JPS5937310A - Flow direction controller - Google Patents

Flow direction controller

Info

Publication number
JPS5937310A
JPS5937310A JP14712182A JP14712182A JPS5937310A JP S5937310 A JPS5937310 A JP S5937310A JP 14712182 A JP14712182 A JP 14712182A JP 14712182 A JP14712182 A JP 14712182A JP S5937310 A JPS5937310 A JP S5937310A
Authority
JP
Japan
Prior art keywords
flow
control member
bias
wall
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14712182A
Other languages
Japanese (ja)
Inventor
Norio Sugawara
範夫 菅原
Motoyuki Nawa
基之 名和
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14712182A priority Critical patent/JPS5937310A/en
Priority to US06/576,393 priority patent/US4556172A/en
Priority to PCT/JP1983/000148 priority patent/WO1983004290A1/en
Priority to DE8383901616T priority patent/DE3367966D1/en
Priority to EP83901616A priority patent/EP0109444B1/en
Publication of JPS5937310A publication Critical patent/JPS5937310A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • F24F2013/1433Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means with electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • F24F2013/146Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means with springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air-Flow Control Members (AREA)

Abstract

PURPOSE:To remarkably deflect flow by means of a simple constitution along with the dividing operation of the flow by moving a bias projection approximately in parallel with the flow direction in association with the turning motion of a flow control member. CONSTITUTION:When a cam 81 is turned, a transmitting bar 82 is swung to slide a bias projection 80 via a connecting projection 84. With the bias projection 80 staying on the upstream side of flow, a linear wall 9 is more perfectly exposed to the upstream flow Fa, giving horizontal blow. When the bias projection 80 is slided downstream, the area of the flow dividing part 10c of a flow control member which is exposed to the upstream Fa is large to enhance combination of the flows Fa and Fb on the downstream side, giving downward blow. Additionally, when the flow control member is turned furthermore, the bias projection 80 is slided upstream again. Since the area of the linear wall 9 which is exposed to the upstream flow Fa begins to be enlarged, the flow is divided more perfectly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調装置等の吹出口に設けられ、送風源から
の流れを任意の方向に偏向させて吹き出させるだめの流
れ方向制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flow direction control device that is installed at the outlet of an air conditioner or the like and deflects the flow from the air source in an arbitrary direction. be.

ヤの 従来例の構成と問題点 従来の流れ方向制御装置を第1図に示す。1は送風源、
2は吹出通路、3は複数枚のルーバーから構成されてい
る流れ偏向部である。送風源1より送られた流れは、吹
出通路2を通り流れ偏向部3において、図における上下
方向に偏向される。
Figure 1 shows a conventional flow direction control device. 1 is the air source,
Reference numeral 2 represents a blowout passage, and reference numeral 3 represents a flow deflection section composed of a plurality of louvers. The flow sent from the blowing source 1 passes through the blowing passage 2 and is deflected in the vertical direction in the figure at the flow deflecting section 3.

元来、ヒートポンプにおいては、空調される部屋の温度
分布を均一化するために暖房時は下吹きに、冷房時は水
平吹きに吹き出し流れ方向を制御する3ベー:す ことが望ましい。しかしながら第1図の破線で示すよう
に、下吹きに偏向させる場合にはルーバーが吹き出し口
を殆ど塞いでしまう格好になり、風量が大幅に低下して
しまい、十分な空調効果を得ることができなかった。
Originally, in a heat pump, in order to equalize the temperature distribution in the room to be air-conditioned, it is desirable to control the direction of the airflow to downward blowing during heating and horizontal blowing during cooling. However, as shown by the broken line in Figure 1, when the air is deflected downward, the louver almost blocks the air outlet, resulting in a significant drop in air volume and making it impossible to obtain a sufficient air conditioning effect. There wasn't.

また、暖房時に多量の温風を下向きに吹き出した場合に
は、温風の量が多すぎて人体に当たった場合に不快に感
じることがある。温度分布を一定にする目的であれば、
ある一定の風量を下向きに吹き出しきその他は水平方向
に吹き出すことによってほぼ一定の温度分布が得られる
ことが実験によって確認されている。したがって温度分
布を良好にすると共に、吹き出し温風による不快感をな
くすためには、ある一定量を下吹きに、その他を水平吹
きに吹き出すだめの機能すなわち分流の機能が必要であ
った。従来の送風装置においては」−記の分流の機能も
持たせることは不可能であった〇発明の目的 本発明はこのような従来の欠点を除去するもので、吹き
出し風量を殆ど変化させずに流れを大幅に偏向させると
共に、分流動作を可能にし、空調時の快適性を向上させ
るものである。
Furthermore, if a large amount of hot air is blown downward during heating, the amount of hot air may be too large and may cause discomfort when it hits the human body. If the purpose is to keep the temperature distribution constant,
Experiments have confirmed that a nearly constant temperature distribution can be obtained by blowing a certain amount of air downward and the rest horizontally. Therefore, in order to improve the temperature distribution and eliminate the discomfort caused by the hot air being blown out, it is necessary to have a function to blow out a certain amount of hot air downwardly and the rest to be blown horizontally, that is, to have a function of dividing the flow. In the conventional air blowing device, it was impossible to provide the function of dividing the flow as described above.Objective of the InventionThe present invention is intended to eliminate such conventional drawbacks, and to provide the function of dividing the air flow as described above without substantially changing the volume of air blown. This significantly deflects the flow and enables diversion, improving comfort during air conditioning.

発明の構成 この目的を達成するために本発明は、矩形断面をした吹
出通路の1つの壁を平面壁で、これに対向する壁を漸次
拡大形状をした曲面壁で形成し、前記吹出通路の平面壁
にほぼ平行で流れにほぼ直角に流れ制御部材を設け、前
記流れ制御部材は、回転軸を中心として回転するもので
あり、中心Oが前記回転軸よりも偏心しているほぼ円孤
形状をした頭部を有し、前記頭部の延長線上の片方はバ
イアス作用部、他方はほぼ円孤形状をしだ分流作用部と
からなる柱状体とし、前記平面壁に流れの一部を前記曲
面壁に向かって偏向させるバイアス突起を設け、前記バ
イアス突起の下流側に直線壁を設は前記バイアス突起を
、前記流れ制御部材の回動に応じて流れの方向とほぼ平
行に移動するように構成したものである。
Structure of the Invention In order to achieve this object, the present invention forms one wall of a blow-off passage with a rectangular cross section as a flat wall, and the opposite wall as a curved wall with a gradually enlarged shape. A flow control member is provided substantially parallel to the plane wall and substantially perpendicular to the flow, and the flow control member rotates around a rotation axis, and has a substantially circular arc shape with a center O eccentric from the rotation axis. One side of the extension of the head is a bias acting part, and the other is a substantially arc-shaped shunting part, and a part of the flow is directed to the curved surface. A bias protrusion is provided to deflect the bias toward the wall, and a straight wall is provided downstream of the bias protrusion, and the bias protrusion is configured to move substantially parallel to the direction of flow in response to rotation of the flow control member. This is what I did.

この構成によって、流れは前記流れ制御部材の回転に応
じて前記曲面壁に付着したり剥離したり5ページ することにより、風M1゛は殆ど変化しないで吹出方向
が変化する結果となる。また前記流れ制御部材の回転に
よって流れを水平と下との2方向に分ける分流動作も可
能となる。
With this configuration, the flow adheres to or separates from the curved wall in accordance with the rotation of the flow control member, resulting in a change in the blowing direction with almost no change in the wind M1'. In addition, by rotating the flow control member, it is possible to perform a diversion operation in which the flow is divided into two directions, horizontally and downwardly.

実施例の説明 以下本発明の一実施例を説明するが、まず理解を深める
ためその先行技術について第2図〜第8図の図面を用い
て説明する。図において、4は流れを送り出す送風源(
シロッコファン、クロスフローファンその他側でも良い
)、5は吹出通路、6は吹出通路6の長手方向の壁の一
方側を形成する平面壁7は他方を形成する曲面壁で漸次
拡大形状に構成されているo8は流れの一部を前記曲面
壁に向かって偏向させるだめのバイアス突起であり、前
記平面壁6に設けられている。前記バイアス突起8の下
流側には直線壁9が形成されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below, but first, for better understanding, the prior art will be explained using the drawings of FIGS. 2 to 8. In the figure, 4 is the air source that sends out the flow (
5 is a blowout passage, 6 is a flat wall 7 forming one side of the longitudinal wall of the blowout passage 6, and a curved wall forming the other side is configured to gradually expand. A bias protrusion o8 is provided on the flat wall 6 to deflect part of the flow toward the curved wall. A straight wall 9 is formed downstream of the bias protrusion 8 .

10は流れ制御部材であり、吹出通路6の長手方向にほ
ぼ平行に設けられ、回転軸11を中心として回転するも
のである。捷だ流れ制御部材10は、中心0が回転+I
il+ 11よりも偏心しているほぼ円孤形状をした頭
部10 aを有し、前記頭部の延長線上の片方はバイア
ス作用部10bと他方はほぼ円孤形状をした分流作用部
10cとからなる柱状体となっている。
Reference numeral 10 denotes a flow control member, which is provided substantially parallel to the longitudinal direction of the blow-off passage 6 and rotates around a rotating shaft 11. The shattered flow control member 10 has a center 0 of rotation +I.
It has a substantially arc-shaped head 10a that is more eccentric than the il+ 11, and one side on the extension line of the head consists of a bias acting part 10b and the other part a substantially arc-shaped flow dividing part 10c. It is columnar.

この実施例の構成によれば、流れ制御部材10を回転す
ることによって以下に示す作動を示す。
According to the configuration of this embodiment, the following operations are performed by rotating the flow control member 10.

まず第3図に示す位置に流れ制御部材10を回転した場
合について説明する。この場合、送風源4から送り出さ
れ流れ制御部材1oの位置に到達した流れは、頭部10
aによって上側の流れFa と下側の流れFbとに分か
れる。上側の流れFaは一部の流れがバイアス突起80
作用により図において下側に曲げられる結果として、流
れ制御部材1oの分流作用部10Cに沿って流れること
になる。分流作用部10cは図のようにやや上方を向い
ているので、Faはバイアス突起8の下流側に設けられ
た直線壁9に沿って流れることになり、はぼ水平方向に
吹き出す〇−一方側の流れFbは、バイアス作用部1o
bがほぼ水平を向いているのでそのまま水平方向に吹き
出す。従って全体の吹7ページ き出し流れは図のようにほぼ水」l方向に吹き出すこと
になる。つぎに第4図に示す位置に流れ制御部材1oを
回転した場合について説明する。この場合、上側の流れ
Faは前記の場合と同様にバイアス突起8の影響で分流
作用部10cに沿って流れる。この時、図に示すように
分流作用部10cはや−や下方を向いているのでFa 
もやや下方を向いて吹き出す。−劣下側の流れFbは、
バイアス作用部10bが下方を向いているためこの作用
によって曲面壁7に伺着し、下方に向かって流れ出る。
First, the case where the flow control member 10 is rotated to the position shown in FIG. 3 will be described. In this case, the flow sent out from the air source 4 and reaching the position of the flow control member 1o is
It is divided into an upper flow Fa and a lower flow Fb by a. Part of the upper flow Fa flows through the bias protrusion 80.
As a result of being bent downward in the figure due to the action, it flows along the flow dividing portion 10C of the flow control member 1o. Since the flow dividing portion 10c faces slightly upward as shown in the figure, Fa flows along the straight wall 9 provided on the downstream side of the bias protrusion 8, and is blown out in the horizontal direction. The flow Fb is the bias acting part 1o
Since b is facing almost horizontally, it blows out in the horizontal direction. Therefore, the entire flow of the 7th page blows out almost in the water direction as shown in the figure. Next, the case where the flow control member 1o is rotated to the position shown in FIG. 4 will be described. In this case, the upper flow Fa flows along the flow dividing portion 10c under the influence of the bias protrusion 8, as in the case described above. At this time, as shown in the figure, the flow dividing portion 10c faces slightly downward, so Fa
It blows out in a hazy manner, pointing downwards. -The flow Fb on the inferior side is
Since the bias acting portion 10b faces downward, this action causes the liquid to arrive at the curved wall 7 and flow downward.

この結果上(Illの流hFa と下側の流れFbとの
合流した流itは図のように下方に向かって流れ出る。
As a result, the flow it which is the confluence of the flow hFa on the upper side (Ill) and the flow Fb on the lower side flows downward as shown in the figure.

次に第6図に示す位置に流れ制御部材10を回転した場
合について説明する。この場合、上側の流れFaは一部
がバイアス突起8の影響で図の下側に偏向されるが、流
れ制御部材の分流作用部10bが−に方を向いているの
で、流れFaは直線壁9に沿ってほぼ水平方向に吹き出
す。−劣下側の流れFbは分流作用部10Cの反対側の
作用に、1:って曲面壁7に付着し下方に向かって吹き
出す。この場合、2つの流れFaとFb はそれぞれ直
線壁9および曲面壁7に沿って流れるため、互いに合流
は行なわずに水平方向と下方向の別々の方向に向かって
流れ出、分流動作となる。
Next, the case where the flow control member 10 is rotated to the position shown in FIG. 6 will be described. In this case, part of the upper flow Fa is deflected to the lower side of the diagram due to the influence of the bias protrusion 8, but since the flow control member 10b is oriented in the − direction, the flow Fa is deflected toward the straight wall. It blows out almost horizontally along line 9. - The flow Fb on the inferior side adheres to the curved wall 7 due to the action on the opposite side of the diversion action section 10C and blows out downward. In this case, since the two flows Fa and Fb flow along the straight wall 9 and the curved wall 7, respectively, they flow out in separate directions, horizontally and downward, without merging with each other, resulting in a branching operation.

以上の如く、流れ制御部材1oを回転することによって
、流れを水平から下へ広角に偏向させると共に、水平方
向と下方向へ分流させて吹き出すことができる。まだこ
の時の流れの制御は、流れを強制的に曲げてやるのでは
なく、流れ制御部材1oや曲面壁7等への流れの付着効
果を用いて偏向させるものであるだめ、風量が殆ど低下
することがない。この流れ方向制御装置の一例の実験デ
ータを第7図と第8図に示す。第7図は、流れ制御部材
10の回転角度θに対する流れの偏向角度a(θ及びa
は第4図に示す)の関係を示したもの、第8図は流れ制
御部材10の回転角度θに対する風量低下率の関係を示
したものである。第7図において角度θを増加させてい
くと、偏向角度αもそれに比例して増加し、θが約60
0の時にaが約800に達する。また、θを100°以
上にする9ページ と流J’L ir士上下成分水・19戊分とに分かれ、
分流の状態となる。第8図には、この時の風量の低下率
を示すが、角度0を回転させても約10%しか変化して
いないことがわかる。
As described above, by rotating the flow control member 1o, it is possible to deflect the flow downward from the horizontal over a wide angle, and also to separate the flow horizontally and downward and blow it out. At this point, the flow control is not by forcibly bending the flow, but by deflecting it by using the effect of the flow adhering to the flow control member 1o, the curved wall 7, etc., so the air volume is almost reduced. There's nothing to do. Experimental data for an example of this flow direction control device are shown in FIGS. 7 and 8. FIG. 7 shows the flow deflection angle a (θ and a
(shown in FIG. 4), and FIG. 8 shows the relationship between the rotation angle θ of the flow control member 10 and the air volume reduction rate. As the angle θ increases in FIG. 7, the deflection angle α also increases proportionally, and θ becomes approximately 60
When it is 0, a reaches about 800. In addition, it is divided into 9 pages for setting θ to 100° or more, and 19 pages for flow J'Lir upper and lower component water,
A state of diversion occurs. FIG. 8 shows the rate of decrease in air volume at this time, and it can be seen that even if the angle of 0 is rotated, it changes by only about 10%.

以」二の構成において、バイアス突起8を流れの方向と
ほぼ平行に移動可能に構成することにより、I−記の効
果に加えて下記に示す作用・効果が得られる。
In the second configuration below, by configuring the bias protrusion 8 to be movable substantially parallel to the flow direction, in addition to the effect described in I-, the following functions and effects can be obtained.

第9図〜第12図に示すように、本発明の実施例におい
てはバイアス突起8oが流れ制御部材10の回動に応じ
て流れとほぼ平行な方向に移動するように構成されてい
る。バイアス突起80は平面壁6とガイド板90との間
を摺動するようになっており、第12図に示す機構によ
って流れ制御部材1oと連動して動くように構成されて
いる。流れ制御部材10の回転軸11の延長端にカム8
1が設けてあり、流れ制御部材10と同一にカム81が
回転する。このカム81が回転すると、伝達棒82が、
伝達dl+ s tsを中心として揺動し、バイアス突
起80に設けられた結合突起84を介してバイアス突起
80を移動させる。伝達棒82は戻しスプリング83に
よって常にカム81に接触する状態に保たれている。
As shown in FIGS. 9 to 12, in the embodiment of the present invention, the bias protrusion 8o is configured to move in a direction substantially parallel to the flow in response to rotation of the flow control member 10. The bias protrusion 80 is configured to slide between the plane wall 6 and the guide plate 90, and is configured to move in conjunction with the flow control member 1o by a mechanism shown in FIG. A cam 8 is attached to the extended end of the rotating shaft 11 of the flow control member 10.
1 is provided, and the cam 81 rotates in the same manner as the flow control member 10. When this cam 81 rotates, the transmission rod 82
It swings around the transmission dl+s ts and moves the bias protrusion 80 via a coupling protrusion 84 provided on the bias protrusion 80. The transmission rod 82 is always kept in contact with the cam 81 by a return spring 83.

上記の構成によって、第9図〜第11図に示す動作を行
なう。第9図は水平吹きの場合で、バイアス突起80は
流れの上流側に移動しており、直線壁9の長さが大きく
なる位置にある。この状態において流れを生じさせた場
合、上側の流れFaは直線壁9に対してより完全に付着
することになり、水平吹きにおける速度分布がより整っ
たものになる。つぎに第10図に示すように、流れ制御
部材を下吹きの位置に傾けた場合はカム81の作用によ
り伝達棒82が一点鎖線の位置に移動し、バイアス突起
80は下流側に移動する。この状態において流れを生じ
させた場合、上側の流れFaは流れ制御部材の分流作用
部10Cに付着する効果が大きくなるため、流れ制御部
材10の下流におけるFaとFbの合流が容易になり、
下吹きにおける偏向角度が増加するとともに速度分布が
整ったものとなる。つぎに第11図に示すように流11
、神ミ・ れ制御部材を下吹きの位置から分流動作の位置に回転さ
せた場合は、ふたたびバイアス突起80は上流側に移動
し、」−側の流れFaの直線壁9への付着効果が大きく
なり、より完全な分流状態にすることができる。すなわ
ち、流れ制御部材10の回動に応じてバイアス突起80
の位置を移動させることによって、それぞれの吹き出し
状態の最適位置にバイアス突起を設置して、吹き出し流
れの偏向角度を増大するとともに吹き出し流れの速度分
布を改善することによって、空調効果をより高めること
が可能となる。
With the above configuration, the operations shown in FIGS. 9 to 11 are performed. FIG. 9 shows the case of horizontal blowing, in which the bias protrusion 80 has moved to the upstream side of the flow and is in a position where the length of the straight wall 9 is increased. When a flow is generated in this state, the upper flow Fa adheres more completely to the straight wall 9, and the velocity distribution in horizontal blowing becomes more uniform. Next, as shown in FIG. 10, when the flow control member is tilted to the downward blowing position, the transmission rod 82 is moved to the position indicated by the dashed line by the action of the cam 81, and the bias protrusion 80 is moved downstream. When a flow is generated in this state, the upper flow Fa has a greater effect of adhering to the flow dividing portion 10C of the flow control member, so that the merging of Fa and Fb downstream of the flow control member 10 becomes easier.
As the deflection angle in downward blowing increases, the velocity distribution becomes more uniform. Next, as shown in Figure 11, flow 11
When the control member is rotated from the downward blowing position to the diversion operation position, the bias protrusion 80 moves to the upstream side again, and the adhesion effect of the flow Fa on the − side to the straight wall 9 is reduced. This allows for a more complete flow diversion. That is, the bias protrusion 80 is rotated according to the rotation of the flow control member 10.
By moving the position of the bias protrusion, the bias protrusion is installed at the optimal position for each blowout condition, increasing the deflection angle of the blowout flow and improving the velocity distribution of the blowout flow, thereby further enhancing the air conditioning effect. It becomes possible.

発明の効果 以」:のように、本発明の流れ方向制御装置は、矩形断
面形状をした吹出し通路の1つの壁を平面壁で、これに
対向する壁を漸次拡大形状をした曲面壁で形成し、前記
吹出通路の平面壁にほぼ平行で流れに直角に流れ制御部
材を設け、前記流れ制御部利は、回転軸を中心として回
転するものであり、中心0が前記回転軸よりも偏心して
いるほぼ円孤形状をした頭部を有し、前記頭部の延長線
上の片方はバイアス作用部、他方はほぼ円孤形状をした
分流作用部とからなる柱状体とし、前記バイアス突起を
、前記流れ制御部材の回動に応じて流れの方向とほぼ平
行に移動するように構成したものであるため、次のよう
な効果を奏する。
As shown in "Effects of the Invention", in the flow direction control device of the present invention, one wall of the blowout passage having a rectangular cross-sectional shape is formed by a flat wall, and the opposite wall is formed by a curved wall having a gradually enlarged shape. A flow control member is provided substantially parallel to the plane wall of the blowout passage and perpendicular to the flow, and the flow control member rotates about a rotation axis, and the center 0 is eccentric with respect to the rotation axis. The bias protrusion is a columnar body having a substantially arc-shaped head, one end of which is an extension of the head and the other is a bias action part and the other part is a substantially arc-shaped flow dividing part. Since the flow control member is configured to move substantially parallel to the flow direction in response to rotation of the flow control member, the following effects are achieved.

1)簡単な構成で大幅に流れを偏向させると共に、分流
動作を行なわせることができる。また、この時の風量を
殆ど低下させずに上記の動作を行なわせることができる
1) With a simple configuration, it is possible to significantly deflect the flow and perform a diversion operation. Further, the above operation can be performed without substantially reducing the air volume at this time.

2)一本の軸の回転によって偏向及び分流動作を行なわ
せることができ、操作性が非常に良くなる。
2) Deflection and shunt operations can be performed by rotating a single shaft, resulting in very good operability.

3)吹き出し状態に応じて、常に最適の位置にバイアス
突起を移動させ、吹き出し偏向角度の増大および吹き出
し速度分布の改善をはかることによって、空調効果を増
大させることができる。
3) The air conditioning effect can be increased by always moving the bias protrusion to an optimal position depending on the blowout condition, increasing the blowout deflection angle and improving the blowout velocity distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流れ方向制御装置を示す断面図、第2図
〜第6図は本発明の一実施例における先行13ページ 技術を示す断面図、第7図は同先行技術の偏向特性を示
す特性図、第8図は風量特性を示す特性図、第9図〜第
11図は本発明の一実施例における流れ方向制御装置の
断面図、第12図は流れ制御部材とバイアス突起との動
作を連携させる機構部を示す説明図である。 6・・・・・・吹出通路、6・・・・・・平面壁、7・
・・・・・曲面壁、80・・・・・・バイアス突起、9
・・・・・・直線壁、1o・・・・・・流れ制御部拐、
10 a・・・・・・頭部、1ob・・・・・・ノ(イ
アス作用部、1oC・・・・・・分流作用部、11・・
・・・・回転軸、O・・・・・・流れ制御部材の頭部の
中心0代理人の氏名 弁理士 中 尾 敏 男 ほか1
名第1図 3           / 第2図 第 3 図 第5図 第7図 0 50  /θ0 150 淡れ制gfJ部材角膚θE崖ノ 第8図 0  50 100  /jO 流れ匍J#部材角崖θD隻j 51− よ; 9 図 第10図
FIG. 1 is a sectional view showing a conventional flow direction control device, FIGS. 2 to 6 are sectional views showing a prior 13-page technology in an embodiment of the present invention, and FIG. 7 is a sectional view showing the deflection characteristics of the prior art. FIG. 8 is a characteristic diagram showing air volume characteristics, FIGS. 9 to 11 are cross-sectional views of a flow direction control device according to an embodiment of the present invention, and FIG. 12 is a diagram showing the relationship between a flow control member and a bias protrusion. FIG. 3 is an explanatory diagram showing a mechanism unit that coordinates operations. 6...Blowout passage, 6...Flat wall, 7.
...Curved wall, 80 ...Bias protrusion, 9
・・・・・・Straight wall, 1o・・・Flow control section missing,
10 a...Head, 1ob...No (Ias action part, 1oC...Diversion action part, 11...
... Rotation axis, O ... Center of the head of the flow control member 0 Name of agent Patent attorney Toshio Nakao and others 1
Figure 1 Figure 3 / Figure 2 Figure 3 Figure 5 Figure 7 0 50 /θ0 150 GfJ Member Corner θE Cliff Figure 8 0 50 100 /jO Flowing Sword J# Member Corner Cliff θD Ship j 51- Yo; 9 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)矩形断面形状をした吹出通路の1つの壁を平面壁
にし、前記平面壁に対向する壁を漸次拡大形状をしだ曲
面壁とし、前記平面壁に流れの一部を前記曲面壁に向か
って偏向させるバイアス突起を設け、前記バイアス突起
の下流側を直線壁に構成し、前記吹出通路に前記平面壁
とほぼ平行で流れにほぼ直角に流れ制御部材を設け、前
記流れ制御部材は、回転軸を中心として回転するもので
あり、はぼ円孤形状をし前記円弧の中心を前記回転軸よ
り偏心位置とした頭部を有し、前記頭部の延長線上の片
方はバイアス作用部、他方はほぼ円孤形状をした分流作
用部とからなる柱状体とし、前記バイアス突起を、前記
流れ制御部材の回動に応じて流れの方向とほぼ平行に移
動するように構成した流れ方向制御装置。
(1) One wall of the blowout passage having a rectangular cross-sectional shape is a flat wall, and the wall opposite to the flat wall is a curved wall with a gradually enlarged shape, and a part of the flow is directed to the curved wall. A bias protrusion for deflecting the air is provided, a downstream side of the bias protrusion is configured as a straight wall, and a flow control member is provided in the blowout passage substantially parallel to the plane wall and substantially perpendicular to the flow, the flow control member comprising: The device rotates around a rotational axis, and has a head shaped like an arc and with the center of the arc positioned eccentrically from the rotational axis, and one side on an extension of the head is a bias acting part; A flow direction control device, wherein the other is a columnar body consisting of a flow dividing portion having a substantially circular arc shape, and the bias protrusion is configured to move substantially parallel to the flow direction in response to rotation of the flow control member. .
(2)バイアス突起は、流れ制御部材が水平吹きの2ペ
ージ 位置から下吹きの位置に回動する場合は上流側から下流
側へ移動し、下吹きの位置から分流の位置に回動する場
合は下流側から上流側へ移動する構成とした特許請求の
範囲第1項記載の流れ方向制御装置。
(2) The bias protrusion moves from the upstream side to the downstream side when the flow control member rotates from the horizontal blow position to the bottom blow position, and when it rotates from the bottom blow position to the diversion position The flow direction control device according to claim 1, wherein the flow direction control device is configured to move from the downstream side to the upstream side.
JP14712182A 1982-05-25 1982-08-24 Flow direction controller Pending JPS5937310A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14712182A JPS5937310A (en) 1982-08-24 1982-08-24 Flow direction controller
US06/576,393 US4556172A (en) 1982-05-25 1983-05-19 Flow direction controller
PCT/JP1983/000148 WO1983004290A1 (en) 1982-05-25 1983-05-19 Direction-of-flow controller
DE8383901616T DE3367966D1 (en) 1982-05-25 1983-05-19 Direction-of-flow controller
EP83901616A EP0109444B1 (en) 1982-05-25 1983-05-19 Direction-of-flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14712182A JPS5937310A (en) 1982-08-24 1982-08-24 Flow direction controller

Publications (1)

Publication Number Publication Date
JPS5937310A true JPS5937310A (en) 1984-02-29

Family

ID=15423006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14712182A Pending JPS5937310A (en) 1982-05-25 1982-08-24 Flow direction controller

Country Status (1)

Country Link
JP (1) JPS5937310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259675A (en) * 1985-09-10 1987-03-16 Kansai Paint Co Ltd Method of forming coating on steel stock
WO2016163193A1 (en) * 2015-04-08 2016-10-13 株式会社デンソー Air discharge device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259675A (en) * 1985-09-10 1987-03-16 Kansai Paint Co Ltd Method of forming coating on steel stock
JPH0238270B2 (en) * 1985-09-10 1990-08-29 Kansai Peinto Kk
WO2016163193A1 (en) * 2015-04-08 2016-10-13 株式会社デンソー Air discharge device

Similar Documents

Publication Publication Date Title
US4556172A (en) Flow direction controller
JPS5937310A (en) Flow direction controller
JPH0354254B2 (en)
JPS6135402B2 (en)
JP2003329295A (en) Louver of air conditioner, air current control structure of air conditioner and air conditioner
JPH0215783B2 (en)
JPH0215784B2 (en)
JPS6135406B2 (en)
JPS5867993A (en) Blower unit
JPH0215785B2 (en)
JPS59121210A (en) Flow direction control device
JPS604368B2 (en) Fluid flow direction control device
JPS6213578B2 (en)
JPS621504B2 (en)
JPS5934012A (en) Flow direction control unit
JPS59142345A (en) Flow direction controlling device
JPH0338496B2 (en)
JPS58128495A (en) Blower
JPH0259379B2 (en)
JPS58133535A (en) Blast device
JPS6051611B2 (en) flow direction control device
JPS60143215A (en) Fluid flow deflecting device
JPS6135405B2 (en)
JPH0771812A (en) Air-conditioner
JPS6219602B2 (en)