JPH0215783B2 - - Google Patents

Info

Publication number
JPH0215783B2
JPH0215783B2 JP16257082A JP16257082A JPH0215783B2 JP H0215783 B2 JPH0215783 B2 JP H0215783B2 JP 16257082 A JP16257082 A JP 16257082A JP 16257082 A JP16257082 A JP 16257082A JP H0215783 B2 JPH0215783 B2 JP H0215783B2
Authority
JP
Japan
Prior art keywords
flow
wall
control member
flat surface
substantially flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16257082A
Other languages
Japanese (ja)
Other versions
JPS5950211A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16257082A priority Critical patent/JPS5950211A/en
Publication of JPS5950211A publication Critical patent/JPS5950211A/en
Publication of JPH0215783B2 publication Critical patent/JPH0215783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調装置等の吹出口に設けられ、送風
源からの流れを任意の方向に偏向させて吹出させ
るための流れ方向制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow direction control device that is installed at an air outlet of an air conditioner or the like and deflects the flow from an air source in an arbitrary direction. .

従来例の構成とその問題点 従来の流れ方向制御装置を第1図に示す。1が
送風源、2が吹出通路、3が複数枚のルーバーか
ら構成されている流れ偏向部である。送風源1よ
り送られた流れは、吹出通路2を通り流れ偏向部
3において、図における上下方向に偏向される。
元来、ヒートポンプにおいては、空調される部屋
の温度分布を均一化するために暖房時は下吹き
に、冷房時は水平吹きに吹き出し流れ方向を制御
することが望ましい。しかしながら第1図の破線
で示すように、下吹きに偏向させる場合にはルー
バー3が吹き出し口を殆ど塞いでしまう格好にな
り、風量が大幅に低下してしまい、十分な空調効
果を得ることができなかつた。
Structure of a conventional example and its problems A conventional flow direction control device is shown in FIG. Reference numeral 1 designates an air blowing source, 2 a blowing passage, and 3 a flow deflection section composed of a plurality of louvers. The flow sent from the air blowing source 1 passes through the blowing passage 2 and is deflected in the vertical direction in the figure at the flow deflecting section 3.
Originally, in a heat pump, in order to equalize the temperature distribution in the room to be air-conditioned, it is desirable to control the blowing flow direction to downward blowing during heating and horizontal blowing during cooling. However, as shown by the broken line in Figure 1, when the air is deflected downward, the louver 3 almost blocks the air outlet, resulting in a significant drop in air volume and making it impossible to obtain a sufficient air conditioning effect. I couldn't do it.

また、暖房時に多量の温風を下向きに吹き出し
た場合には、温風の量が多すぎて人体に当たつた
場合に不快に感じることがある。温度分布を一定
にする目的であれば、ある一定の風量を下向きに
吹き出し、その他は水平方向に吹き出すことによ
つてほぼ一定の温度分布が得られることが実験に
よつて確認されている。従つて温度分布を良好に
すると共に、吹き出し温風による不快感をなくす
ためには、ある一定量を下吹きに、その他を水平
吹きに吹き出すための機能すなわち分流の機能が
必要であつた。従来の流れ方向制御装置において
は上記の分流の機能を持たせることは不可能であ
つた。
Furthermore, if a large amount of hot air is blown downward during heating, the amount of hot air may be too large and may cause discomfort when it hits the human body. Experiments have confirmed that if the purpose is to maintain a constant temperature distribution, an almost constant temperature distribution can be obtained by blowing a certain amount of air downward and the rest in the horizontal direction. Therefore, in order to improve the temperature distribution and eliminate the discomfort caused by the blown hot air, a function for blowing out a certain amount of hot air in a downward direction and the rest in a horizontal direction, that is, a function of dividing the flow, has been necessary. It has been impossible to provide the above-mentioned flow dividing function in conventional flow direction control devices.

発明の目的 本発明はこのような従来の欠点を除去するもの
で、吹き出し風量を殆ど変化させずに流れを大幅
に偏向させると共に、流れ制御翼を特殊な形状に
することによつて分流動作を可能にし、空調時の
快適性を向上させるものである。
Purpose of the Invention The present invention aims to eliminate these conventional drawbacks by significantly deflecting the flow with almost no change in the volume of blown air, and by making the flow control blades have a special shape to achieve diversion operation. This improves comfort during air conditioning.

発明の構成 この目的を達成するために本発明は、吹出し通
路5の一つの壁を平面壁6にし、平面壁6に対向
する壁の下流端を漸次拡大形状とした曲面壁7と
し、吹出し通路5を流れる流れの一部を曲面壁7
に向かつて偏向させるバイアス突起8を平面壁6
に設け、バイアス突起8の下流側をほぼ平面状の
壁9に構成し、吹出し通路5に平面壁6とほぼ平
行で流れにほぼ直角な回転軸11を中心として回
転する柱状体の流れ制御部材10を設け、流れ制
御部材10の断面は頭部10aを円弧の中心が回
転軸11より偏心位置となつたほぼ円弧状とし、
頭部10aの延長線上の片方には第一のほぼ平ら
な面10bを有し、他方は第一のほぼ平らな面1
0bの下流端が曲面壁7に近づく方向に回転した
場合にバイアス突起8と流れ制御部材10の間を
流れる流れに対して付着効果を有するほぼ円弧状
の面10cを有すると共に、頭部10aと対向し
前記第1のほぼ平らな面10bと鈍角をなす第二
のほぼ平らな面10dを有し、流れ制御部材10
をほぼ水平に設定した場合は、頭部10aに当た
つた流れが流れ制御部材10の上と下に沿つて流
れ、第一のほぼ平らな面10bの下流端が曲面壁
7に近づく方向に回転した場合、上下に分かれた
流れのうち上方の流れがほぼ円弧状の面10cに
付着し、下方の流れが第一のほぼ平らな面10b
に付着して流れ、さらに流れ制御部材10を流れ
が分流するように回転した場合は、第一、第二の
ほぼ平らな面10b,10dに当たつた流れがそ
れぞれ壁9と曲面壁7に付着して流れるごとくし
たものにおいて、第二のほぼ平らな面10dの面
上に、流れ制御部材10を流れが分流するように
回転させた場合に曲面壁7への流れの付着を促進
するような制御突起100をほぼ円弧状の面10
cを延長する如く設けたものである。
Structure of the Invention In order to achieve this object, the present invention provides a flat wall 6 for one wall of the blowout passage 5, a curved wall 7 having a gradually enlarged downstream end of the wall opposite to the flat wall 6, and A part of the flow flowing through the curved wall 7
The bias protrusion 8 is deflected toward the plane wall 6.
, the downstream side of the bias protrusion 8 is configured with a substantially planar wall 9, and the flow control member is a columnar body that rotates in the blowout passage 5 about a rotation axis 11 that is substantially parallel to the planar wall 6 and substantially perpendicular to the flow. 10 is provided, and the cross section of the flow control member 10 is approximately arc-shaped with the head 10a having the center of the arc eccentrically relative to the rotating shaft 11;
One side of the extension of the head 10a has a first substantially flat surface 10b, and the other side has a first substantially flat surface 1.
The head 10a has a substantially arc-shaped surface 10c that has an adhesive effect on the flow flowing between the bias protrusion 8 and the flow control member 10 when the downstream end of the head 10b is rotated in a direction approaching the curved wall 7. The flow control member 10 has a second substantially flat surface 10d that faces the first substantially flat surface 10b and forms an obtuse angle with the first substantially flat surface 10b.
is set substantially horizontally, the flow that hits the head 10a flows along the top and bottom of the flow control member 10, and the downstream end of the first substantially flat surface 10b rotates in a direction approaching the curved wall 7. In this case, among the upper and lower flows, the upper flow adheres to the substantially arc-shaped surface 10c, and the lower flow adheres to the first substantially flat surface 10b.
If the flow control member 10 is rotated so that the flow is divided, the flow that hits the first and second substantially flat surfaces 10b and 10d will flow onto the wall 9 and the curved wall 7, respectively. When the flow control member 10 is rotated so as to separate the flow on the second substantially flat surface 10d, the flow adheres to the curved wall 7. The control protrusion 100 has a substantially arc-shaped surface 10.
It is designed to extend c.

ここでバイアスという意味は、吹出し通路の流
れにほぼ垂直な方向の流れを発生させるものとい
うことである。これによつて、吹出し通路の流れ
はバイアス流れの方向に曲げられることになる。
The term "bias" here means that a flow is generated in a direction substantially perpendicular to the flow in the blowout passage. This causes the flow in the blowout passage to be bent in the direction of the bias flow.

この構成によつて、流れは流れ制御部材10の
回転に応じて曲面壁6に付着したり剥離したりす
ることにより、風量は殆ど変化しないで吹出方向
が変化する結果となる。また流れ制御部材10の
回転によつて流れを水平と下との2方向に分ける
分流動作も可能となる。
With this configuration, the flow adheres to or separates from the curved wall 6 in accordance with the rotation of the flow control member 10, resulting in a change in the blowing direction with almost no change in the air volume. Further, by rotating the flow control member 10, it is possible to perform a diversion operation in which the flow is divided into two directions, horizontally and downwardly.

実施例の説明 以下本発明の一実施例を説明するが、まず理解
を深めるため本発明の基本技術について第2図〜
第7図の図面を用いて説明する。図において、4
が流れを送り出す送風源(シロツコフアン、クロ
スフローフアンその他何でも良い)、5は吹出通
路、6は吹出通路5の長手方向の壁の一方側を形
成する平面壁、7は他方を形成する曲面壁で漸次
拡大形状に構成されている。8は流れの一部を曲
面壁6に向かつて偏向させるためのバイアス突起
であり、平面壁6に設けられている。バイアス突
起8の下流側にはほぼ平面状の壁9が形成されて
いる。10は流れ制御部材であり、吹出通路5の
長手方向にほぼ平行に設けられ、回転軸11を中
心として回転するものである。また流れ制御部材
10は、中心Oが回転軸11よりも偏心している
ほぼ円弧形状をした頭部10aを有し、頭部10
aの延長線上の片方は第一のほぼ平らな面10b
と他方はほぼ円弧形状をした付着効果を有するほ
ぼ円弧状の面10cと第二のほぼ平らな面10d
とからなる柱状体となつている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below. First, for better understanding, the basic technology of the present invention will be explained with reference to FIGS.
This will be explained using the drawing of FIG. In the figure, 4
is a blowing source that sends out a flow (such as a sirotskov fan, a cross-flow fan, or any other type); 5 is a blowout passage; 6 is a flat wall forming one side of the longitudinal wall of the blowout passage 5; and 7 is a curved wall forming the other side. It is configured in a gradually expanding shape. 8 is a bias protrusion for deflecting a portion of the flow toward the curved wall 6, and is provided on the flat wall 6. A substantially planar wall 9 is formed downstream of the bias protrusion 8 . Reference numeral 10 denotes a flow control member, which is provided substantially parallel to the longitudinal direction of the blow-off passage 5 and rotates around a rotating shaft 11. Further, the flow control member 10 has a head 10a having a substantially arcuate shape with the center O being eccentric with respect to the rotation axis 11.
One side on the extension line of a is the first substantially flat surface 10b
and the other is a substantially arc-shaped surface 10c having a substantially arc-shaped adhesion effect, and a second substantially flat surface 10d.
It forms a columnar body consisting of.

この実施例の構成によれば、流れ制御部材11
を回転することによつて以下に示す作動を示す。
まず第3図に示す位置に流れ制御部材10を回転
した場合について説明する。この場合、送風源4
から送り出され流れ制御部材10の位置に到達し
た流れは、頭部10aによつて上側の流れFaと
下側の流れFbとに分かれる。上側の流れFaは一
部の流れがバイアス突起8の作用により図におい
て下側に曲げられる結果として、流れ制御部材1
0のほぼ円弧状の面10cに沿つて流れることに
なる。ほぼ円弧状の面10cは図のようにやや上
方を向いているので、Faはバイアス突起8の下
流側に設けられた壁9に沿つて流れることにな
り、ほぼ水平方向に吹き出す。一方下側の流れ
Fbは、第一のほぼ平らな面10bがほぼ水平を
向いているのでそのまま水平方向に吹き出す。従
つて全体の吹き出し流れは図のようにほぼ水平方
向に吹き出すことになる。
According to the configuration of this embodiment, the flow control member 11
The following operations are shown by rotating .
First, the case where the flow control member 10 is rotated to the position shown in FIG. 3 will be described. In this case, the air source 4
The flow sent out from the flow control member 10 is divided into an upper flow Fa and a lower flow Fb by the head 10a. As a result of the upper flow Fa being partially bent downward in the figure by the action of the bias protrusion 8, the flow control member 1
It flows along the substantially arc-shaped surface 10c of 0. Since the substantially arc-shaped surface 10c faces slightly upward as shown in the figure, Fa flows along the wall 9 provided on the downstream side of the bias protrusion 8, and is blown out in a substantially horizontal direction. On the other hand, the flow on the lower side
Since the first substantially flat surface 10b faces substantially horizontally, Fb is blown out in the horizontal direction. Therefore, the entire blowout flow is blown out in a substantially horizontal direction as shown in the figure.

次に第4図に示す位置に流れ制御部材10を回
転した場合について説明せる。この場合、上側の
流れFaは前記の場合と同様にバイアス突起8の
影響でほぼ円弧状の面10cに沿つて流れる。こ
の時、図に示すようにほぼ円弧状の面10cはや
や下方を向いているのでFaもやや下方を向いて
吹き出す。一方下側の流れFbは、第一のほぼ平
らな面10bが下方を向いているためこの作用に
よつて曲面壁7に付着し、下方に向かつて流れ出
る。この結果上側の流れFaと下側の流れFbとの
合流した流れは図のように下方に向かつて流れ出
る。
Next, the case where the flow control member 10 is rotated to the position shown in FIG. 4 will be explained. In this case, the upper flow Fa flows along the substantially arcuate surface 10c due to the influence of the bias protrusion 8, as in the previous case. At this time, as shown in the figure, since the substantially arc-shaped surface 10c faces slightly downward, Fa also blows out facing slightly downward. On the other hand, since the first substantially flat surface 10b faces downward, the lower flow Fb adheres to the curved wall 7 due to this action and flows downward. As a result, the combined flow of the upper flow Fa and the lower flow Fb flows downward as shown in the figure.

次に第5図に示す位置に流れ制御部材10を回
転した場合について説明する。この場合、上側の
流れFaは一部がバイアス突起8の影響で図の下
側に偏向されるが、流れ制御部材10の第一ほぼ
平らな面10bが上方を向いているので、流れ
Faは壁9に沿つてほぼ水平方向に吹き出す。一
方下側の流れFbはほぼ円弧状の面10cの反対
側の第二のほぼ平らな面10dの作用によつて曲
面壁7に付着し下方に向かつて吹き出す。この場
合、2つの流れFaとFbはそれぞれ壁9および曲
面壁7に沿つて流れるため、互いに合流は行なわ
ず水平方向と下方向の別々の方向に向かつて流れ
出、分流動作となる。
Next, the case where the flow control member 10 is rotated to the position shown in FIG. 5 will be described. In this case, part of the upper flow Fa is deflected to the lower side of the drawing due to the influence of the bias protrusion 8, but since the first substantially flat surface 10b of the flow control member 10 faces upward, the flow
Fa blows out along the wall 9 in a substantially horizontal direction. On the other hand, the flow Fb on the lower side adheres to the curved wall 7 by the action of the second substantially flat surface 10d opposite to the substantially arc-shaped surface 10c and is blown out downward. In this case, since the two flows Fa and Fb flow along the wall 9 and the curved wall 7, respectively, they do not merge with each other but flow out in separate directions, horizontally and downward, resulting in a branching operation.

以上の如く、流れ制御部材10を回転すること
によつて、流れを水平から下へ広角に偏向させる
と共に、水平方向と下方向へ分流させて吹き出す
ことができる。またこの時の流れの制御は、流れ
を強制的に曲げてやるのではなく、流れ制御部材
10や曲面壁7等への流れの付着効果を用いて偏
向させるものであるため、風量が殆ど低下するこ
とがない。この流れ方向制御装置の一例の実験デ
ータを第6図と第7図に示す。第6図は、流れ制
御部材10の回転角度θに対する流れの偏向角α
(θ及びαは第4図に示す)の関係を示したもの、
第7図は流れ制御部材10の回転角度θに対する
風量低下率の関係を示したものである。第6図に
おいて角度θを増加させていくと、偏向角度αも
それに比例して増加し、θが約60゜の時にαが約
80゜に達する。また、θを100゜以上にすると流れ
は下成分と水平成分とに分かれ、分流の状態とな
る。第7図には、この時の風量の低下率を示す
が、角度θを広範囲に変化させても約10%しか変
化していないことがわかる。
As described above, by rotating the flow control member 10, it is possible to deflect the flow downward from the horizontal over a wide angle, and also to separate the flow horizontally and downward and blow it out. In addition, the flow control at this time is not by forcibly bending the flow, but by deflecting it using the effect of the flow adhering to the flow control member 10, the curved wall 7, etc., so the air volume is almost reduced. There's nothing to do. Experimental data for an example of this flow direction control device are shown in FIGS. 6 and 7. FIG. 6 shows the deflection angle α of the flow relative to the rotation angle θ of the flow control member 10.
(θ and α are shown in Figure 4)
FIG. 7 shows the relationship between the rotation angle θ of the flow control member 10 and the air volume reduction rate. As the angle θ increases in Figure 6, the deflection angle α also increases proportionally, and when θ is approximately 60°, α becomes approximately
Reaches 80°. Furthermore, when θ is set to 100° or more, the flow is divided into a lower component and a horizontal component, resulting in a divided flow state. FIG. 7 shows the rate of decrease in air volume at this time, and it can be seen that even if the angle θ is varied over a wide range, it changes by only about 10%.

本発明は、上記の基本技術の構成において、さ
らに第8図に示す如く、流れ制御部材10の第二
のほぼ平らな面10dの先端にほぼ円弧状の面1
0cを延長する如く制御突起100を設けたもの
である。第8図においては、制御突起100は円
柱形状をしており、回転軸11とほぼ平行に設け
られている。この構成によつて下吹きおよび分流
の場合に次の様な効果を生ずる。まず下吹きの場
合は第8図に示す如く、上側の流れFaは、ほぼ
円弧状の面10cの長さが延長されることにな
り、付着面が長くなり、ほぼ円弧状の面10cへ
の付着効果が増大する。この結果、上側の流れ
Faと下側の流れFbとの距離が接近し、2つの流
れは容易に合流するようになる。従つて合流流れ
Fの速度分布がまとまつたものとなり、流れFの
噴流到達距離が増大し、空調装置に用いた場合は
空調効果が増大する。また、第9図に示す如く、
偏向特性は基本技術(制御突起100なし)と比
較して偏向角度がより大きなものとなる。従つて
下吹き時には、より少ない流れ制御部材10の傾
き角度θによつて所定の偏向角度αが得られる結
果となり、風量低下率が少なくなると共に操作性
も良くなる。(制御突起100の影響で基本技術
の場合よりも風量が低下することは殆どない。)
分流の場合は、第10図に示すように、制御突起
100の影響によつてバイアス流れFbiが発生
し、下側の流れFbが曲面壁7へ付着するのを促
進させる。この結果、分流の作動が確実になると
共に、下側の吹き出し流れの速度分布が良好にな
る。従つて、下吹きの場合と同じ効果が得られ
る。
In addition to the basic technology described above, the present invention further provides a substantially arc-shaped surface 1 at the tip of the second substantially flat surface 10d of the flow control member 10, as shown in FIG.
A control protrusion 100 is provided so as to extend 0c. In FIG. 8, the control protrusion 100 has a cylindrical shape and is provided substantially parallel to the rotation axis 11. In FIG. This configuration produces the following effects in the case of downward blowing and branching. First, in the case of downward blowing, as shown in Fig. 8, the length of the almost arc-shaped surface 10c of the upper flow Fa is extended, the attachment surface becomes longer, and the flow toward the almost arc-shaped surface 10c becomes longer. The adhesion effect is increased. As a result, the upper flow
The distance between Fa and the lower flow Fb becomes closer, and the two flows easily merge. Therefore, the velocity distribution of the combined flow F becomes uniform, the jet reach distance of the flow F increases, and when used in an air conditioner, the air conditioning effect increases. Also, as shown in Figure 9,
As for the deflection characteristics, the deflection angle becomes larger compared to the basic technology (without the control protrusion 100). Therefore, during downward blowing, the predetermined deflection angle α can be obtained by reducing the inclination angle θ of the flow control member 10, resulting in a decrease in the air volume reduction rate and improved operability. (The air volume is almost never lower than in the case of the basic technology due to the influence of the control protrusion 100.)
In the case of split flow, as shown in FIG. 10, a bias flow Fbi is generated under the influence of the control protrusion 100, which promotes the attachment of the lower flow Fb to the curved wall 7. As a result, the operation of the diversion is ensured, and the velocity distribution of the lower blowout flow is improved. Therefore, the same effect as in the case of downward blowing can be obtained.

特に第8図及び第10図に示す如く、制御突起
100を円柱形状に構成することにより、上流の
流れの状態に応じて制御突起100を取り替える
ことが可能な如く構成することができ、常に最も
効果的な制御を行なうことが可能となる。
In particular, as shown in FIGS. 8 and 10, by configuring the control protrusion 100 in a cylindrical shape, the control protrusion 100 can be configured so as to be replaceable depending on the upstream flow condition, so that it is always the best. Effective control becomes possible.

発明の効果 以上のように本発明の流れ方向制御装置は、流
れ制御部材10において、第二のほぼ平らな面1
0dの面上に、流れ制御部材10を流れが分流す
るように回転させた場合に曲面壁7への流れの付
着を促進するような制御突起100をほぼ円弧状
の面10cを延長する如く設けたことを特徴とす
るものであり、次の様な効果を奏する。
Effects of the Invention As described above, in the flow direction control device of the present invention, in the flow control member 10, the second substantially flat surface 1
A control protrusion 100 is provided on the surface 0d so as to extend the substantially arc-shaped surface 10c so as to promote adhesion of the flow to the curved wall 7 when the flow control member 10 is rotated so that the flow is divided. It is characterized by the following advantages:

(1) 非常に少ない風量低下において、流れを大き
く偏向させることができ、空調機器等に応用し
た場合に、非常に大きな空調効果を得ることが
できる。
(1) Even with a very small decrease in air volume, the flow can be greatly deflected, and when applied to air conditioning equipment, a very large air conditioning effect can be obtained.

(2) 1本の軸による制御部材10の回転によつて
流れの偏向及び分流動作を行なわせることがで
き、簡単な構成で且つ操作性良く流れの制御が
できる。
(2) The flow can be deflected and divided by rotating the control member 10 with a single shaft, and the flow can be controlled with a simple configuration and good operability.

(3) 分流時には曲面壁7への流れの付着を促進で
き、分流作動の確実と下側流れの速度分布を良
好にできる。
(3) At the time of diversion, adhesion of the flow to the curved wall 7 can be promoted, and the diversion operation can be ensured and the velocity distribution of the lower flow can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流れ方向制御装置の一実施例を
示す断面図、第2図〜第5図は本発明の基本技術
の一実施例の偏向特性を示す図、第6図及び第7
図は同じく偏向及び風量特性を示す図、第8図及
び第10図は本発明の流れ方向制御装置の一実施
例の断面図、第9図は同偏向特性図である。 5……吹出通路、6……平面壁、7……曲面
壁、8……バイアス突起、9……ほぼ平面状の
壁、10……流れ制御部材、10a……頭部、1
0b……第一のほぼ平らな面、10c……ほぼ円
弧状の面、10d……第二のほぼ平らな面、11
……回転軸、100……制御突起。
FIG. 1 is a sectional view showing an embodiment of a conventional flow direction control device, FIGS. 2 to 5 are diagrams showing deflection characteristics of an embodiment of the basic technology of the present invention, and FIGS.
8 and 10 are cross-sectional views of an embodiment of the flow direction control device of the present invention, and FIG. 9 is a diagram showing the deflection characteristics. 5...Blowout passage, 6...Plane wall, 7...Curved wall, 8...Bias protrusion, 9...Substantially planar wall, 10...Flow control member, 10a...Head, 1
0b...First substantially flat surface, 10c...Substantially arc-shaped surface, 10d...Second substantially flat surface, 11
... Rotation axis, 100 ... Control protrusion.

Claims (1)

【特許請求の範囲】 1 吹出し通路5の一つの壁を平面壁6にし、前
記平面壁6に対向する壁の下流端を漸次拡大形状
とした曲面壁7とし、前記吹出し通路5を流れる
流れの一部を曲面壁7に向かつて偏向させるバイ
アス突起8を平面壁6に設け、前記バイアス突起
8の下流側をほぼ平面状の壁9に構成し、前記吹
出し通路5に平面壁6とほぼ平行で流れにほぼ直
角な回転軸11を中心として回転する柱状体の流
れ制御部材10を設け、前記流れ制御部材10の
断面は頭部10aを円弧の中心が回転軸11より
偏心位置となつたほぼ円弧状とし、前記頭部10
aの延長線上の片方には第一のほぼ平らな面10
bを有し、他方は第一のほぼ平らな面10bの下
流端が曲面壁7に近づく方向に回転した場合にバ
イアス突起8と流れ制御部材10の間を流れる流
れに対して付着効果を有するほぼ円弧状の面10
cを有すると共に、前記頭部10aと対向し前記
第一のほぼ平らな面10bと鈍角をなす第二のほ
ぼ平らな面10dを有し、前記流れ制御部材10
をほぼ水平に設定した場合は、前記頭部10aに
当たつた流れが流れ制御部材10の上と下に沿つ
て流れ、前記第一のほぼ平らな面10bの下流端
が曲面壁7に近づく方向に回転した場合は、前記
上下に分かれた流れのうち上方の流れがほぼ円弧
状の面10cに付着し、下方の流れが第一のほぼ
平らな面10bに付着して流れ、さらに流れ制御
部材10を流れが分流するように回転した場合
は、第一、第二のほぼ平らな面10b,10dに
当たつた流れがそれぞれ壁9と曲面壁7に付着し
て流れるごとくしたものにおいて、前記第二のほ
ぼ平らな面10dの面上に、流れ制御部材10を
流れが分流するように回転させた場合に曲面壁7
への流れの付着を促進するような制御突起100
をほぼ円弧状の面10cを延長する如く設けた流
れ方向制御装置。 2 制御突起100は回転軸11とほぼ平行に設
けられた円柱で構成した特許請求の範囲第1項記
載の流れ方向制御装置。
[Claims] 1. One wall of the blowout passage 5 is a flat wall 6, and the downstream end of the wall opposite to the flat wall 6 is a curved wall 7 with a gradually enlarged shape, so that the flow flowing through the blowout passage 5 is A bias protrusion 8 for deflecting a portion toward the curved wall 7 is provided on the plane wall 6, and the downstream side of the bias protrusion 8 is constituted by a substantially planar wall 9, and the blowing passage 5 is substantially parallel to the plane wall 6. A columnar flow control member 10 that rotates around a rotation axis 11 that is substantially perpendicular to the flow is provided, and the cross section of the flow control member 10 is such that the head 10a is approximately eccentric from the rotation axis 11 with the center of the circular arc. The head 10 is shaped like an arc.
On one side of the extension line of a is a first substantially flat surface 10.
b, the other having an adhesion effect on the flow flowing between the biasing projection 8 and the flow control member 10 when the downstream end of the first substantially flat surface 10b is rotated in a direction approaching the curved wall 7. Almost arc-shaped surface 10
c, and a second substantially flat surface 10d facing the head 10a and forming an obtuse angle with the first substantially flat surface 10b, the flow control member 10
is set substantially horizontally, the flow that hits the head 10a flows along the top and bottom of the flow control member 10, and the downstream end of the first substantially flat surface 10b approaches the curved wall 7. When the rotation occurs, the upper flow of the vertically divided flow adheres to the substantially arc-shaped surface 10c, the lower flow adheres to the first substantially flat surface 10b, and the flow control member 10 In the case where the flow is rotated so that the flow is divided, the flow that hits the first and second substantially flat surfaces 10b and 10d adheres to the wall 9 and the curved wall 7, respectively, and flows. When the flow control member 10 is rotated so that the flow is divided, the curved wall 7 is placed on the second substantially flat surface 10d.
control protrusion 100 to facilitate flow adhesion to
The flow direction control device is provided so as to extend a substantially arc-shaped surface 10c. 2. The flow direction control device according to claim 1, wherein the control protrusion 100 is constituted by a cylinder provided substantially parallel to the rotation axis 11.
JP16257082A 1982-09-17 1982-09-17 Flow direction control device Granted JPS5950211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16257082A JPS5950211A (en) 1982-09-17 1982-09-17 Flow direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16257082A JPS5950211A (en) 1982-09-17 1982-09-17 Flow direction control device

Publications (2)

Publication Number Publication Date
JPS5950211A JPS5950211A (en) 1984-03-23
JPH0215783B2 true JPH0215783B2 (en) 1990-04-13

Family

ID=15757093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16257082A Granted JPS5950211A (en) 1982-09-17 1982-09-17 Flow direction control device

Country Status (1)

Country Link
JP (1) JPS5950211A (en)

Also Published As

Publication number Publication date
JPS5950211A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
US4556172A (en) Flow direction controller
JPS6135403B2 (en)
JPH0215783B2 (en)
JPH0354254B2 (en)
JPS6135402B2 (en)
JPH0215784B2 (en)
JPS6213578B2 (en)
JPS5937310A (en) Flow direction controller
JPH0215785B2 (en)
JPH0323821B2 (en)
JPH0122479B2 (en)
JPH0259379B2 (en)
JPS6213579B2 (en)
JPS5934012A (en) Flow direction control unit
JPH0338500B2 (en)
JPS61160614A (en) Flow directional controller
JPS6234957B2 (en)
JPH06307711A (en) Air-conditioning device
JPS6135406B2 (en)
JPS59121210A (en) Flow direction control device
JPS621504B2 (en)
JPS604368B2 (en) Fluid flow direction control device
JPS6246158A (en) Ventilating device provided with flow deflecting function
JPS60237209A (en) Flow direction controller
JPH0338499B2 (en)