JPH0215785B2 - - Google Patents

Info

Publication number
JPH0215785B2
JPH0215785B2 JP5813583A JP5813583A JPH0215785B2 JP H0215785 B2 JPH0215785 B2 JP H0215785B2 JP 5813583 A JP5813583 A JP 5813583A JP 5813583 A JP5813583 A JP 5813583A JP H0215785 B2 JPH0215785 B2 JP H0215785B2
Authority
JP
Japan
Prior art keywords
flow
wall
control member
substantially flat
flat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5813583A
Other languages
Japanese (ja)
Other versions
JPS59183104A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5813583A priority Critical patent/JPS59183104A/en
Publication of JPS59183104A publication Critical patent/JPS59183104A/en
Publication of JPH0215785B2 publication Critical patent/JPH0215785B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調装置等の吹出口に設けられ、送風
源からの流れを任意の方向に偏向させて吹出させ
るための流れ方向制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow direction control device that is installed at an air outlet of an air conditioner or the like and deflects the flow from an air source in an arbitrary direction. .

従来例の構成とその問題点 従来の流れ方向制御装置を第1図に示す。1が
送風源、2が吹出通路、3が複数枚のルーバーか
ら構成されている流れ偏向部である。送風源1よ
り送られた流れは、吹出通路2を通り流れ偏向部
3において、図における上下方向に偏向される。
元来、ヒートポンプにおいては、空調される部屋
の温度分布を均一化するために暖房時は下吹き
に、冷房時は水平吹きに吹き出し流れ方向を制御
することが望ましい。しかしながら第1図の破線
で示すように、下吹きに偏向させる場合にはルー
バー3が吹き出し口を殆ど塞いでしまう格好にな
り、風量が大幅に低下してしまい、十分な空調効
果を得ることができなかつた。
Structure of a conventional example and its problems A conventional flow direction control device is shown in FIG. Reference numeral 1 denotes an air blowing source, 2 a blowing passage, and 3 a flow deflection section composed of a plurality of louvers. The flow sent from the blowing source 1 passes through the blowing passage 2 and is deflected in the vertical direction in the figure at the flow deflecting section 3.
Originally, in a heat pump, in order to equalize the temperature distribution in the room to be air-conditioned, it is desirable to control the blowing flow direction to downward blowing during heating and horizontal blowing during cooling. However, as shown by the broken line in Figure 1, when the air is deflected downward, the louvers 3 almost block the air outlet, resulting in a significant drop in air volume and making it impossible to obtain a sufficient air conditioning effect. I couldn't do it.

また、暖房時に多量の温度を下向きに吹き出し
た場合には、温風の量が多すぎて人体に当たつた
場合に不快に感じることがある。温度分布を一定
にする目的であれば、ある一定の風量を下向きに
吹き出し、その他は水平方向に吹き出すことによ
つてほぼ一定の温度分布が得られることが実験に
よつて確認されている。従つて温度分布を良好に
すると共に、吹き出し温風による不快感をなくす
ためには、ある一定量を下吹きに、その他を水平
吹きに吹き出すための機能すなわち分流の機能が
必要であつた。従来の流れ方向制御装置において
は上記の分流の機能を持たせることは不可能であ
つた。
Furthermore, if a large amount of hot air is blown downward during heating, the amount of hot air may be so large that it may cause discomfort when it hits the human body. Experiments have confirmed that if the purpose is to maintain a constant temperature distribution, an almost constant temperature distribution can be obtained by blowing a certain amount of air downward and the rest in the horizontal direction. Therefore, in order to improve the temperature distribution and eliminate the discomfort caused by the blown hot air, a function for blowing out a certain amount of hot air in a downward direction and the rest in a horizontal direction, that is, a function of dividing the flow, has been necessary. It has been impossible to provide the above-mentioned flow dividing function in conventional flow direction control devices.

発明の目的 本発明はこのような従来の欠点を除去するもの
で、吹き出し風量を殆ど変化させずに流れを大幅
に偏向させると共に、流れ制御部材を特殊な形状
にすることによつて分流動作を可能にし、空調時
の快適性を向上させるものである。
Purpose of the Invention The present invention aims to eliminate these conventional drawbacks by significantly deflecting the flow with almost no change in the volume of blown air, and by making the flow control member into a special shape to achieve diversion operation. This improves comfort during air conditioning.

発明の構成 この目的を達成するために本発明は、吹出し通
路5の一つの壁を平面壁6にし、平面壁6に対向
する壁の下流端を漸次拡大形状とした曲面壁7と
し、吹出し通路5を流れる流れの一部を曲面壁7
に向かつて偏向させるバイアス突起8を平面壁6
に設け、バイアス突起8の下流側をほぼ平面状の
壁9に構成し、吹出し通路5に平面壁6とほぼ平
行で流れにほぼ直角な回転軸11を中心として回
転する柱状体の流れ制御部材10を設け、流れ制
御部材10の断面は頭部10aを円弧の中心が回
転軸11より偏心位置となつたほぼ円弧状とし、
頭部10aの延長線上の片方には第一のほぼ平ら
な面10bを有し、他方は第一のほぼ平らな面1
0bの下流端が曲面壁7に近づく方向に回転した
場合にバイアス突起8と流れ制御部材10の間を
流れる流れに対して付着効果を有するほぼ円弧状
の面10cを有すると共に、頭部10aと対向
し、第一のほぼ平らな面10bと鈍角をなす第二
のほぼ平らな面10dを有し、流れ制御部材10
をほぼ水平に設定した場合は、頭部10aに当た
つた流れが流れ制御部材10の上と下に沿つて流
れ、第一のほぼ平らな面10bの下流端が曲面壁
7に近づく方向に回転した場合は、上下に分かれ
た流れのうち上方の流れがほぼ円弧状の面10c
に付着し、下方の流れが第一のほぼ平らな面10
bに付着して流れ、さらに流れ制御部材10を流
れが分流するように回転した場合は、第一、第二
のほぼ平らな面10b,10dに当たつた流れが
それぞれ壁9と曲面壁7に付着して流れるごとく
したものにおいて、流れ制御部材10を流れが上
下2方向に分流するように設定した場合に、吹出
し通路5から出る流れの量の変化に拘らず、常に
一定の流量を下方に吹き出すように、流れ制御部
材10と曲面壁7およびバイアス突起8との間の
距離を調節する制御手段13を設けたものであ
る。
Structure of the Invention In order to achieve this object, the present invention provides a flat wall 6 for one wall of the blowout passage 5, a curved wall 7 having a gradually enlarged downstream end of the wall opposite to the flat wall 6, and A part of the flow flowing through the curved wall 7
The bias protrusion 8 is deflected toward the plane wall 6.
, the downstream side of the bias protrusion 8 is configured with a substantially planar wall 9, and the flow control member is a columnar body that rotates in the blowout passage 5 about a rotation axis 11 that is substantially parallel to the planar wall 6 and substantially perpendicular to the flow. 10 is provided, and the cross section of the flow control member 10 is approximately arc-shaped with the head 10a having the center of the arc eccentrically relative to the rotating shaft 11;
One side of the extension of the head 10a has a first substantially flat surface 10b, and the other side has a first substantially flat surface 1.
The head 10a has a substantially arc-shaped surface 10c that has an adhesive effect on the flow flowing between the bias protrusion 8 and the flow control member 10 when the downstream end of the head 10b is rotated in a direction approaching the curved wall 7. The flow control member 10 has a second substantially flat surface 10d that faces and forms an obtuse angle with the first substantially flat surface 10b.
is set substantially horizontally, the flow that hits the head 10a flows along the top and bottom of the flow control member 10, and the downstream end of the first substantially flat surface 10b rotates in a direction approaching the curved wall 7. In this case, the upper flow of the upper and lower flow is approximately arc-shaped surface 10c.
and the downward flow is on the first substantially flat surface 10.
b, and if the flow control member 10 is further rotated so that the flow is divided, the flow that hits the first and second substantially flat surfaces 10b and 10d will flow onto the wall 9 and the curved wall 7, respectively. When the flow control member 10 is set so that the flow is divided into two directions, upward and downward, regardless of changes in the amount of flow exiting from the blowout passage 5, a constant flow rate is always maintained downward. A control means 13 is provided for adjusting the distance between the flow control member 10, the curved wall 7, and the bias protrusion 8 so that the flow is blown out.

この構成によつて、流れは流れ制御部材10の
回転に応じて曲面壁7に付着したり剥離したりす
ることにより、風量は殆ど変化しないで吹出方向
が変化する結果となる。また流れ制御部材10の
回転によつて流れを水平と下との2方向に分ける
分流動作も可能となる。
With this configuration, the flow adheres to or separates from the curved wall 7 in accordance with the rotation of the flow control member 10, resulting in a change in the blowing direction with almost no change in the air volume. Further, by rotating the flow control member 10, it is possible to perform a diversion operation in which the flow is divided into two directions, horizontally and downwardly.

実施例の説明 以下、本発明の一実施例を説明するが、まず理
解を深めるため本発明の基本技術について第2図
〜第7図の図面を用いて説明する。図において、
4が流れを送り出す送風源(シロツコフアン、ク
ロスフローフアンその他何でも良い)、5は吹出
通路、6は吹出通路5の長手方向の壁の一方側を
形成する平面壁、7は他方を形成する曲面壁で漸
次拡大形状に構成されている。8は流れの一部を
前記曲面壁に向かつて偏向させるためのバイアス
突起であり、平面壁6に設けられている。バイア
ス突起8の下流側にはほぼ平面状の壁9が形成さ
れている。10は流れ制御部材であり、吹出通路
5の長手方向にほぼ平行に設けられ、回転軸11
を中心として回転するものである。また流れ制御
部材10は、中心Oが回転軸11よりも偏心して
いるほぼ円弧形状をした頭部10aを有し、頭部
10aの延長線上の片方は第一のほぼ平らな面1
0bと他方はほぼ円弧形状をした付着効果を有す
るほぼ円弧状の面10cと第二のほぼ平らな面1
0dとからなる柱状体となつている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below, but first, for better understanding, the basic technology of the present invention will be explained using the drawings of FIGS. 2 to 7. In the figure,
Reference numeral 4 indicates a blowing source for sending out a flow (such as a sirotskov fan, a cross-flow fan, or any other type), 5 indicates a blowout passage, 6 indicates a flat wall forming one side of the longitudinal wall of the blowout passage 5, and 7 indicates a curved wall forming the other side. It is configured in a gradually expanding shape. A bias projection 8 is provided on the flat wall 6 to deflect a portion of the flow toward the curved wall. A substantially planar wall 9 is formed downstream of the bias protrusion 8 . Reference numeral 10 denotes a flow control member, which is provided approximately parallel to the longitudinal direction of the blowout passage 5 and is connected to the rotation shaft 11.
It rotates around . Further, the flow control member 10 has a head 10a having a substantially arc shape whose center O is eccentric with respect to the rotation axis 11, and one side on the extension line of the head 10a is a first substantially flat surface 1.
0b, the other is a substantially arc-shaped surface 10c having a substantially arc-shaped adhesion effect, and the second substantially flat surface 1
It is a columnar body consisting of 0d.

この実施例の構成によれば、流れ制御部材10
を回転することによつて以下に示す作動を示す。
まず第3図に示す位置に流れ制御部材10を回転
した場合について説明する。この場合、送風源4
から送り出され流れ制御部材10の位置に到達し
た流れは、頭部10aによつて上側の流れFaと
下側の流れFbとに分かれる。上側の流れFaは一
部の流れがバイアス突起8の作用により図におい
て下側に曲げられる結果として、流れ制御部材1
0のほぼ円弧状の面10cに沿つて流れることに
なる。ほぼ円弧状の面10cは図のようにやや上
方を向いているので、Faはバイアス突起8の下
流側に設けられた壁9に沿つて流れることにな
り、ほぼ水平方向に吹き出す。一方下側の流れ
Fbは、第一のほぼ平らな面10bがほぼ水平を
向いているのでそのまま水平方向に吹き出す。従
つて全体の吹き出し流れは図のようにほぼ水平方
向に吹き出すことになる。
According to the configuration of this embodiment, the flow control member 10
The following operations are shown by rotating .
First, the case where the flow control member 10 is rotated to the position shown in FIG. 3 will be described. In this case, the air source 4
The flow sent out from the flow control member 10 is divided into an upper flow Fa and a lower flow Fb by the head 10a. As a result of the upper flow Fa being partially bent downward in the figure by the action of the bias protrusion 8, the flow control member 1
It flows along the substantially arc-shaped surface 10c of 0. Since the substantially arc-shaped surface 10c faces slightly upward as shown in the figure, Fa flows along the wall 9 provided on the downstream side of the bias protrusion 8, and is blown out in a substantially horizontal direction. On the other hand, the flow on the lower side
Since the first substantially flat surface 10b faces substantially horizontally, Fb is blown out in the horizontal direction. Therefore, the entire blowout flow is blown out in a substantially horizontal direction as shown in the figure.

次に第4図に示す位置に流れ制御部材10を回
転した場合について説明する。この場合、上側の
流れFaは前記の場合と同様にバイアス突起8の
影響でほぼ円弧状の面10cに沿つて流れる。こ
の時、図に示すようにほぼ円弧状の面10cはや
や下方を向いているのでFaもやや下方を向いて
吹き出す。一方下側の流れFbは、第一のほぼ平
らな面10bが下方を向いているためこの作用に
よつて曲面壁7に付着し、下方に向かつて流れ出
る。この結果上側の流れFaと下側の流れFbとの
合流した流れは図のように下方に向かつて流れ出
る。
Next, the case where the flow control member 10 is rotated to the position shown in FIG. 4 will be described. In this case, the upper flow Fa flows along the substantially arcuate surface 10c due to the influence of the bias protrusion 8, as in the previous case. At this time, as shown in the figure, since the substantially arc-shaped surface 10c faces slightly downward, Fa also blows out facing slightly downward. On the other hand, since the first substantially flat surface 10b faces downward, the lower flow Fb adheres to the curved wall 7 due to this action and flows downward. As a result, the combined flow of the upper flow Fa and the lower flow Fb flows downward as shown in the figure.

次に第5図に示す位置に流れ制御部材10を回
転した場合について説明する。この場合、上側の
流れFaは一部がバイアス突起8の影響で図の下
側に偏向されるが、流れ制御部材10の第一のほ
ぼ平らな面10bが上方を向いているので、流れ
Faは壁9に沿つてほぼ水平方向に吹き出す。一
方下側の流れFbはほぼ円弧状の面10cの反対
側の第二のほぼ平らな面10dの作用によつて曲
面壁7に付着し下方に向かつて吹き出す。この場
合、2つの流れFaとFbはそれぞれ壁9および曲
面壁7に沿つて流れるため、互いに合流は行なわ
ず水平方向と下方向の別々の方向に向かつて流れ
出、分流動作となる。
Next, the case where the flow control member 10 is rotated to the position shown in FIG. 5 will be described. In this case, part of the upper flow Fa is deflected to the lower side of the diagram due to the influence of the bias protrusion 8, but since the first substantially flat surface 10b of the flow control member 10 faces upward, the flow
Fa blows out along the wall 9 in a substantially horizontal direction. On the other hand, the flow Fb on the lower side adheres to the curved wall 7 by the action of the second substantially flat surface 10d opposite to the substantially arc-shaped surface 10c and is blown downward. In this case, since the two flows Fa and Fb flow along the wall 9 and the curved wall 7, respectively, they do not merge with each other but flow out in separate directions, horizontally and downward, resulting in a branching operation.

以上の如く、流れ制御部材10を回転すること
によつて、流れを水平から下へ広角に偏向させる
と共に、水平方向と下方向へ分流させて吹き出す
ことができる。またこの時の流れの制御は、流れ
を強制的に曲げてやるのではなく、流れ制御部材
10や曲面壁7等への流れの付着効果を用いて偏
向させるものであるため、風量が殆ど低下するこ
とがない。この流れ方向制御装置の一例の実験デ
ータを第6図と第7図に示す。第6図は、流れ制
御部材10の回転角度θに対する流れの偏向角α
(θ及びαは第4図に示す)の関係を示したもの、
第7図は流れ制御部材10の回転角度θに対する
風量低下率の関係を示したものである。第6図に
おいて角度θを増加させていくと、偏向角度αも
それに比例して増加し、θが約60゜の時にαが約
80゜に達する。また、θを100゜以上にすると流れ
は下成分と水平成分とに分かれ、分流の状態とな
る。第7図には、この時の風量の低下率を示す
が、角度θを広範囲に変化させても約10%しか変
化していないことがわかる。
As described above, by rotating the flow control member 10, the flow can be deflected over a wide angle downward from the horizontal direction, and can be blown out horizontally and downwardly. In addition, the flow control at this time is not by forcibly bending the flow, but by deflecting it by using the effect of the flow adhering to the flow control member 10, the curved wall 7, etc., so the air volume is almost reduced. There's nothing to do. Experimental data for an example of this flow direction control device are shown in FIGS. 6 and 7. FIG. 6 shows the deflection angle α of the flow relative to the rotation angle θ of the flow control member 10.
(θ and α are shown in Figure 4)
FIG. 7 shows the relationship between the rotation angle θ of the flow control member 10 and the air volume reduction rate. As the angle θ increases in Figure 6, the deflection angle α also increases proportionally, and when θ is approximately 60°, α becomes approximately
Reaches 80°. Furthermore, when θ is set to 100° or more, the flow is divided into a lower component and a horizontal component, resulting in a divided flow state. FIG. 7 shows the rate of decrease in air volume at this time, and it can be seen that even if the angle θ is varied over a wide range, the rate of decrease is only about 10%.

本発明は、上記の基本技術の構成において実線
と一点鎖線で示すように、流れ制御部材10の回
転角度によつて下側の流れFbの通過する流路幅
H及び上側の流れFaの通過する流路幅Iが変化
する。すなわち流れ制御翼6の回転によつて流路
幅H1→H2、I1→I2に変化し、FaとFbの流量比
(分流比)も変化することになる。従つて流れ制
御部材10の回転を制御することによつて、下吹
き流れFbの流量を制御することが可能である。
前述した如く、分流時に下吹き流れの流量を一定
に保つことが最も効率的な吹き出し制御である。
これに対して、第9図に示す如く、吹き出し部に
風速センサ12を設け、これによつて流量を計算
し(吹き出し口の風速分布はほぼ一定であり、吹
き出し面積に風速を乗ずれば流量が求まる)常に
所定の流量になるように流れ制御部材10の回転
を制御回路13によつて制御してやれば常に一定
の流れを下方に吹き出すことができる。この場合
の下吹き流れの所定流量は、空調される部屋の大
きさによつて違うため、条件に応じて制御回路1
3に値を記憶させればよい。これによつて、全流
量が変化した場合でも常に一定の適切な流量を下
方に吹き出す如く制御することが可能になる。
As shown by the solid line and the dashed line in the configuration of the above-mentioned basic technology, the present invention has a flow path width H through which the lower flow Fb passes and a flow path width H through which the upper flow Fa passes, depending on the rotation angle of the flow control member 10. The channel width I changes. That is, as the flow control blade 6 rotates, the channel width changes from H 1 to H 2 and from I 1 to I 2 , and the flow rate ratio (divided flow ratio) of Fa and Fb also changes. Therefore, by controlling the rotation of the flow control member 10, it is possible to control the flow rate of the downflow flow Fb.
As mentioned above, the most efficient blowout control is to keep the flow rate of the downward blowing flow constant when dividing the flow.
On the other hand, as shown in Fig. 9, a wind speed sensor 12 is installed at the outlet, and this is used to calculate the flow rate (the wind speed distribution at the outlet is almost constant, and if the area of the outlet is multiplied by the wind speed, the flow rate is If the rotation of the flow control member 10 is controlled by the control circuit 13 so that a predetermined flow rate is always maintained, a constant flow can always be blown downward. In this case, the predetermined flow rate of the downward flow differs depending on the size of the room to be air-conditioned, so the control circuit 1
All you have to do is store the value in 3. Thereby, even if the total flow rate changes, it is possible to control the flow rate so that a constant and appropriate flow rate is always blown downward.

また、エアコン等の如く、風量を強・弱という
ように段階的に切り替えるものの吹き出しを制御
する場合は、風量の切り替えノツチと連動して流
れ制御部材10の回転を制御する如く制御回路を
構成すれば、風量センサ12なしで簡単に制御が
行なえる。
In addition, when controlling the blowout of something such as an air conditioner that changes the air volume in stages such as strong and weak, the control circuit should be configured to control the rotation of the flow control member 10 in conjunction with the air volume switching notch. For example, control can be easily performed without using the air volume sensor 12.

発明の効果 以上のように本発明の流れ方向制御装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the flow direction control device of the present invention provides the following effects.

(1) 流れ制御部材10の回転により、曲面壁7へ
の付着効果を有効にして偏向・分流を行なうも
のであるため、風量を殆ど変化させずに広角偏
向及び分流動作が行なえる。
(1) By rotating the flow control member 10, the adhesion effect to the curved wall 7 is activated to perform deflection and division, so wide-angle deflection and division can be performed with almost no change in air volume.

(2) 1本の回転軸11の回動のみによつて上記の
効果が得られると共に、分流比を変えることも
可能となる。
(2) The above effects can be obtained by only rotating one rotating shaft 11, and it is also possible to change the division ratio.

(3) 分流時に、全流量の変化に拘らず一定の流量
を下向きに吹き出すことが可能な構成であるた
め、任意の方向に流れを向けて吹き出せるとい
う(1)の効果に加えて、最も理想的な吹き出し状
態を自動的に実現させることが可能となる。
(3) When dividing the flow, the configuration allows a constant flow to be blown downward regardless of changes in the total flow rate, so in addition to the effect of (1) that the flow can be blown in any direction, the most It becomes possible to automatically realize an ideal balloon state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流れ方向制御装置の断面図、第
2図〜第5図は本発明の流れ方向制御装置の基本
技術を示す断面図、第6図〜第7図は本発明の基
本技術の特性を示す図、第8図は本発明の一実施
例の断面図、第9図は同斜視図である。 5……吹出通路、6……平面壁、7……曲面
壁、8……バイアス突起、9……ほぼ平面状の
壁、10……流れ制御部材、10a……頭部、1
0b……第一のほぼ平らな面、10c……ほぼ円
弧状の面、10d……第二のほぼ平らな面、11
……回転軸、13……制御手段。
Fig. 1 is a sectional view of a conventional flow direction control device, Figs. 2 to 5 are sectional views showing the basic technology of the flow direction control device of the present invention, and Figs. 6 to 7 are sectional views of the basic technology of the present invention. FIG. 8 is a sectional view of an embodiment of the present invention, and FIG. 9 is a perspective view thereof. 5...Blowout passage, 6...Plane wall, 7...Curved wall, 8...Bias protrusion, 9...Substantially planar wall, 10...Flow control member, 10a...Head, 1
0b...First substantially flat surface, 10c...Substantially arc-shaped surface, 10d...Second substantially flat surface, 11
...rotating shaft, 13...control means.

Claims (1)

【特許請求の範囲】 1 吹出し通路5の一つの壁を平面壁6にし、前
記平面壁6に対向する壁の下流端を漸次拡大形状
とした曲面壁7とし、前記吹出し通路5を流れる
流れの一部を曲面壁7に向かつて偏向させるバイ
アス突起8を平面壁6に設け、前記バイアス突起
8の下流側をほぼ平面状の壁9に構成し、前記吹
出し通路5に平面壁6とほぼ平行で流れにほぼ直
角な回転軸11を中心として回転する柱状体の流
れ制御部材10を設け、前記流れ制御部材10の
断面は頭部10aを円弧の中心が回転軸11より
偏心位置となつたほぼ円弧状とし、前記頭部10
aの延長線上の片方には第一のほぼ平らな面10
bを有し、他方は第一のほぼ平らな面10bの下
流端が曲面壁7に近づく方向に回転した場合にバ
イアス突起8と流れ制御部材10の間を流れる流
れに対して付着効果を有するほぼ円弧状の面10
cを有すると共に、前記頭部10aと対向し前記
第一のほぼ平らな面10bと鈍角をなす第二のほ
ぼ平らな面10dを有し、前記流れ制御部材10
をほぼ水平に設定した場合は、前記頭部10aに
当たつた流れが流れ制御部材10の上と下に沿つ
て流れ、前記第一のほぼ平らな面10bの下流端
が曲面壁7に近づく方向に回転した場合は、前記
上下に分かれた流れのうち上方の流れがほぼ円弧
状の面10cに付着し、下方の流れが第一のほぼ
平らな面10bに付着して流れ、さらに流れ制御
部材10を流れが分流するように回転した場合
は、第一、第二のほぼ平らな面10b,10dに
当たつた流れがそれぞれ壁9と曲面壁7に付着し
て流れるごとくしたものにおいて、前記流れ制御
部材10を流れが上下2方向に分流するように設
定した場合に、前記吹出し通路5から出る流れの
量の変化に拘らず、常に一定の流量を下方に吹き
出すように、前記流れ制御部材10と曲面壁7お
よびバイアス突起8との間の距離を調節する制御
手段13を設けた流れ方向制御装置。 2 制御手段13は、流れ制御部材10の回転軸
11を回転する駆動手段12と、流量を検知しこ
れに応じて駆動手段12の回転角度を制御する制
御部とで構成した特許請求の範囲第1項記載の流
れ方向制御装置。
[Claims] 1. One wall of the blowout passage 5 is a flat wall 6, and the downstream end of the wall opposite to the flat wall 6 is a curved wall 7 with a gradually enlarged shape, so that the flow flowing through the blowout passage 5 is A bias protrusion 8 for deflecting a portion toward the curved wall 7 is provided on the plane wall 6, and the downstream side of the bias protrusion 8 is constituted by a substantially planar wall 9, and the blowing passage 5 is substantially parallel to the plane wall 6. A columnar flow control member 10 that rotates around a rotation axis 11 that is substantially perpendicular to the flow is provided, and the cross section of the flow control member 10 is such that the head 10a is approximately eccentric from the rotation axis 11 with the center of the circular arc. The head 10 is shaped like an arc.
On one side of the extension line of a is a first substantially flat surface 10.
b, the other having an adhesion effect on the flow flowing between the biasing projection 8 and the flow control member 10 when the downstream end of the first substantially flat surface 10b is rotated in a direction approaching the curved wall 7. Almost arc-shaped surface 10
c, and a second substantially flat surface 10d facing the head 10a and forming an obtuse angle with the first substantially flat surface 10b, the flow control member 10
is set substantially horizontally, the flow that hits the head 10a flows along the top and bottom of the flow control member 10, and the downstream end of the first substantially flat surface 10b approaches the curved wall 7. When the rotation occurs, the upper flow of the vertically divided flow adheres to the substantially arc-shaped surface 10c, the lower flow adheres to the first substantially flat surface 10b, and the flow control member 10 When the flow is rotated so that the flow is divided, the flow that hits the first and second substantially flat surfaces 10b and 10d adheres to the wall 9 and the curved wall 7, respectively, and flows. When the control member 10 is set so that the flow is divided into two directions, up and down, the flow control member 10 is configured so that a constant flow rate is always blown downward regardless of changes in the amount of flow exiting from the blowout passage 5. a flow direction control device comprising control means 13 for adjusting the distance between the curved wall 7 and the bias projection 8; 2. The control means 13 is comprised of a drive means 12 that rotates the rotation shaft 11 of the flow control member 10, and a control section that detects the flow rate and controls the rotation angle of the drive means 12 accordingly. Flow direction control device according to item 1.
JP5813583A 1983-04-01 1983-04-01 Flow direction control device Granted JPS59183104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5813583A JPS59183104A (en) 1983-04-01 1983-04-01 Flow direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5813583A JPS59183104A (en) 1983-04-01 1983-04-01 Flow direction control device

Publications (2)

Publication Number Publication Date
JPS59183104A JPS59183104A (en) 1984-10-18
JPH0215785B2 true JPH0215785B2 (en) 1990-04-13

Family

ID=13075537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5813583A Granted JPS59183104A (en) 1983-04-01 1983-04-01 Flow direction control device

Country Status (1)

Country Link
JP (1) JPS59183104A (en)

Also Published As

Publication number Publication date
JPS59183104A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
EP0109444B1 (en) Direction-of-flow controller
JPH0215785B2 (en)
JPS6135402B2 (en)
JPH0215784B2 (en)
JPS6211268B2 (en)
JPS5937310A (en) Flow direction controller
JPH0215783B2 (en)
JPS5867993A (en) Blower unit
JPS6213578B2 (en)
JPH0323821B2 (en)
JPS5934012A (en) Flow direction control unit
JPH0634197A (en) Air outlet device for air conditioner
JPS621504B2 (en)
JPS6234957B2 (en)
JPH0338500B2 (en)
JPH06307711A (en) Air-conditioning device
JPH0122479B2 (en)
JPS604368B2 (en) Fluid flow direction control device
JPH0338496B2 (en)
JPH0259379B2 (en)
JPS59121210A (en) Flow direction control device
JPS61160614A (en) Flow directional controller
JPS6040775B2 (en) air conditioner
JPH0118340B2 (en)
JPH0338499B2 (en)