極に対向する領域
が薄く、その周囲の領域が厚いものとする。
In order to solve the above problems, the present invention selectively forms a p-type base layer on one surface of a high-resistance n-type layer, and further selectively forms an n-type base layer on the surface of the base layer. A gate electrode is provided via an insulating film on the surface of the channel formation region of the base layer, which has a low resistance source layer and is sandwiched between the high resistance n-type layer and the source layer, and is connected to the channel formation region of the source layer. A source electrode is in contact with the surface of the base layer on the opposite side and in contact therewith, and a low-resistance p-type drain layer is provided on the other side of the high-resistance n-type layer via a low-resistance n-type bumper layer, MBT whose drain electrode is in contact with its p-type drain layer
In the p-type drain layer, the region facing the source electrode is thin and the surrounding region is thick.

〔作用〕[Effect]

p形ドレイン層にソース電極に対向して厚さの薄い領域
が存在するので、オフ時にn形高抵抗層に存在する電子
はドレイン層の厚い領域を経ないで、この薄い領域から
引き抜かれるので高速のオフ速度が得られる。厚い9貫
域はバッファ層を介しての正孔の注入の際に役立つ。
Since there is a thin region in the p-type drain layer facing the source electrode, the electrons present in the n-type high resistance layer when off are extracted from this thin region without passing through the thick region of the drain layer. A fast off speed is obtained. The thick 9-channel region aids in hole injection through the buffer layer.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、第2図と共通の部分
には同一の符号が付されている。この場合はn−シリコ
ン基板を用い、その−面にn゛バフ21層2形成したの
ち、他面側のp°屡lO形成の際の拡散工程と同工程で
1〜100−の厚さのp゛ ドレイン層1を形成する。
FIG. 1 shows an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. In this case, an n-silicon substrate is used, and after forming 2 layers of n-buff on its - side, a layer of 1 to 100-m thick is formed in the same process as the diffusion process used to form pO on the other side. p゛ Drain layer 1 is formed.

別にp′シリコン基板12を用意し、超音波加工で10
0〜500 pの径の穴13を明ける0次にイオン注入
装置を用いて硼素を全面に打込み、p゛ ドレイン層1
と同程度の不純物濃度にしたのち、表面を弗酸で軽くエ
ツチングする。これによって穴13に傾斜がつく、この
穴明き基板12の表面を研磨して滑らかな面にしたあと
、ドレイン層lの表面と接着する。接着には、例えば1
0′□’Paの減圧下で500〜800℃に加熱し、2
00〜500 V 、 500m5のパルス電圧を印加
して行う静電接着法を通用した0次いで、pシリコン基
pのときオフ速度は従来のI usからo、7μsに改
善され、特性のばらつきは±lO%程度であった。
Separately, prepare a p′ silicon substrate 12 and use ultrasonic processing to
A hole 13 having a diameter of 0 to 500p is made, and boron is implanted into the entire surface using an ion implantation device to form a p'' drain layer 1.
After bringing the impurity concentration to the same level as above, the surface is lightly etched with hydrofluoric acid. As a result, the holes 13 are inclined. After the surface of the perforated substrate 12 is polished to a smooth surface, it is bonded to the surface of the drain layer l. For adhesion, for example, 1
Heating to 500-800℃ under reduced pressure of 0'□'Pa,
When the electrostatic adhesion method was applied by applying a pulse voltage of 00 to 500 V and 500 m5, the off-speed was improved from the conventional I us to 7 μs when the p silicon base was used, and the variation in characteristics was ± It was about 10%.

第3図は別の実施例で、第1図、第2図と共通の部分に
は同一の符号が付されている。この場合はn−シリコン
基板の一面側にはn°バ7ファ層2のみ形成し、ドレイ
ン層1を形成せず、穴明きp゛シリコン基板12が直接
バッファ層2に接着されている0Mからなるドレイン電
極11はn゛バフフ1層2上にも被着するが、その際界
面にp層が形成されるため、バッファ層2とドレイン電
極と短絡されることはない、この構造はドレイン層1の
形成は不要となるが、接着界面に生ずるp層とn゛バ、
ファ層との間の接合が不安定なため特性のばらつきは±
20%程度に増大した。
FIG. 3 shows another embodiment, in which parts common to FIGS. 1 and 2 are given the same reference numerals. In this case, only the n° buffer layer 2 is formed on one side of the n-silicon substrate, the drain layer 1 is not formed, and the perforated p-silicon substrate 12 is directly bonded to the buffer layer 2. The drain electrode 11 consisting of the Although the formation of layer 1 becomes unnecessary, the p layer and n layer formed at the adhesive interface,
Due to the instability of the bond with the fiber layer, the variation in characteristics is ±
It increased to about 20%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドレイン層のソース電極に対向する部
分を薄くすることにより、n形高抵抗層内に残る電子の
オフ時における引き抜き速度を高めることができ、その
結果オフ速度を向上させることができた。このような構
造は半導体基板と穴明き半導体基板の接着で容易に得ら
れ、高価なエピタキシャル半導体基板を用いる必要がな
いため、低コスト化の点でも可能である。
According to the present invention, by thinning the portion of the drain layer that faces the source electrode, it is possible to increase the extraction speed of electrons remaining in the n-type high-resistance layer during the OFF state, and as a result, the OFF speed can be improved. was completed. Such a structure can be easily obtained by adhering a semiconductor substrate and a perforated semiconductor substrate, and there is no need to use an expensive epitaxial semiconductor substrate, so it is possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のMBTの断面図、第2図は
従来のMBTの断面図、第3図は本発明の別の実施例の
MBTの断面図である。 1:p層 ドレイン層、2:n゛バンフ1層、3:n形
高抵抗層、4;p形ベース層、5:n。 ソース層、6:チャネル形成領域、71.72  :絶
縁膜、8:ゲート電極、9:ソース電極、11ニドレイ
ン電極、12:p層 シリコン基板、13;穴。 0″”)dt4:”Q o  M s、。 第  1  図
FIG. 1 is a cross-sectional view of an MBT according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional MBT, and FIG. 3 is a cross-sectional view of an MBT according to another embodiment of the present invention. 1: p layer drain layer, 2: n゛ banff 1 layer, 3: n type high resistance layer, 4: p type base layer, 5: n. Source layer, 6: Channel formation region, 71.72: Insulating film, 8: Gate electrode, 9: Source electrode, 11 Nidrain electrode, 12: P layer silicon substrate, 13: Hole. 0″”)dt4:”Q o M s,. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)高抵抗のn形層の一側の表面部に選択的にp形のベ
ース層を、さらにそのベース層の表面部に選択的にn形
の低抵抗ソース層を備え、高抵抗のn形層とソース層の
間にはさまれたベース層のチャネル形成領域表面上に絶
縁膜を介してゲート電極が設けられ、ソース層のチャネ
ル形成領域と反対側およびそれに隣接するベース層の表
面にソース電極が接触し、前記高抵抗のn形層の他側に
は低抵抗のn形バッファ層を介して低抵抗のp形ドレイ
ン層が設けられ、そのp形ドレイン層にドレイン電極が
接触するものにおいて、p形ドレイン層はソース電極に
対向する領域が薄く、その周囲の領域が厚いことを特徴
とする絶縁ゲート型バイポーラトランジスタ。
1) A p-type base layer is selectively provided on the surface of one side of the high-resistance n-type layer, and an n-type low-resistance source layer is selectively provided on the surface of the base layer. A gate electrode is provided on the surface of the channel formation region of the base layer sandwiched between the shape layer and the source layer via an insulating film, and a gate electrode is provided on the surface of the base layer opposite to and adjacent to the channel formation region of the source layer. A source electrode contacts the high-resistance n-type layer, and a low-resistance p-type drain layer is provided on the other side of the high-resistance n-type layer via a low-resistance n-type buffer layer, and the drain electrode contacts the p-type drain layer. An insulated gate bipolar transistor characterized in that the p-type drain layer is thin in the region facing the source electrode and thick in the surrounding region.
JP31789288A 1988-12-16 1988-12-16 Insulated-gate type bipolar transistor Pending JPH02163973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31789288A JPH02163973A (en) 1988-12-16 1988-12-16 Insulated-gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31789288A JPH02163973A (en) 1988-12-16 1988-12-16 Insulated-gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH02163973A true JPH02163973A (en) 1990-06-25

Family

ID=18093218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31789288A Pending JPH02163973A (en) 1988-12-16 1988-12-16 Insulated-gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH02163973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525587A1 (en) * 1991-07-29 1993-02-03 Siemens Aktiengesellschaft Field effect controllable semi-conductor device
US5289019A (en) * 1991-07-24 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
JP2000040825A (en) * 1998-06-30 2000-02-08 Harris Corp Semiconductor device having reduced effective resistivity of substrate and manufacture thereof
WO2014206189A1 (en) * 2013-06-27 2014-12-31 无锡华润上华半导体有限公司 Field-stop reverse conducting insulated gate bipolar transistor and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289019A (en) * 1991-07-24 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
EP0525587A1 (en) * 1991-07-29 1993-02-03 Siemens Aktiengesellschaft Field effect controllable semi-conductor device
JP2000040825A (en) * 1998-06-30 2000-02-08 Harris Corp Semiconductor device having reduced effective resistivity of substrate and manufacture thereof
WO2014206189A1 (en) * 2013-06-27 2014-12-31 无锡华润上华半导体有限公司 Field-stop reverse conducting insulated gate bipolar transistor and manufacturing method therefor
US10096699B2 (en) 2013-06-27 2018-10-09 Csmc Technologies Fab1 Co., Ltd. Field-stop reverse conducting insulated gate bipolar transistor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JP2896141B2 (en) High voltage semiconductor device
JPH043981A (en) Conductivity-modulation mosfet
US4199860A (en) Method of integrating semiconductor components
JPH02163973A (en) Insulated-gate type bipolar transistor
JP2501810B2 (en) Vertical MOSFET
JP3249891B2 (en) Semiconductor device and method of using the same
JP2903749B2 (en) Semiconductor device provided with conductivity-modulated MISFET
JP3312691B2 (en) Semiconductor device
JPH0529628A (en) Insulating-gate type bipolar transistor
JPH05121425A (en) Bipolar electrostatic-induction transistor
JPS606104B2 (en) MIS semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JPS6276557A (en) Insulated gate type self-turn-off element
JPS6031267Y2 (en) semiconductor switch
JPS6381862A (en) Insulated-gate bipolar transistor
JPH0472669A (en) Insulated-gate bipolar transistor
JP2502696B2 (en) Semiconductor integrated circuit device
JPS6212665B2 (en)
JPH0582786A (en) Mos-type transistor
JPH06204463A (en) Semiconductor device
JPH02267969A (en) Horizontal type conductivity modulation type mosfet
JPH03218634A (en) Semiconductor device and manufacture thereof
JPH04144289A (en) Insulated gate type bipolar transistor
JP2001210838A (en) Semiconductor device