JP2502696B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JP2502696B2
JP2502696B2 JP63189502A JP18950288A JP2502696B2 JP 2502696 B2 JP2502696 B2 JP 2502696B2 JP 63189502 A JP63189502 A JP 63189502A JP 18950288 A JP18950288 A JP 18950288A JP 2502696 B2 JP2502696 B2 JP 2502696B2
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
semiconductor layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63189502A
Other languages
Japanese (ja)
Other versions
JPH0239470A (en
Inventor
学 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63189502A priority Critical patent/JP2502696B2/en
Publication of JPH0239470A publication Critical patent/JPH0239470A/en
Application granted granted Critical
Publication of JP2502696B2 publication Critical patent/JP2502696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路装置の耐圧に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a breakdown voltage of a semiconductor integrated circuit device.

従来の技術 従来の半導体集積回路装置の横型PNPNサイリスタの素
子構成として第5図のような構成がある。1はP型シリ
コン基板、2はN型高濃度埋込層、3はP型高濃度分離
層、4はN型低濃度エピタキシャル層、5はP型ゲート
層、6はN型カソード層、7はP型アノード層である。
2. Description of the Related Art As a device configuration of a conventional lateral PNPN thyristor of a semiconductor integrated circuit device, there is a configuration as shown in FIG. 1 is a P type silicon substrate, 2 is an N type high concentration buried layer, 3 is a P type high concentration isolation layer, 4 is an N type low concentration epitaxial layer, 5 is a P type gate layer, 6 is an N type cathode layer, 7 Is a P-type anode layer.

以上のように構成された横型PNPNサイリスアのアノー
ドとゲート間の耐圧はN型低濃度エピタキシャル層4の
濃度を一定にすると、主にゲート層5の拡散深さにより
決定されている。これはゲート拡散の深さにより、その
端部から伸びる空乏層の湾曲の度合いが変わり、前記湾
曲部に集中する単位面積当りの電界の強さが変わるから
である。つまりゲート拡散が浅いとそれだけ湾曲が急と
なり、電界が早く集中し、耐圧が下がる。一方、スイッ
チングスピードはN型高濃度埋込層2が素子全面に入っ
ているため、かなり速いものであった。
The breakdown voltage between the anode and the gate of the lateral PNPN thyristor configured as described above is mainly determined by the diffusion depth of the gate layer 5 when the concentration of the N-type low concentration epitaxial layer 4 is constant. This is because the degree of curvature of the depletion layer extending from the end portion changes depending on the depth of the gate diffusion, and the strength of the electric field per unit area concentrated on the curved portion changes. That is, if the gate diffusion is shallow, the curvature becomes steeper, the electric field concentrates faster, and the breakdown voltage decreases. On the other hand, the switching speed was fairly fast because the N-type high-concentration burying layer 2 was on the entire surface of the device.

発明が解決しようとする課題 しかしながら、上記従来の構成を基に、拡散層を深く
して耐圧の向上を図ろうとするすれば、それによって形
成する素子の占有面積が大きくなって、集積回路装置の
阻害することになり、拡散工程に要する時間が長くなる
というような問題点を有していた。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention However, if an attempt is made to deepen the diffusion layer to improve the breakdown voltage based on the above-described conventional configuration, the area occupied by the element formed thereby increases, and the integrated circuit device This has been a hindrance, and there is a problem that the time required for the diffusion process becomes long.

本発明は上記問題点を解決するもので、スイッチング
スピードを高速に維持しながら耐圧を上げることのでき
る半導体集積回路装置を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a semiconductor integrated circuit device capable of increasing the breakdown voltage while maintaining a high switching speed.

課題を解決するための手段 この目的を達成するために本発明の半導体集積回路
は、一導電型の半導体基板(11)と、同半導体基板上に
形成された逆導電型の低濃度な第1の半導体層(14)
と、前記半導体基板と前記第1の半導体層との間に選択
的に形成された逆導電型の高濃度な埋込層(12)と、前
記埋込層の真上の前記第1の半導体層表面に形成された
一導電型の第2の半導体層(17)と、前記第2の半導体
層と離間した前記第1の半導体層表面に形成された一導
電型の第3の半導体層(15)と、前記第3の半導体層内
に形成された逆導電型の第4の半導体層(16)とを備
え、前記半導体基板(11)と前記第4の半導体層(16)
とを接続するという構成を有している。
Means for Solving the Problems To achieve this object, a semiconductor integrated circuit according to the present invention comprises a semiconductor substrate (11) of one conductivity type and a first conductive type semiconductor substrate (11) of a low conductivity type formed on the semiconductor substrate. Semiconductor layers (14)
A reverse-conductivity-type high-concentration buried layer (12) selectively formed between the semiconductor substrate and the first semiconductor layer, and the first semiconductor immediately above the buried layer. A second semiconductor layer (17) of one conductivity type formed on the surface of the layer, and a third semiconductor layer of one conductivity type formed on the surface of the first semiconductor layer separated from the second semiconductor layer ( 15) and a fourth semiconductor layer (16) of the opposite conductivity type formed in the third semiconductor layer, the semiconductor substrate (11) and the fourth semiconductor layer (16)
It has a configuration of connecting and.

作用 この構成によって、横型サイリスタが構成され、ター
ンオン状態からターンオフ状態にスイッチング動作する
時、第2の半導体層17と第3の半導体層15との間に形成
される横型トランジスタのベース領域となる第1の半導
体層14を走行中のキャリアは、高濃度な埋込層12に吸収
され、高速にターンオフする動作を維持することができ
る。
Operation With this configuration, the lateral thyristor is configured and serves as the base region of the lateral transistor formed between the second semiconductor layer 17 and the third semiconductor layer 15 when the switching operation is performed from the turn-on state to the turn-off state. Carriers running through the first semiconductor layer 14 are absorbed by the high-concentration buried layer 12, and the operation of turning off at high speed can be maintained.

また、第4の半導体層16と第2の半導体層との間に高
電圧が印加された場合、第3の半導体層15と第1の半導
体層14とのPN接合における空乏層18は第3の半導体層15
の下側に向けて広がり、その一方で半導体基板11と第1
の半導体層14とのPN接合における空乏層18はそのPN接合
を境に上下に広がる。そして、印加電圧が高くなり、上
側と下側の空乏層が接したとしても、ほぼ同電位である
ことから、これによって耐圧破壊を起こさないので、高
速のスイッチングスピードを維持しながら、高い耐圧を
確保することができる。
In addition, when a high voltage is applied between the fourth semiconductor layer 16 and the second semiconductor layer, the depletion layer 18 at the PN junction between the third semiconductor layer 15 and the first semiconductor layer 14 becomes the third The semiconductor layer 15
Of the semiconductor substrate 11 and the first substrate
The depletion layer 18 in the PN junction with the semiconductor layer 14 extends vertically above and below the PN junction. Even if the applied voltage rises and the upper and lower depletion layers come into contact with each other, since the potentials are almost the same, breakdown breakdown does not occur. Therefore, a high breakdown voltage is maintained while maintaining a high switching speed. Can be secured.

実施例 以下、本発明の一実施例について、図面を参照しなが
ら説明する。
Embodiment One embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における横型PNPNサイリス
タの断面図である。第1図において、11はP型シリコン
基板、12はN型高濃度埋込層、13はP型高濃度分離層、
14はN型低濃度エピタキシャル層、15はP型ゲート層、
16はN型カソード層、17はP型アノード層である。以下
図面を用いて詳細に説明する。
FIG. 1 is a cross-sectional view of a lateral PNPN thyristor according to an embodiment of the present invention. In FIG. 1, 11 is a P-type silicon substrate, 12 is an N-type high-concentration buried layer, 13 is a P-type high-concentration separation layer,
14 is an N type low concentration epitaxial layer, 15 is a P type gate layer,
16 is an N-type cathode layer and 17 is a P-type anode layer. The details will be described below with reference to the drawings.

電気的結線は、実際の使用状態でゲート電極とカソー
ド電極を抵抗を介して接続し、誤動作対策を施すことが
一般的であり、耐圧が問題となるアノード電極の印加電
圧に比べると、ゲート・カソード間の電圧(順方向ダイ
オード電圧)はゼロに近いものであるので、第2図のよ
うに、P型ゲート層(以下ゲートという)15,N型カソー
ド層(以下カソードという)16,P型シリコン基板(以下
基板という)11,P型高濃度分離層(以下分離という)13
を全て同電位の低圧側とし、P型アノード層(以下アノ
ードという)17を高圧側とする。
Regarding electrical connection, it is common to connect the gate electrode and the cathode electrode through a resistor in the actual use condition to take measures against malfunction.In comparison with the voltage applied to the anode electrode, where breakdown voltage is a problem, Since the voltage between the cathodes (forward diode voltage) is close to zero, as shown in FIG. 2, P-type gate layer (hereinafter referred to as gate) 15, N-type cathode layer (hereinafter referred to as cathode) 16, P-type Silicon substrate (hereinafter referred to as substrate) 11, P-type high concentration separation layer (hereinafter referred to as separation) 13
Are all at the same potential on the low voltage side, and the P-type anode layer (hereinafter referred to as the anode) 17 is on the high voltage side.

まず、第2図で、アノード17の電位が少し上がると、
接合領域で空乏層18が基板11より少し上がり、分離13か
らも少し、ゲート15からも少し伸びる。次にアノード17
の電位がもっと上がると、第3図のように、基板11から
上がった空乏層18がゲート15から伸びる空乏層18と接す
る。また分離13から伸びてくる空乏層18もゲートから伸
びる空乏層18と接する。このとき、ゲート15,基板11,分
離13は全て同電位であるため、耐圧破壊の電流は流れな
い。
First, in FIG. 2, when the potential of the anode 17 rises a little,
In the junction region, the depletion layer 18 rises slightly above the substrate 11 and extends slightly from the isolation 13 and from the gate 15. Then the anode 17
When the electric potential of is further increased, the depletion layer 18 rising from the substrate 11 contacts the depletion layer 18 extending from the gate 15, as shown in FIG. The depletion layer 18 extending from the isolation 13 also contacts the depletion layer 18 extending from the gate. At this time, since the gate 15, the substrate 11, and the isolation 13 are all at the same potential, no breakdown current flows.

アノード17の電位がさらに上がると、第4図のよう
に、基板11から上がってきた空乏層18がゲート15から伸
びる同空乏層18の湾曲部を緩和し、耐圧破壊は起こらな
い。ここで、もしゲート直下にN型高濃度埋込層12があ
れば基板11から空乏層18が上がってこないため、ゲート
15の空乏層18の湾曲が緩和されずに耐圧破壊を起こして
しまう。この構造での耐圧破壊はアノード17の電位がも
っと上がり、ゲート15または分離13から伸びる空乏層18
がアノード17に当たり電流が流れるときや、N型高濃度
埋込層12と基板11との間で起こる耐圧破壊、もしくは分
離13から伸びる空乏層18がN型高濃度埋込層12に当た
り、電界が集中したときのいずれかである。またスイッ
チングスピードはN型低濃度エピタキシャル層14に比べ
1万倍以上濃度の濃いN型高濃度埋込層12が入っている
ため、落ちることはない。
When the potential of the anode 17 further rises, as shown in FIG. 4, the depletion layer 18 rising from the substrate 11 relaxes the curved portion of the depletion layer 18 extending from the gate 15, and breakdown breakdown does not occur. Here, if the N-type high-concentration buried layer 12 is immediately below the gate, the depletion layer 18 does not rise from the substrate 11,
The curvature of the depletion layer 18 of 15 is not relaxed, and breakdown breakdown occurs. The breakdown voltage breakdown in this structure is that the potential of the anode 17 rises further and the depletion layer 18 extending from the gate 15 or the isolation 13 is extended.
Is applied to the anode 17 and a current flows, breakdown voltage breakdown occurs between the N-type high-concentration buried layer 12 and the substrate 11, or the depletion layer 18 extending from the separation 13 hits the N-type high-concentration buried layer 12 to generate an electric field. It's either when I concentrated. Further, since the switching speed includes the N-type high-concentration buried layer 12 having a concentration of 10,000 times or more that of the N-type low-concentration epitaxial layer 14, it does not decrease.

以上のように本実施例によれば、アノード直下にのみ
N型高濃度埋込層12を入れることよって、スイッチング
スピードを落とすことなく、アノード17に対する耐圧を
上げることができる。
As described above, according to this embodiment, by inserting the N-type high-concentration buried layer 12 just below the anode, the breakdown voltage with respect to the anode 17 can be increased without reducing the switching speed.

発明の効果 本発明によれば、特定領域にのみ高濃度埋込層を入れ
ることによって、スイッチングスピードを落とすことな
く、耐圧を上げることができ、小さい素子面積で高耐
圧、さらに通常のプロセスで平易に作り込める、という
優れた半導体集積回路装置を実現できるものである。
EFFECTS OF THE INVENTION According to the present invention, by inserting a high-concentration buried layer only in a specific region, the breakdown voltage can be increased without lowering the switching speed, the breakdown voltage is high in a small element area, and the normal process is easy. It is possible to realize an excellent semiconductor integrated circuit device that can be built into.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における半導体集積回路装置
の断面図、第2図ないし第4図は本発明の一実施例にお
ける空乏層の広がりを示す断面図、第5図は従来の半導
体集積回路装置の断面図である。 1……P型シリコン基板、2……N型高濃度埋込層、3
……P型高濃度分離層、4……N型低濃度エピタキシャ
ル層、5……P型ゲート層、6……N型カソード層、7
……N型アノード層、11……P型シリコン基板、12……
N型高濃度埋込層、13……P型高濃度分離層、14……N
型低濃度エピタキシャル層、15……P型ゲート層、16…
…N型カソード層、17……N型アノード層、18……空乏
層。
FIG. 1 is a sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention, FIGS. 2 to 4 are sectional views showing the expansion of a depletion layer in the embodiment of the present invention, and FIG. 5 is a conventional semiconductor. It is sectional drawing of an integrated circuit device. 1 ... P-type silicon substrate, 2 ... N-type high concentration buried layer, 3
... P-type high-concentration separation layer, 4 ... N-type low-concentration epitaxial layer, 5 ... P-type gate layer, 6 ... N-type cathode layer, 7
... N-type anode layer, 11 ... P-type silicon substrate, 12 ...
N-type high-concentration buried layer, 13 ... P-type high-concentration separation layer, 14 ... N
-Type low-concentration epitaxial layer, 15 ... P-type gate layer, 16 ...
... N-type cathode layer, 17 ... N-type anode layer, 18 ... depletion layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体基板と、同半導体基板上
に形成された逆導電型の低濃度な第1の半導体層と、前
記半導体基板と前記第1の半導体層との間に選択的に形
成された逆導電型の高濃度な埋込層と、前記埋込層の真
上の前記第1の半導体層表面に形成された一導電型の第
2の半導体層と、前記第2の半導体層と離間した前記第
1の半導体層表面に形成された一導電型の第3の半導体
層と、前記第3の半導体層内に形成された逆導電型の第
4の半導体層とを備え、前記半導体基板と前記第4の半
導体層とを接続することを特徴とする半導体集積回路装
置。
1. A semiconductor substrate of one conductivity type, a low-concentration first semiconductor layer of the opposite conductivity type formed on the semiconductor substrate, and a selection between the semiconductor substrate and the first semiconductor layer. Of a reverse-conductivity-type high-concentration buried layer, a second-type semiconductor layer of one conductivity type formed on the surface of the first semiconductor layer directly above the buried layer, and the second layer A third semiconductor layer of one conductivity type formed on the surface of the first semiconductor layer separated from the second semiconductor layer, and a fourth semiconductor layer of the opposite conductivity type formed in the third semiconductor layer. A semiconductor integrated circuit device, comprising: the semiconductor substrate and the fourth semiconductor layer connected to each other.
JP63189502A 1988-07-28 1988-07-28 Semiconductor integrated circuit device Expired - Fee Related JP2502696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189502A JP2502696B2 (en) 1988-07-28 1988-07-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189502A JP2502696B2 (en) 1988-07-28 1988-07-28 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH0239470A JPH0239470A (en) 1990-02-08
JP2502696B2 true JP2502696B2 (en) 1996-05-29

Family

ID=16242344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189502A Expired - Fee Related JP2502696B2 (en) 1988-07-28 1988-07-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2502696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751789B1 (en) * 1996-07-26 1998-10-23 Sgs Thomson Microelectronics MONOLITHIC COMPONENT COMBINING A HIGH VOLTAGE COMPONENT AND LOGIC COMPONENTS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142360A (en) * 1985-12-17 1987-06-25 Matsushita Electronics Corp Semiconductor device
JPS62143467A (en) * 1985-12-18 1987-06-26 Matsushita Electronics Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0239470A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
US6936893B2 (en) Power semiconductor device
JPH0357614B2 (en)
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JPH09283754A (en) High withstand voltage semiconductor device
US4987098A (en) Method of producing a metal-oxide semiconductor device
JPH0575110A (en) Semiconductor device
JP2809253B2 (en) Injection control type Schottky barrier rectifier
JPH0150112B2 (en)
WO2005122274A1 (en) Insulated gate semiconductor device and method for manufacturing same
JPS62131580A (en) High speed switching lateral insulated gate transistor
JPH04283968A (en) Insulating gate type bipolar transistor
KR100278526B1 (en) Semiconductor device
KR920010675B1 (en) Dual type diode
US20120299054A1 (en) Power semiconductor device
JPH09116152A (en) Power semiconductor element
JP3522887B2 (en) High voltage semiconductor device
US3087099A (en) Narrow web mesa transistor structure
JP2502696B2 (en) Semiconductor integrated circuit device
JPH0555594A (en) Vertical field-effect transistor
US4998148A (en) Schottky diode having injected current collector
KR100241055B1 (en) Trench gate laterl insulated gate bipolar transistor
JPH055373B2 (en)
JP2536137B2 (en) Semiconductor device having conductivity modulation type MOSFET
JPH0818075A (en) Schottky barrier diode and semiconductor integrated circuit
JPH08250733A (en) Integrated circuit device with at least one igbt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees