WO2016163193A1 - Air discharge device - Google Patents

Air discharge device Download PDF

Info

Publication number
WO2016163193A1
WO2016163193A1 PCT/JP2016/057230 JP2016057230W WO2016163193A1 WO 2016163193 A1 WO2016163193 A1 WO 2016163193A1 JP 2016057230 W JP2016057230 W JP 2016057230W WO 2016163193 A1 WO2016163193 A1 WO 2016163193A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
air
flow path
air flow
outlet
Prior art date
Application number
PCT/JP2016/057230
Other languages
French (fr)
Japanese (ja)
Inventor
生田 晴樹
加藤 慎也
本村 博久
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2017511506A priority Critical patent/JP6424953B2/en
Publication of WO2016163193A1 publication Critical patent/WO2016163193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/26Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect

Definitions

  • the present disclosure relates to an air blowing device that blows out air.
  • Patent Document 1 discloses an air blowing device that blows air from a blowout port while bending the air along a guide wall using the Coanda effect.
  • the air blowing device includes a blowout port that blows air into the target space, a flow channel forming unit that forms an air flow channel that is connected to the upstream side of the air flow of the blower port, and a flow velocity in the air flow channel. And an airflow deflecting member that generates two airflows different from each other.
  • the first flow path is between the air flow deflecting member and the first wall
  • the second flow path is between the air flow deflecting member and the second wall.
  • the airflow deflecting member is configured such that a high-speed airflow is generated in the first flow path and a low-speed airflow is generated in the second flow path.
  • a part of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow to the second direction.
  • a guide wall that guides a high-speed air flow is configured so as to be directed from the wall toward the first wall.
  • the high-speed airflow is bent along the guide wall by the Coanda effect, and the low-speed airflow is drawn into the high-speed airflow, so that the air flowing through the air flow path is bent and blown out from the air outlet.
  • the bending angle can be increased.
  • the present disclosure provides an air blowing device capable of increasing the amount of blown air blown from a blower outlet in a direction from the second wall toward the first wall as compared with the above-described conventional air blowing device.
  • the purpose is to do.
  • Air blower that blows out air
  • An air outlet that blows air into the target space
  • a flow path forming section having a first wall and a second wall facing the first wall, and forming an air flow path connected to the upstream side of the air flow of the air outlet
  • An air flow deflecting member that is provided in the air flow path and generates two air flows having different flow velocities in the air flow path;
  • the airflow deflecting member is configured such that a relatively high speed airflow is generated in the first flow path and a low speed airflow is generated in the second flow path, A portion of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow from the second wall.
  • the flow path forming unit projects from the second wall toward the first wall at a portion of the second wall on the downstream side of the airflow deflecting member with respect to the airflow deflecting member, and flows along the second wall.
  • the airflow on the side away from the second wall among the low-speed airflow from the second flow path is drawn into the high-speed airflow.
  • the airflow on the second wall side flows along the second wall and is not drawn into the high-speed airflow. For this reason, a low-speed air current will diffuse from the outlet.
  • the entire low-speed airflow is It can be drawn into a high-speed air stream. Therefore, compared with the above-described conventional air blowing device, the low-speed air current drawn by the high-speed air current can be increased, and the blowing air blown from the air outlet in the direction from the second wall toward the first wall can be increased.
  • the air volume can be increased.
  • Air blower that blows out air
  • An air outlet that blows air into the target space
  • a flow path forming section having a first wall and a second wall facing the first wall, and forming an air flow path connected to the upstream side of the air flow of the air outlet
  • An air flow deflecting member that is provided in the air flow path and generates two air flows having different flow velocities in the air flow path;
  • the air flow deflecting member generates a first air flow at a higher speed than the air flow in the second flow path because the cross-sectional area of the first flow path is smaller than the cross-sectional area of the second flow path.
  • An air flow that is slower than the air flow in the flow path is generated in the second flow path
  • a portion of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow from the second wall.
  • the flow path forming unit projects from the second wall toward the first wall at a portion of the second wall on the downstream side of the airflow deflecting member with respect to the airflow deflecting member, and flows along the second wall.
  • the low-speed airflow flowing along the second wall is guided in the direction from the second wall toward the first wall by the protrusion, the entire low-speed airflow is drawn into the high-speed airflow. be able to. Therefore, compared with the above-described conventional air blowing device, the low-speed air current drawn by the high-speed air current can be increased, and the blowing air blown from the air outlet in the direction from the second wall toward the first wall can be increased.
  • the air volume can be increased.
  • the air outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is a horizontal direction.
  • the protrusion is formed in the entire area of the second wall in the lateral direction of the air outlet,
  • the amount of protrusion of the projecting portion of at least one of both ends of the second wall in the lateral direction of the air outlet is the amount of protrusion of the projecting portion at a site inside the both ends of the second wall in the lateral direction of the air outlet. It is characterized by being larger than.
  • a low-speed airflow flows along the side wall connecting the first wall and the second wall in the flow path forming part. For this reason, when the amount of protrusion of the projecting portion is uniform in the entire region from the one end to the other end of the second wall in the lateral direction of the air outlet, the lateral end of the air outlet is in the lateral direction of the air outlet. Compared with the inner portion of the end portion, the low-speed airflow that merges with the high-speed airflow is reduced.
  • the protrusion amount at at least one of both end portions of the second wall in the lateral direction of the blower outlet is set as the protrusion amount at the inner portion of the both ends of the second wall in the lateral direction of the blower outlet. Is bigger than.
  • at least one of the both ends of the blower outlet in the lateral direction can increase the low-speed airflow that merges with the high-speed airflow, and the amount of blown air blown from the blower outlet in the direction from the second wall toward the first wall can be reduced. Can be increased.
  • the air outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is a horizontal direction.
  • the projecting portion is formed at least at an end portion in the lateral direction of the second wall and a portion closer to the center than the end portion in the lateral direction of the second wall, The protruding amount of the protruding portion at the end portion is larger than the protruding amount of the protruding portion at the central portion.
  • a low-speed airflow flows along the side wall connecting the first wall and the second wall in the flow path forming part. For this reason, when the protruding amount of the protruding portion at the end portion is the same as the protruding amount of the protruding portion at the central portion, the lateral end portion of the air outlet is more central than the lateral end portion of the air outlet. Compared with the portion on the side, the low-speed airflow that merges with the high-speed airflow is reduced.
  • the low-speed airflow that merges with the high-speed airflow can be increased at the lateral end of the air outlet, and the air outlet is directed in the direction from the second wall toward the first wall.
  • the air volume of the blown-out air that is blown out can be further increased.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3 showing the air blowing device in FIG. 1.
  • FIG. 4 is a schematic diagram which shows the structure of the air conditioning unit in FIG. It is sectional drawing of the air blowing apparatus in FIG. 1 at the time of face mode. It is sectional drawing of the air blowing apparatus in FIG. 1 at the time of a defroster mode.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • FIG. 12 is a cross-sectional view taken along line XIV-XIV in FIG. 11.
  • FIG. 12 is an enlarged view of a region XV in FIG. 11.
  • FIG. 4 is a cross-sectional view taken along line XVI-XVI in FIG. 3. It is sectional drawing of the air blowing apparatus in 3rd Embodiment.
  • the air blowing device is applied to an air outlet and a duct of an air conditioning unit mounted in front of the vehicle.
  • the air blowing device 10 includes a blowout port 11, a duct 12, and an airflow deflecting door 13.
  • the blower outlet 11 blows air into the vehicle interior space as a target space.
  • the blower outlet 11 is located on the windshield 2 side of the upper surface portion 1a of the instrument panel 1. In other words, the blower outlet 11 is located in the range which overlaps with the windshield 2 among the upper surface parts 1a, when the windshield 2 is projected in parallel with the up-down direction with respect to the upper surface part 1a.
  • the duct 12 connects the air outlet 11 and the air conditioning unit 20.
  • the airflow deflection door 13 is located in the duct 12.
  • the air conditioning unit 20 is disposed inside the instrument panel 1.
  • the instrument panel 1 is an instrument panel provided in front of the passenger compartment, and has an upper surface portion 1a and a design surface portion (that is, a front surface portion) 1b.
  • the instrument panel 1 refers to the entire panel located in front of the front seat in the passenger compartment, including not only the part where the instruments are arranged, but also the part that houses the audio and the air conditioner.
  • the air outlets 11 are arranged at two locations on the front of the driver seat 4 a and the front of the passenger seat 4 b of the right-hand drive vehicle.
  • the blower outlet 11 of the front of the driver's seat 4a is demonstrated, the blower outlet 11 arrange
  • the air outlet 11 is elongated in the left-right direction. That is, the longitudinal direction of the opening shape of the air outlet 11 is along the left-right direction.
  • the length of the air outlet 11 in the left-right direction is longer than the length of the seat 4 in the left-right direction.
  • the length of the left-right direction of the blower outlet 11 may be equal to or shorter than the length of the seat 4 in the left-right direction.
  • the air outlet 11 has a flat shape having two long sides 11 a and 11 b and extending in one direction (that is, the left-right direction).
  • the opening edges 11a, 11b, 11c, and 11d of the air outlet 11 have a pair of long sides 11a and 11b and a pair of short sides 11c and 11d on the surface of the upper surface portion 1a.
  • the pair of long sides 11a and 11b are located on the rear side and the front side, respectively, and extend in the left-right direction.
  • the pair of short sides 11c and 11d connects the ends of the pair of long sides 11a and 11b.
  • the pair of long sides 11a and 11b are curved so as to be convex from the rear to the front.
  • the air outlet 11 switches the three blowing modes of the defroster mode, the upper vent mode, and the face mode by the air flow deflecting door 13 shown in FIG. 1, and blows out the temperature-adjusted air into the vehicle interior space as the target space.
  • the defroster mode air is blown out toward the windshield 2 to clear the cloudiness of the window.
  • the face mode air is blown out toward the upper half of the front seat occupant 5.
  • the upper vent mode air is blown out upward than in the face mode, and the rear seat passenger is blown.
  • the air outlet 11 is constituted by an opening formed at the end of the duct 12.
  • the duct 12 is connected to the air outlet 11.
  • the duct 12 is a flow path forming unit that forms therein an air flow path connected to the air flow upstream side of the air outlet 11.
  • the duct 12 is made of a resin that is configured separately from the air conditioning unit 20, and is connected to the air conditioning unit 20.
  • the end of the duct 12 on the upstream side of the air flow is connected to the defroster / face opening 30 of the air conditioning unit 20. Therefore, the duct 12 forms an air flow path through which air blown from the air conditioning unit 20 flows.
  • the duct 12 may be formed integrally with the air conditioning unit 20.
  • the duct 12 has a first wall (that is, the rear wall) 121 located on the rear side and a second wall (that is, the front wall) 122 located on the front side.
  • the first wall 121 and the second wall 122 face each other in the front-rear direction. Therefore, in the present embodiment, the front-rear direction corresponds to “the direction in which the first wall 121 and the second wall 122 face each other”. Further, the left-right direction corresponds to the “direction intersecting the direction in which the first wall 121 and the second wall 122 face each other”.
  • the direction from the front to the rear corresponds to the “direction from the second wall 122 to the first wall 121”.
  • the direction from the rear to the front corresponds to the “direction from the first wall 121 to the second wall 122”.
  • the air flow downstream end of the first wall 121 constitutes the long side 11a on the rear side of the opening edge of the air outlet 11 shown in FIG.
  • the edge part of the guide wall 14 mentioned later comprises the long side 11a of the blower outlet 11.
  • the air flow downstream end of the second wall 122 constitutes the long side 11b on the front side of the opening edge of the air outlet 11 shown in FIG. More specifically, the distal end of the protruding portion 15 described later constitutes the long side 11 b of the air outlet 11.
  • the airflow deflecting door 13 is an airflow deflecting member that generates two airflows having different flow velocities in the duct 12.
  • the airflow deflection door 13 changes the speed of each airflow in the first flow path 12a and the second flow path 12b inside the duct 12.
  • the first flow path 12 a is formed between the airflow deflecting door 13 and the first wall 121 of the duct 12.
  • the second flow path 12 b is formed between the airflow deflecting door 13 and the second wall 122 of the duct 12.
  • a butterfly door is adopted as the airflow deflecting door 13.
  • the butterfly door includes a plate-like door main body and a rotary shaft provided at the center of the door main body.
  • the rotation axis is arranged in parallel to the longitudinal direction of the air outlet 11 (that is, the vehicle left-right direction). For this reason, the airflow deflection door 13 rotates with the longitudinal direction of the air outlet 11 as the axis.
  • the vehicle front-rear direction length of the door main body is smaller than the width of the duct 12 in the vehicle front-rear direction. For this reason, even if the airflow deflecting door 13 is leveled, the duct 12 is not closed.
  • the rotation axis is located on the vehicle rear side with respect to the center of the duct 12 in the vehicle front-rear direction. This is because the cross-sectional area of the first flow path 12a is reduced to form a high-speed air flow in the first flow path 12a.
  • the first wall 121 of the duct 12 has a guide wall 14 at a portion on the outlet 11 side.
  • the guide wall 14 is continuous with the upper surface portion 1 a of the instrument panel 1.
  • the guide wall 14 guides the high-speed airflow so that the direction of the high-speed airflow is directed backward from the outlet 11 by bending the high-speed airflow described later along the wall surface by the Coanda effect.
  • the guide wall 14 guides the air flowing through the air flow path so as to blow out from the outlet in the direction from the second wall 122 toward the first wall 121.
  • the flow path width in the air outlet 11 side portion of the duct 12 that is, the interval between the first wall 121 and the second wall 122 is widened toward the downstream side of the air flow.
  • the guide wall 14 is curved so that the wall surface is convex toward the inside of the duct 12. In other words, the guide wall 14 is curved so as to be away from the second wall 122 from the portion 121a on the upstream side of the air flow with respect to the portion on the outlet 11 side of the first wall 121.
  • the duct 12 has a protruding portion 15 that protrudes from the second wall 122 toward the first wall 121.
  • This protrusion 15 is for directing a low-speed airflow flowing along the second wall 122 described later in a direction from the second wall 122 toward the first wall 121.
  • the protrusion 15 is located at the most downstream part of the air flow in the second wall 122.
  • the protrusion 15 has a flat plate shape, and the upper surface of the protrusion 15 and the surface of the upper surface 1 a of the instrument panel 1 are flush with each other.
  • the front end of the projecting portion 15 is located on the front side (that is, on the second wall 122 side) of the airflow deflecting door 13 in the first state in the front-rear direction.
  • the protrusion 15 is formed integrally with the second wall 122.
  • the protruding portion 15 may be formed as a separate body from the second wall 122.
  • the protrusion 15 is formed in the second wall 122 in the entire region in the left-right direction of the air outlet 11.
  • the protrusion amount L1 of the protrusion 15 is uniform over the entire area of the air outlet 11 in the left-right direction.
  • the position of the wall surface of the portion of the second wall 122 on the upstream side of the air flow from the protruding portion 15 is indicated by a broken line. The same applies to FIG. 11 described later.
  • the air conditioning unit 20 has an air conditioning casing 21 that constitutes an outer shell.
  • the air conditioning casing 21 constitutes an air passage that guides air to the vehicle interior, which is the air conditioning target space.
  • an inside air inlet 22 for sucking air inside the vehicle interior (that is, inside air) and an outside air inlet 23 for sucking air outside the vehicle compartment (ie, outside air) are formed.
  • a suction port opening / closing door 24 for selectively opening / closing the inside air suction port 22 and the outside air suction port 23 is provided at the most upstream part of the air flow of the air conditioning casing 21.
  • the inside air inlet 22, the outside air inlet 23, and the inlet opening / closing door 24 constitute an inside / outside air switching unit that switches the intake air into the air conditioning casing 21 between the inside air and the outside air.
  • the operation of the inlet opening / closing door 24 is controlled by a control signal output from a control device (not shown).
  • a blower 25 as a blower that blows air into the passenger compartment is disposed on the downstream side of the air flow of the suction opening / closing door 24.
  • the blower 25 of the present embodiment is an electric blower that drives the centrifugal multiblade fan 25a by an electric motor 25b that is a drive source, and the number of rotations (that is, the amount of blown air) is determined by a control signal output from a control device (not shown). Be controlled.
  • An evaporator 26 that functions as a cooler for cooling the air blown by the blower 25 is disposed on the downstream side of the air flow of the blower 25.
  • the evaporator 26 is a heat exchanger that exchanges heat between the refrigerant flowing through the inside and the air, and constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, an expansion valve, and the like (not shown).
  • a heater core 27 that functions as a heater for heating the air cooled by the evaporator 26 is disposed on the downstream side of the air flow of the evaporator 26.
  • the heater core 27 of the present embodiment is a heat exchanger that heats air using the cooling water of the vehicle engine as a heat source.
  • the evaporator 26 and the heater core 27 constitute a temperature adjusting unit that adjusts the temperature of the air blown into the vehicle interior.
  • a cold air bypass passage 28 is formed on the downstream side of the air flow of the evaporator 26 to allow the air after passing through the evaporator 26 to flow around the heater core 27.
  • the temperature of the air mixed on the downstream side of the air flow of the heater core 27 and the cold air bypass passage 28 varies depending on the air volume ratio of the air passing through the heater core 27 and the air passing through the cold air bypass passage 28.
  • an air mix door 29 is arranged on the downstream side of the air flow of the evaporator 26 and on the inlet side of the heater core 27 and the cold air bypass passage 28.
  • the air mix door 29 continuously changes the air volume ratio of the cold air flowing into the heater core 27 and the cold air bypass passage 28, and functions as a temperature adjusting unit together with the evaporator 26 and the heater core 27.
  • the operation of the air mix door 29 is controlled by a control signal output from the control device.
  • a defroster / face opening 30 and a foot opening 31 are provided at the most downstream part of the air flow of the air conditioning casing 21.
  • the defroster / face opening 30 is connected to the air outlet 11 provided in the upper surface 1 a of the instrument panel 1 through the duct 12.
  • the foot opening 31 is connected to the foot outlet 33 via the foot duct 32.
  • a defroster / face door 34 for opening and closing the defroster / face opening 30 is disposed on the upstream side of the air flow of the defroster / face opening 30.
  • a foot door 35 that opens and closes the foot opening 31 is disposed on the upstream side of the air flow of the foot opening 31.
  • the defroster / face door 34 and the foot door 35 are blowing mode doors for switching the blowing state of the air blown into the vehicle interior.
  • the airflow deflecting door 13 operates in conjunction with these blowing mode doors 34 and 35 so as to be in a desired blowing mode.
  • the operations of the air flow deflecting door 13 and the blowing mode doors 34 and 35 are controlled by a control signal output from the control device. Note that the airflow deflecting door 13 and the blowing mode doors 34 and 35 can be changed in position by a passenger's manual operation.
  • the defroster / face door 34 closes the defroster / face opening 30 and the foot door 35 opens the foot opening 31.
  • the defroster / face door 34 opens the defroster / face opening 30 and the foot door 35 closes the foot opening 31.
  • the position of the airflow deflecting door 13 is a position corresponding to a desired blowing mode.
  • the velocity of each of the airflow passing through the first flow path 12a and the airflow passing through the second flow path 12b is changed by rotating the airflow deflecting door 13.
  • the blowing angle ⁇ 1 is changed.
  • the blow angle ⁇ 1 here is an angle formed by the blow direction with respect to the vertical direction as shown in FIG. Incidentally, the vertical direction is used as a reference because the direction of the airflow passing between the portion 121a upstream of the guide wall 14 and the second wall 122 of the first wall 121 from the guide wall 14 is from bottom to top. Because it is the direction to go.
  • the door angle ⁇ of the airflow deflecting door 13 is set to an angle shown in FIG. That is, the door main body portion of the airflow deflecting door 13 is tilted so that the distance between the door main body portion and the first wall 121 decreases as the air flows in the air flow direction.
  • the cross-sectional area of the 1st flow path 12a becomes smaller than the cross-sectional area of the 2nd flow path 12b.
  • a high-speed air flow F1 is generated in the first flow path 12a
  • a low-speed air flow F2 is generated in the second flow path 12b.
  • the cross-sectional area of the first flow path 12a means an area of a cross section that crosses the air flow of the first flow path 12a.
  • the cross-sectional area of the second flow path 12b means an area of a cross section that crosses the air flow of the first flow path 12a.
  • the high-speed air flow F1 flows along the guide wall 14 by the Coanda effect and is bent backward.
  • a negative pressure is generated on the downstream side of the airflow deflection door 13 by the flow of the high-speed airflow F1.
  • the low-speed airflow F2 is drawn to the downstream side of the airflow deflection door 13, and merges with the high-speed airflow F1 while being bent toward the high-speed airflow F1.
  • the largest bending angle (theta) when the air which flows through the inside of the duct 12 is bent by the vehicle rear side and is blown off from the blower outlet 11 can be enlarged.
  • air whose temperature has been adjusted by the air conditioning unit 20, for example, cold air is blown out from the air outlet 11 toward the upper body of the front seat occupant.
  • the speed difference between the high-speed airflow F1 and the low-speed airflow F2 increases, the bending angle of the air blown out from the air outlet 11 increases. Thereby, the blowing angle ⁇ in the face mode can be set to an arbitrary angle.
  • the opening edges 11 a, 11 b, 11 c constituting the air outlet 11 are provided. It is determined by the shape of the long side 11a connected to the guide wall 14 among 11d. That is, the perpendicular direction of the long side 11a connected to the guide wall 14 in the opening edge portion is the air blowing direction.
  • the normal direction of the long side 11a is the normal direction of the long side 11a when the long side 11a is linear, and the normal direction of the tangent line of the long side 11a when the long side 11a is curved. That is.
  • the long side 11 a connected to the guide wall 14 in the opening edge portion constituting the air outlet 11 has a convex shape from the rear to the front.
  • the blown air can be converged, and the blown air can be concentrated on the occupant 5.
  • the door angle of the airflow deflecting door 13 is the angle shown in FIG. That is, the door main body portion of the airflow deflecting door 13 is tilted so that the distance between the door main body portion and the second wall 122 decreases in the air flow direction.
  • the first flow path 12a and the second flow path 12b are in the second state in which the airflows F3 and F4 having the same or similar speed are generated.
  • the airflows F3 and F4 flow upward. For this reason, the air whose temperature is adjusted by the air conditioning unit 20, for example, warm air, is blown out from the air outlet 11 toward the windshield 2.
  • the direction of the air flow deflecting door 13 may be the direction in which the door main body is parallel to the vertical direction. At this time, the airflow in the first flow path 12a and the airflow in the second flow path 12b have the same speed.
  • the blowing mode when the blowing mode is the upper vent mode, the direction of the airflow deflecting door 13 is the direction between the face mode and the defroster mode. In this case as well, the first state is entered, but since the high-speed air flow F1 is slower than in the face mode, the blowing angle ⁇ 1 is smaller than in the face mode. As a result, air whose temperature has been adjusted by the air conditioning unit 20, for example, cold air, is blown out from the air outlet 11 toward the rear seat occupant.
  • the protrusion 15 is provided on the second wall 122 of the duct 12.
  • the air blowing device of Comparative Example 1 corresponds to the above-described conventional air blowing device, and differs from the air blowing device 10 of the present embodiment only in that the protrusion 15 is not provided.
  • the low-speed airflow F2 from the second flow path 12b is on the side away from the second wall 122.
  • the airflow F2a is drawn into the high-speed airflow F1.
  • the airflow F2b on the side close to the second wall 122 in the low-speed airflow F2 flows along the second wall 122, and thus is not drawn into the high-speed airflow F1.
  • the low-speed air flow F ⁇ b> 2 b diffuses from the outlet 11.
  • the air blowing device 10 of the present embodiment when the airflow deflection door 13 is in the first state, the low-speed airflow that flows along the second wall 122 by the protrusion 15. F2 can be guided in the direction from the second wall 122 toward the first wall 121. For this reason, the entire low-speed air flow F2 can be drawn into the high-speed air flow F1. Therefore, according to the air blowing device 10 of this embodiment, compared with the air blowing device of the comparative example 1, the low-speed air flow F1 drawn into the high-speed air flow F1 can be increased, and the blower outlet 11 toward the vehicle rear side. It is possible to increase the air volume of the blown air blown out from.
  • the protrusion amount of the protrusion 15 is preferably set as follows as shown in FIGS.
  • FIG. 10 shows the bending angle ⁇ 2 and the blowing pressure loss of the low-speed air flow F2 with respect to the ratio (ie, L1 / L2) between the protrusion amount L1 of the protrusion 15 and the distance L2 between the protrusion 15 and the air flow deflecting door 13 shown in FIG. It is a figure which shows the relationship.
  • This is an experimental result in which the inventor measured the bending angle ⁇ 2 and the blowing pressure loss using the air blowing device 10 of the present embodiment in which the protruding amount L1 of the protruding portion 15 has various sizes.
  • the blowout pressure loss is the pressure loss of the blown air from the blowout port 11.
  • the protrusion amount L1 of the protrusion 15 is the distance from the surface of the second wall 122 to the tip of the protrusion 15 in the front-rear direction. More details are as follows. When the airflow deflection door 13 is in the first state, the position of the second wall 122 that is the shortest distance from the airflow deflection door 13 is set as the reference position Ps. At this time, the distance from the reference position Ps of the second wall 122 in the front-rear direction to the tip of the protruding portion 15 is the protruding amount L1.
  • the distance L2 between the protrusion 15 and the airflow deflection door 13 is the distance in the front-rear direction between the tip of the protrusion 15 and the airflow deflection door 13. More specifically, this is the distance in the front-rear direction between the end of the airflow deflecting door 13 that is closest to the second wall 122 and the tip of the protruding portion 15 when the airflow deflecting door 13 is in the first state.
  • the ratio of L1 to L2 (ie, L1 / L2) is 0.
  • the ratio of L1 to L2 (ie, L1 / L2) also increases. .
  • the bending angle ⁇ 2 of the low-speed airflow F2 increases, but the blowout pressure loss increases.
  • the bending angle ⁇ 2 of the low-speed air flow F2 may be 70 degrees or more in order to join the low-speed air flow F2 to the high-speed air flow F1.
  • the blowout pressure loss is 20 Pa or less, it has been confirmed that the influence of the reduction in the blown air volume is small.
  • the protrusion amount L1 of the protrusion 15 is set so as to satisfy the following formula (1).
  • the protrusion 15 is located in the most downstream portion of the air flow in the second wall 122. And the upper surface of the protrusion part 15 and the surface of the upper surface part 1a of the instrument panel 1 are continuing on the same plane.
  • the projecting portion 15 constitutes a part of the upper surface portion 1 a, and the tip of the projecting portion 15 constitutes the opening edge portion 11 b of the outlet 11.
  • the opening width in the front-back direction of the blower outlet 11 can be made small, and the designability of the instrument panel 1 is improved. it can.
  • the air blowing device 10 of the present embodiment is a device in which, in the air blowing device 10 of the first embodiment, the protruding amount L1 of the protruding portion 15 at both ends in the left-right direction of the air outlet 11 is increased. This is the same as the air blowing device 10 of the first embodiment.
  • the front-back direction of the blower outlet 11 is the vertical direction of the blower outlet 11
  • the left-right direction of the blower outlet 11 is the horizontal direction of the blower outlet 11.
  • the protrusion 15 is formed in the second wall 122 in the entire region in the left-right direction of the air outlet 11.
  • the protrusion amounts L1a and L1b of the protrusions 15a and 15b at both ends of the second wall 122 in the left-right direction of the outlet 11 are It is larger than the projecting amount L1c of the projecting portion 15c on the center side than both end portions of the second wall 122 in the left-right direction of the air outlet 11.
  • the protrusion amount L1c of the protrusion 15 c on the center side with respect to the both ends of the second wall 122 in the left-right direction of the outlet 11 is more central than the ends of the outlet 11 in the left-right direction. Uniform throughout the entire range.
  • the protrusions L1a and L1b of the protrusions 15a and 15b at both ends of the second wall 122 in the left and right direction of the air outlet 11 gradually increase from the center side to the end of the air outlet 11 in the left and right direction. ing.
  • the distance between the sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b and the long side 11a on the rear side of the opening edge of the outlet 11 is the side 11b3 and the outlet formed by the tip of the protrusion 15c.
  • interval with the long side 11a of the back side of 11 opening edge parts it becomes narrow gradually as it goes to the end from the center side in the left-right direction of the blower outlet 11.
  • the side 11b3 formed by the tip of the protruding portion 15c is curved along the long side 11a of the air outlet 11.
  • the side 11b1 formed by the tip of the protruding portion 15a is linear. Then, as shown in FIG. 15, when the virtual straight line VL1 perpendicular to the side 11b1 is extended to the blowing direction side from the outlet 11, the virtual straight line Vl1 passes through the target point P1 and the side 11b1 The direction is set. In FIG. 15, the virtual straight line VL1 extends from the center point of the side 11b1, but may extend from any point of the side 11b1.
  • the side 11b2 formed by the tip of the protruding portion 15b is also a straight line similar to the side 11b1. However, the angle with respect to the left-right direction is different between the side 11b1 and the side 11b2. Therefore, in this embodiment, the front-end
  • only the protrusion amount L1c of the protrusion 15c may be set so as to satisfy the formula (1) described in the first embodiment.
  • the protruding amounts L1a and L1b of the protruding portions 15a and 15b at the both ends in the left and right direction of the second wall 122 are in the regions inside the both ends in the left and right direction of the second wall 122. It is larger than the protrusion amount L1c of the protrusion 15c.
  • the protrusion amount L1 of the protrusion 15 is uniform in the entire left and right direction of the second wall 122.
  • the low speed air current F 2 is converted into the short sides 11 c and 11 d Flows along the side walls 123 and 124 of the duct 12.
  • a low-speed air flow F ⁇ b> 2 flowing along the side walls 123 and 124 is blown upward from the air outlet 11.
  • the protruding amounts L1a and L1b of the protruding portions 15a and 15b are increased at both ends of the outlet 11 in the left-right direction.
  • the low-speed airflow F ⁇ b> 2 flowing near the side walls 123 and 124 of the duct 12 can be directed to the first wall 121.
  • the low-speed air flow F2 that merges with the high-speed air flow F1 can be increased at both ends in the left-right direction of the air outlet 11, and the air volume of the air blown out from the air outlet 11 in the direction from the front to the rear is further increased. Can do.
  • the protruding amounts L1a and L1b of the protruding portions 15a and 15b at both ends in the left and right direction of the second wall 122 gradually increase from the center side in the left and right direction toward the end.
  • the sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b are linear.
  • the perpendicular direction of the sides 11b1 and 11b2 faces the face of the occupant 5 that is the target point P1.
  • the perpendicular direction of the sides 11b1 and 11b2 is the flow direction of the low-speed airflow F2.
  • the directions of the sides 11b and 11c are set so that the low-speed air flow F2 is directed to the target point P1.
  • the low-speed air flow F ⁇ b> 2 flowing through both ends in the left-right direction of the outlet 11 can be directed to the face of the occupant 5 in the face mode.
  • the high-speed airflow F1 where the low-speed airflow F2 merges can also be guided to the face of the occupant 5. This has been confirmed by experiments conducted by the present inventors.
  • the present embodiment it is possible to increase the wind speed at the face position of the occupant 5 as compared with the first embodiment.
  • the wind speed at the point P1 that is 1 m away from the center of the outlet 11 increases by 0.5 m / s.
  • the air blowing device 10 of the present embodiment is different from the air blowing device 10 of the first embodiment in the shape of the protrusions, and the other configurations are the same as the air blowing device 10 of the first embodiment. is there.
  • the protruding portion 16 is provided on the second wall 122 of the duct 12. This protrusion 16 corresponds to the protrusion 15 of the first embodiment.
  • the protrusion 16 has a curved surface 16a that curves in a convex shape toward the front side upstream of the tip of the protrusion 16 on the upstream side of the air flow.
  • the curved surface 16 a extends from the position on the upstream side of the air flow of the protrusion 16 in the second wall 122 to the position of the tip of the protrusion 16.
  • the protruding portion 15 when the protruding portion 15 is plate-shaped and extends in a direction orthogonal to the surface of the second wall 122, the air flow upstream of the protruding portion 15 is in the face mode. Itching occurs on the side.
  • a low-speed air flow F2 can flow along the curved surface 16a, and stagnation occurs on the upstream side of the air flow of the protrusion 16 inside the duct 12. Can be avoided.
  • the protrusions 15 and 16 are located on the most downstream portion of the second wall 122 in the air flow, but may be located on the upstream side of the air flow from this position.
  • the protrusions 15 and 16 only need to be located in a portion of the second wall 122 on the downstream side of the air flow with respect to the airflow deflection door 13.
  • the shapes of the protrusions 15 and 16 are not limited to the shapes described in the above embodiments.
  • the projecting portions 15 and 16 project from the second wall 122 toward the first wall 121, and the low-speed airflow F ⁇ b> 2 flowing along the second wall 122 travels from the second wall 122 to the first wall 121. Any shape that can be directed in the direction is acceptable.
  • protrusion amount L1a, L1b of protrusion part 15a, 15b in the both ends of the left-right direction of the 2nd wall 122 becomes large gradually as it goes to the end from the center side of the left-right direction.
  • the protruding amounts L1a and L1b of the protruding portions 15a and 15b may be constant at both the left and right ends of the second wall 122.
  • the protruding amounts L1a and L1b of the protruding portions 15a and 15b at both the left and right end portions of the second wall 122 are larger than the protruding amount L1c of the protruding portion 15c at a portion inside the both end portions of the second wall 122 in the left and right direction. If it is larger, the effect (1) described in the second embodiment can be obtained.
  • protrusion amount L1a and L1b of protrusion part 15a, 15b are more than protrusion amount L1c of protrusion part 15c in the site
  • the protruding portion 15 is formed in the entire area in the left-right direction of the outlet 11 in the second wall 122, but is not limited thereto. Within the range of the center side rather than the both ends of the 2nd wall 122 in the left-right direction of the blower outlet 11, there may exist the part in which the protrusion part 15c is formed, and the part in which the protrusion part 15c is not formed. . Only one of the protrusions 15a and 15b at both ends of the second wall 122 in the left-right direction of the air outlet 11 may be formed.
  • the projecting portion 15 is at least on the center side of the end portion in the left-right direction of the air outlet 11 of the second wall 122 and the end portion of the second wall 122 in the left-right direction of the air outlet 11. What is necessary is just to be formed in the part.
  • the protruding amount of the protruding portion 15 at the end portion is made larger than the protruding amount of the protruding portion 15 at the central portion. Thereby, the effect (1) described in the second embodiment can be obtained.
  • the protruding amount of the protruding portion 15 at the end portion is gradually increased from the center side in the left-right direction of the air outlet 11 toward the end side. Thereby, the effect (2) described in the second embodiment can be obtained.
  • the sides 11b1 and 11b2 formed by the ends of the protrusions 15a and 15b are linear, and the perpendicular direction of the sides 11b1 and 11b2 is the face of the occupant 5 that is the target point P1. It was suitable.
  • the shape of the sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b is not limited to a straight line, and may be a curve.
  • an arc shape that is convex in the direction from the first wall 121 toward the second wall 122 may be used.
  • the perpendicular direction of the tangent line of the sides 11b1 and 11b2 is set to face the target point P1.
  • the planar shape of the air outlet 11 is a curved shape, but it may be a shape extending linearly. That is, the long side 11a of the air outlet 11 constituted by the tip of the guide wall 14 may be a straight line instead of a curve.
  • the air outlet 11 has a flat shape extending in one direction, but may not have a flat shape. That is, the pair of sides 11a and 11b and the pair of sides 11c and 11d at the opening edge of the outlet 11 may have the same length.
  • the butterfly door is employed as the airflow deflecting door 13, but other doors such as a sliding door may be employed.
  • the position of the air flow deflecting door 13 is set to a position where the cross-sectional area of the first flow path 12a is smaller than the cross-sectional area of the second flow path 12b.
  • the air blowing device of the present disclosure is applied to the air outlet 11 of the upper surface portion 1a of the instrument panel 1.
  • the air blowing device of the present disclosure is applied to the air outlet of the lower surface of the instrument panel 1 ( That is, you may apply to a foot blower outlet. In this case, the blowing angle of the air blown from the foot outlet can be arbitrarily changed.
  • the air blowing apparatus of this indication was applied to the vehicle air conditioner, you may apply the air blowing apparatus of this indication to air conditioners other than a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air-Flow Control Members (AREA)

Abstract

An air discharge device is provided with a discharge opening (11), a flow passage forming section (12), and an air flow deflection member (13). The flow passage forming section has a first wall (121) and a second wall (122) which faces the first wall (121). The part of the first wall, which faces the discharge opening, constitutes a guide wall (14) for guiding the direction of a high-speed air flow, which has been generated by the air flow deflection member, so that the high-speed air flow is directed from the second wall toward the first wall. The flow passage forming member has a protrusion (15) on the portion of the second wall, which is located downstream of the air flow deflection member in the air flow direction, the protrusion (15) protruding from the second wall toward the first wall and directing a low-speed air flow, which flows along the second wall, from the second wall toward the first wall.

Description

空気吹出装置Air blowing device 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年4月8日に出願された日本特許出願番号2015-079399号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2015-079399 filed on April 8, 2015, the contents of which are incorporated herein by reference.
 本開示は、空気を吹き出す空気吹出装置に関するものである。 The present disclosure relates to an air blowing device that blows out air.
 特許文献1に、コアンダ効果を利用して空気をガイド壁に沿わせて曲げながら、空気を吹出口から吹き出す空気吹出装置が開示されている。この空気吹出装置は、具体的には、対象空間に空気を吹き出す吹出口と、吹出口の空気流れ上流側に連なる空気流路を内部に形成する流路形成部と、この空気流路に流速が異なる2つの気流を発生させる気流偏向部材とを備える。 Patent Document 1 discloses an air blowing device that blows air from a blowout port while bending the air along a guide wall using the Coanda effect. Specifically, the air blowing device includes a blowout port that blows air into the target space, a flow channel forming unit that forms an air flow channel that is connected to the upstream side of the air flow of the blower port, and a flow velocity in the air flow channel. And an airflow deflecting member that generates two airflows different from each other.
 空気流路において、気流偏向部材と第1の壁との間が第1流路であり、気流偏向部材と第2の壁との間が第2流路である。気流偏向部材は、第1流路に高速の気流が発生するとともに、第2流路に低速の気流が発生するように構成されている。そして、第1の壁のうち吹出口側の一部は、気流偏向部材が発生させた第1流路からの高速の気流を壁面に沿わせて曲げて、高速の気流の向きを第2の壁から第1の壁に向かう方向とするように、高速の気流をガイドするガイド壁を構成している。 In the air flow path, the first flow path is between the air flow deflecting member and the first wall, and the second flow path is between the air flow deflecting member and the second wall. The airflow deflecting member is configured such that a high-speed airflow is generated in the first flow path and a low-speed airflow is generated in the second flow path. A part of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow to the second direction. A guide wall that guides a high-speed air flow is configured so as to be directed from the wall toward the first wall.
 この空気吹出装置では、高速の気流がコアンダ効果によってガイド壁に沿って曲げられ、低速の気流が高速の気流に引き込まれることで、空気流路を流れる空気が曲げられて吹出口から吹き出される際の曲がり角度を大きくできる。 In this air blowing device, the high-speed airflow is bent along the guide wall by the Coanda effect, and the low-speed airflow is drawn into the high-speed airflow, so that the air flowing through the air flow path is bent and blown out from the air outlet. The bending angle can be increased.
特開2014-210564号公報JP 2014-210564 A
 しかし、発明者の詳細な検討の結果、上記した従来の空気吹出装置では、流路形成部の内部を流れる空気の一部が吹出口から拡散することを見出した。このため、上記した従来の空気吹出装置では、第2の壁から第1の壁に向かう方向に吹出口から吹き出される吹出風の風量が目標の風量よりも少なくなる。 However, as a result of detailed studies by the inventors, it has been found that in the above-described conventional air blowing device, a part of the air flowing inside the flow path forming portion diffuses from the air outlet. For this reason, in the above-described conventional air blowing device, the air volume of the blown air blown from the air outlet in the direction from the second wall toward the first wall is smaller than the target air volume.
 本開示は、上記した従来の空気吹出装置と比較して、第2の壁から第1の壁に向かう方向に吹出口から吹き出される吹出風の風量を増大させることができる空気吹出装置を提供することを目的とする。 The present disclosure provides an air blowing device capable of increasing the amount of blown air blown from a blower outlet in a direction from the second wall toward the first wall as compared with the above-described conventional air blowing device. The purpose is to do.
 本開示の1つの観点によれば、
 空気を吹き出す空気吹出装置は、
 対象空間に空気を吹き出す吹出口と、
 第1の壁および第1の壁に対向する第2の壁を有し、吹出口の空気流れ上流側に連なる空気流路を内部に形成する流路形成部と、
 空気流路に設けられ、空気流路に流速が異なる2つの気流を発生させる気流偏向部材とを備え、
 空気流路において、気流偏向部材と第1の壁との間を第1流路とし、気流偏向部材と第2の壁との間を第2流路としたとき、
 気流偏向部材は、相対的に、第1流路に高速の気流が発生するとともに、第2流路に低速の気流が発生するように構成されており、
 第1の壁のうち吹出口側の一部は、気流偏向部材が発生させた第1流路からの高速の気流を壁面に沿わせて曲げて、高速の気流の向きを第2の壁から第1の壁に向かう方向とするように、高速の気流をガイドするガイド壁を構成し、
 流路形成部は、第2の壁のうち気流偏向部材よりも空気流れ下流側の部位において、第2の壁から第1の壁に向かって突出し、第2の壁に沿って流れる低速の気流を第2の壁から第1の壁に向かう方向に向かわせる突出部を有する。
According to one aspect of the present disclosure,
Air blower that blows out air
An air outlet that blows air into the target space;
A flow path forming section having a first wall and a second wall facing the first wall, and forming an air flow path connected to the upstream side of the air flow of the air outlet;
An air flow deflecting member that is provided in the air flow path and generates two air flows having different flow velocities in the air flow path;
In the air flow path, when the first flow path is between the air flow deflecting member and the first wall and the second flow path is between the air flow deflecting member and the second wall,
The airflow deflecting member is configured such that a relatively high speed airflow is generated in the first flow path and a low speed airflow is generated in the second flow path,
A portion of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow from the second wall. Configure a guide wall that guides the high-speed airflow so that it is in the direction toward the first wall,
The flow path forming unit projects from the second wall toward the first wall at a portion of the second wall on the downstream side of the airflow deflecting member with respect to the airflow deflecting member, and flows along the second wall. Has a projecting portion for directing the second wall from the second wall toward the first wall.
 ここで、本観点と異なり、突出部が無い場合では、第2流路からの低速の気流のうち第2の壁から離れた側の気流は、高速の気流に引き込まれるが、第2流路からの低速の気流のうち第2の壁側の気流は、第2の壁に沿って流れるため、高速の気流に引き込まれない。このため、低速の気流が吹出口から拡散してしまう。 Here, unlike this viewpoint, in the case where there is no protrusion, the airflow on the side away from the second wall among the low-speed airflow from the second flow path is drawn into the high-speed airflow. Of the low-speed airflow from the second airflow, the airflow on the second wall side flows along the second wall and is not drawn into the high-speed airflow. For this reason, a low-speed air current will diffuse from the outlet.
 これに対して、本観点によれば、突出部によって、第2の壁に沿って流れる低速の気流が第2の壁から第1の壁に向かう方向に導かれるので、低速の気流の全体を高速の気流に引き込ませることができる。よって、上記した従来の空気吹出装置と比較して、高速の気流に引きこまれる低速の気流を増大でき、第2の壁から第1の壁に向かう方向に吹出口から吹き出される吹出風の風量を増大させることができる。 On the other hand, according to this aspect, since the low-speed airflow flowing along the second wall is guided in the direction from the second wall toward the first wall by the protrusion, the entire low-speed airflow is It can be drawn into a high-speed air stream. Therefore, compared with the above-described conventional air blowing device, the low-speed air current drawn by the high-speed air current can be increased, and the blowing air blown from the air outlet in the direction from the second wall toward the first wall can be increased. The air volume can be increased.
 また、本開示の別の観点によれば、
 空気を吹き出す空気吹出装置は、
 対象空間に空気を吹き出す吹出口と、
 第1の壁および第1の壁に対向する第2の壁を有し、吹出口の空気流れ上流側に連なる空気流路を内部に形成する流路形成部と、
 空気流路に設けられ、空気流路に流速が異なる2つの気流を発生させる気流偏向部材とを備え、
 空気流路において、気流偏向部材と第1の壁との間を第1流路とし、気流偏向部材と第2の壁との間を第2流路としたとき、
 気流偏向部材は、第1流路の断面積が第2流路の断面積よりも小さくなることにより、第2流路の気流よりも高速の気流が第1流路に発生するとともに、第1流路の気流よりも低速の気流が第2流路に発生するように構成されており、
 第1の壁のうち吹出口側の一部は、気流偏向部材が発生させた第1流路からの高速の気流を壁面に沿わせて曲げて、高速の気流の向きを第2の壁から第1の壁に向かう方向とするように、高速の気流をガイドするガイド壁を構成し、
 流路形成部は、第2の壁のうち気流偏向部材よりも空気流れ下流側の部位において、第2の壁から第1の壁に向かって突出し、第2の壁に沿って流れる低速の気流を第2の壁から第1の壁に向かう方向に向かわせる突出部を有する。
According to another aspect of the present disclosure,
Air blower that blows out air
An air outlet that blows air into the target space;
A flow path forming section having a first wall and a second wall facing the first wall, and forming an air flow path connected to the upstream side of the air flow of the air outlet;
An air flow deflecting member that is provided in the air flow path and generates two air flows having different flow velocities in the air flow path;
In the air flow path, when the first flow path is between the air flow deflecting member and the first wall and the second flow path is between the air flow deflecting member and the second wall,
The air flow deflecting member generates a first air flow at a higher speed than the air flow in the second flow path because the cross-sectional area of the first flow path is smaller than the cross-sectional area of the second flow path. An air flow that is slower than the air flow in the flow path is generated in the second flow path,
A portion of the first wall on the outlet side bends the high-speed airflow from the first flow path generated by the airflow deflecting member along the wall surface, and changes the direction of the high-speed airflow from the second wall. Configure a guide wall that guides the high-speed airflow so that it is in the direction toward the first wall,
The flow path forming unit projects from the second wall toward the first wall at a portion of the second wall on the downstream side of the airflow deflecting member with respect to the airflow deflecting member, and flows along the second wall. Has a projecting portion for directing the second wall from the second wall toward the first wall.
 本観点によっても、突出部によって、第2の壁に沿って流れる低速の気流が第2の壁から第1の壁に向かう方向に導かれるので、低速の気流の全体を高速の気流に引き込ませることができる。よって、上記した従来の空気吹出装置と比較して、高速の気流に引きこまれる低速の気流を増大でき、第2の壁から第1の壁に向かう方向に吹出口から吹き出される吹出風の風量を増大させることができる。 Also in this aspect, since the low-speed airflow flowing along the second wall is guided in the direction from the second wall toward the first wall by the protrusion, the entire low-speed airflow is drawn into the high-speed airflow. be able to. Therefore, compared with the above-described conventional air blowing device, the low-speed air current drawn by the high-speed air current can be increased, and the blowing air blown from the air outlet in the direction from the second wall toward the first wall can be increased. The air volume can be increased.
 また、本開示のさらに別の観点によれば、
 吹出口は、第1の壁と第2の壁とが対向する方向を縦方向とし、第1の壁と第2の壁とが対向する方向に対して交差する方向を横方向とし、
 突出部は、吹出口の横方向における第2の壁の全域に形成されており、
 吹出口の横方向における第2の壁の両端部の少なくとも一方での突出部の突出量が、吹出口の横方向における第2の壁の両端部よりも内側の部位での突出部の突出量よりも大きくなっていることを特徴としている。
According to yet another aspect of the present disclosure,
The air outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is a horizontal direction.
The protrusion is formed in the entire area of the second wall in the lateral direction of the air outlet,
The amount of protrusion of the projecting portion of at least one of both ends of the second wall in the lateral direction of the air outlet is the amount of protrusion of the projecting portion at a site inside the both ends of the second wall in the lateral direction of the air outlet. It is characterized by being larger than.
 ここで、吹出口の横方向の端部では、流路形成部の内部を低速の気流が第1の壁と第2の壁をつなぐ側壁に沿って流れる。このため、吹出口の横方向における第2の壁の一端から他端までの全域で、突出部の突出量を均一とした場合、吹出口の横方向の端部では、吹出口の横方向の端部よりも内側部分と比較して、高速の気流に合流する低速の気流が少なくなってしまう。 Here, at the lateral end of the air outlet, a low-speed airflow flows along the side wall connecting the first wall and the second wall in the flow path forming part. For this reason, when the amount of protrusion of the projecting portion is uniform in the entire region from the one end to the other end of the second wall in the lateral direction of the air outlet, the lateral end of the air outlet is in the lateral direction of the air outlet. Compared with the inner portion of the end portion, the low-speed airflow that merges with the high-speed airflow is reduced.
 これに対して、本観点では、吹出口の横方向における第2の壁の両端部の少なくとも一方における突出量を、吹出口の横方向における第2の壁の両端部よりも内側部分における突出量よりも大きくしている。これにより、吹出口の横方向の両端の少なくとも一方において、高速の気流に合流する低速の気流を増大でき、第2の壁から第1の壁に向かう方向に吹出口から吹き出す吹出風の風量をより増大させることができる。 On the other hand, in this aspect, the protrusion amount at at least one of both end portions of the second wall in the lateral direction of the blower outlet is set as the protrusion amount at the inner portion of the both ends of the second wall in the lateral direction of the blower outlet. Is bigger than. Thereby, at least one of the both ends of the blower outlet in the lateral direction can increase the low-speed airflow that merges with the high-speed airflow, and the amount of blown air blown from the blower outlet in the direction from the second wall toward the first wall can be reduced. Can be increased.
 また、本開示のさらに別の観点によれば、
 吹出口は、第1の壁と第2の壁とが対向する方向を縦方向とし、第1の壁と第2の壁とが対向する方向に対して交差する方向を横方向とし、
 突出部は、少なくとも、第2の壁のうち横方向での端部と、第2の壁のうち横方向での端部よりも中央側の部分とに形成されており、
 端部での突出部の突出量が、中央側の部分での突出部の突出量よりも大きくなっている。
According to yet another aspect of the present disclosure,
The air outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is a horizontal direction.
The projecting portion is formed at least at an end portion in the lateral direction of the second wall and a portion closer to the center than the end portion in the lateral direction of the second wall,
The protruding amount of the protruding portion at the end portion is larger than the protruding amount of the protruding portion at the central portion.
 ここで、吹出口の横方向の端部では、流路形成部の内部を低速の気流が第1の壁と第2の壁をつなぐ側壁に沿って流れる。このため、端部での突出部の突出量が、中央側の部分での突出部の突出量と同じ場合、吹出口の横方向の端部では、吹出口の横方向の端部よりも中央側の部分と比較して、高速の気流に合流する低速の気流が少なくなってしまう。 Here, at the lateral end of the air outlet, a low-speed airflow flows along the side wall connecting the first wall and the second wall in the flow path forming part. For this reason, when the protruding amount of the protruding portion at the end portion is the same as the protruding amount of the protruding portion at the central portion, the lateral end portion of the air outlet is more central than the lateral end portion of the air outlet. Compared with the portion on the side, the low-speed airflow that merges with the high-speed airflow is reduced.
 これに対して、本観点によれば、吹出口の横方向の端部において、高速の気流に合流する低速の気流を増大でき、第2の壁から第1の壁に向かう方向に吹出口から吹き出す吹出風の風量をより増大させることができる。 On the other hand, according to the present aspect, the low-speed airflow that merges with the high-speed airflow can be increased at the lateral end of the air outlet, and the air outlet is directed in the direction from the second wall toward the first wall. The air volume of the blown-out air that is blown out can be further increased.
第1実施形態における空気吹出装置および空調ユニットの車両搭載状態を示す断面図である。It is sectional drawing which shows the vehicle mounting state of the air blowing apparatus and air-conditioning unit in 1st Embodiment. 車室内における図1中の吹出口の配置を示す平面図である。It is a top view which shows arrangement | positioning of the blower outlet in FIG. 1 in a vehicle interior. 図2中の運転席側の吹出口の拡大図である。It is an enlarged view of the blower outlet on the driver's seat side in FIG. 図1中の空気吹出装置を示す図3中のIV-IV線矢視断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3 showing the air blowing device in FIG. 1. 図1中の空調ユニットの構成を示す模式図である。It is a schematic diagram which shows the structure of the air conditioning unit in FIG. フェイスモード時における図1中の空気吹出装置の断面図である。It is sectional drawing of the air blowing apparatus in FIG. 1 at the time of face mode. デフロスタモード時における図1中の空気吹出装置の断面図である。It is sectional drawing of the air blowing apparatus in FIG. 1 at the time of a defroster mode. 比較例1の空気吹出装置の断面図である。It is sectional drawing of the air blowing apparatus of the comparative example 1. 第1実施形態における空気吹出装置の要部の断面図である。It is sectional drawing of the principal part of the air blowing apparatus in 1st Embodiment. 突出部の突出量と低速気流の曲げ角度θ2および吹出風の吹出圧損との関係を示す図である。It is a figure which shows the relationship between the protrusion amount of a protrusion part, bending angle (theta) 2 of a low speed airflow, and the blowing pressure loss of a blowing wind. 第2実施形態における空気吹出装置の吹出口の平面図である。It is a top view of the blower outlet of the air blowing apparatus in 2nd Embodiment. 図11中のXII-XII線矢視断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 図11中のXIII-XIII線矢視断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 図11中のXIV-XIV線矢視断面図である。FIG. 12 is a cross-sectional view taken along line XIV-XIV in FIG. 11. 図11中の領域XVの拡大図である。FIG. 12 is an enlarged view of a region XV in FIG. 11. 図3中のXVI-XVI線矢視断面図である。FIG. 4 is a cross-sectional view taken along line XVI-XVI in FIG. 3. 第3実施形態における空気吹出装置の断面図である。It is sectional drawing of the air blowing apparatus in 3rd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。また、各図における上、下、前、後、左、右等を示す矢印は、車両搭載状態における各方向を示している。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals. Moreover, the arrow which shows up, down, front, back, left, right etc. in each figure has shown each direction in a vehicle mounting state.
 (第1実施形態)
 本実施形態では、本開示に係る空気吹出装置を車両の前方に搭載される空調ユニットの吹出口およびダクトに適用している。
(First embodiment)
In the present embodiment, the air blowing device according to the present disclosure is applied to an air outlet and a duct of an air conditioning unit mounted in front of the vehicle.
 図1に示すように、空気吹出装置10は、吹出口11と、ダクト12と、気流偏向ドア13とを備える。吹出口11は、対象空間としての車室内空間に空気を吹き出す。吹出口11は、インストルメントパネル1の上面部1aのうちウインドシールド2側に位置している。換言すると、吹出口11は、上面部1aに対してウインドシールド2を上下方向に平行に投影したときに、上面部1aのうちウインドシールド2と重複する範囲内に位置している。ダクト12は、吹出口11と空調ユニット20とを接続する。気流偏向ドア13は、ダクト12内に位置している。空調ユニット20は、インストルメントパネル1の内部に配置されている。 As shown in FIG. 1, the air blowing device 10 includes a blowout port 11, a duct 12, and an airflow deflecting door 13. The blower outlet 11 blows air into the vehicle interior space as a target space. The blower outlet 11 is located on the windshield 2 side of the upper surface portion 1a of the instrument panel 1. In other words, the blower outlet 11 is located in the range which overlaps with the windshield 2 among the upper surface parts 1a, when the windshield 2 is projected in parallel with the up-down direction with respect to the upper surface part 1a. The duct 12 connects the air outlet 11 and the air conditioning unit 20. The airflow deflection door 13 is located in the duct 12. The air conditioning unit 20 is disposed inside the instrument panel 1.
 インストルメントパネル1は、車室内の前方に設けられた計器盤であり、上面部1aと意匠面部(すなわち、正面部)1bとを有している。インストルメントパネル1は、計器類が配置されている部分だけでなく、オーディオやエアコンを収納する部分を含む、車室内の前席の正面に位置するパネル全体をさしている。 The instrument panel 1 is an instrument panel provided in front of the passenger compartment, and has an upper surface portion 1a and a design surface portion (that is, a front surface portion) 1b. The instrument panel 1 refers to the entire panel located in front of the front seat in the passenger compartment, including not only the part where the instruments are arranged, but also the part that houses the audio and the air conditioner.
 図2に示すように、吹出口11は、右ハンドル車両の運転席4aの正面と助手席4bの正面の2カ所に配置されている。以下では、運転席4aの正面の吹出口11について説明するが、助手席4bの正面に配置された吹出口11も運転席4aの正面の吹出口11と同様である。 As shown in FIG. 2, the air outlets 11 are arranged at two locations on the front of the driver seat 4 a and the front of the passenger seat 4 b of the right-hand drive vehicle. Below, although the blower outlet 11 of the front of the driver's seat 4a is demonstrated, the blower outlet 11 arrange | positioned in front of the passenger seat 4b is the same as the blower outlet 11 of the front of the driver's seat 4a.
 吹出口11は、左右方向に細長く延伸している。すなわち、吹出口11の開口形状の長手方向が左右方向に沿っている。吹出口11の左右方向の長さは、座席4の左右方向の長さよりも長い。なお、吹出口11の左右方向の長さは、座席4の左右方向の長さと同等またはそれよりも短くてもよい。 The air outlet 11 is elongated in the left-right direction. That is, the longitudinal direction of the opening shape of the air outlet 11 is along the left-right direction. The length of the air outlet 11 in the left-right direction is longer than the length of the seat 4 in the left-right direction. In addition, the length of the left-right direction of the blower outlet 11 may be equal to or shorter than the length of the seat 4 in the left-right direction.
 図3に示すように、吹出口11は、2辺の長辺11a、11bを有して一方向(すなわち、左右方向)に延びた扁平形状である。 As shown in FIG. 3, the air outlet 11 has a flat shape having two long sides 11 a and 11 b and extending in one direction (that is, the left-right direction).
 具体的には、吹出口11の開口縁部11a、11b、11c、11dは、上面部1aの表面において、一対の長辺11a、11bおよび一対の短辺11c、11dを有する。一対の長辺11a、11bは、それぞれ、後方側と前方側に位置するとともに、左右方向に延伸している。一対の短辺11c、11dは、一対の長辺11a、11bの端部同士をつないでいる。本実施形態では、一対の長辺11a、11bが、後方から前方に向かって凸となるように湾曲している。 Specifically, the opening edges 11a, 11b, 11c, and 11d of the air outlet 11 have a pair of long sides 11a and 11b and a pair of short sides 11c and 11d on the surface of the upper surface portion 1a. The pair of long sides 11a and 11b are located on the rear side and the front side, respectively, and extend in the left-right direction. The pair of short sides 11c and 11d connects the ends of the pair of long sides 11a and 11b. In the present embodiment, the pair of long sides 11a and 11b are curved so as to be convex from the rear to the front.
 吹出口11は、図1に示す気流偏向ドア13により、デフロスタモード、アッパーベントモードおよびフェイスモードの3つの吹出モードを切り替えて、温度調整された空気を対象空間としての車室内空間に吹き出す。ここで、デフロスタモードは、ウインドシールド2に向けて空気を吹き出し、窓の曇りを晴らす。フェイスモードは、前席乗員5の上半身に向けて空気を吹き出す。アッパーベントモードは、フェイスモード時よりも上方に向けて空気を吹き出し、後席乗員に送風する。 The air outlet 11 switches the three blowing modes of the defroster mode, the upper vent mode, and the face mode by the air flow deflecting door 13 shown in FIG. 1, and blows out the temperature-adjusted air into the vehicle interior space as the target space. Here, in the defroster mode, air is blown out toward the windshield 2 to clear the cloudiness of the window. In the face mode, air is blown out toward the upper half of the front seat occupant 5. In the upper vent mode, air is blown out upward than in the face mode, and the rear seat passenger is blown.
 図1に示すように、吹出口11は、ダクト12の末端に形成された開口部によって構成されている。換言すれば、ダクト12は吹出口11に連なっている。ダクト12は、吹出口11の空気流れ上流側に連なる空気流路を内部に形成する流路形成部である。ダクト12は、空調ユニット20と別体として構成された樹脂製のものであり、空調ユニット20と接続されている。ダクト12の空気流れ上流側の端部が空調ユニット20のデフロスタ/フェイス開口部30に連なっている。したがって、ダクト12は、空調ユニット20から送風される空気が流れる空気流路を内部に形成している。なお、ダクト12は、空調ユニット20と一体に形成されていても良い。 As shown in FIG. 1, the air outlet 11 is constituted by an opening formed at the end of the duct 12. In other words, the duct 12 is connected to the air outlet 11. The duct 12 is a flow path forming unit that forms therein an air flow path connected to the air flow upstream side of the air outlet 11. The duct 12 is made of a resin that is configured separately from the air conditioning unit 20, and is connected to the air conditioning unit 20. The end of the duct 12 on the upstream side of the air flow is connected to the defroster / face opening 30 of the air conditioning unit 20. Therefore, the duct 12 forms an air flow path through which air blown from the air conditioning unit 20 flows. The duct 12 may be formed integrally with the air conditioning unit 20.
 図4に示すように、ダクト12は、後方側に位置する第1の壁(すなわち、後方壁)121と、前方側に位置する第2の壁(すなわち、前方壁)122とを有する。第1の壁121と第2の壁122は、前後方向で対向している。したがって、本実施形態では、前後方向が「第1の壁121と第2の壁122が対向する方向」に対応している。また、左右方向が「第1の壁121と第2の壁122が対向する方向に対して交差する方向」に対応している。また、前方から後方に向かう方向が「第2の壁122から第1の壁121に向かう方向」に対応している。また、後方から前方に向かう方向が「第1の壁121から第2の壁122に向かう方向」に対応している。 As shown in FIG. 4, the duct 12 has a first wall (that is, the rear wall) 121 located on the rear side and a second wall (that is, the front wall) 122 located on the front side. The first wall 121 and the second wall 122 face each other in the front-rear direction. Therefore, in the present embodiment, the front-rear direction corresponds to “the direction in which the first wall 121 and the second wall 122 face each other”. Further, the left-right direction corresponds to the “direction intersecting the direction in which the first wall 121 and the second wall 122 face each other”. The direction from the front to the rear corresponds to the “direction from the second wall 122 to the first wall 121”. The direction from the rear to the front corresponds to the “direction from the first wall 121 to the second wall 122”.
 第1の壁121の空気流れ下流側端部が、図3に示す吹出口11の開口縁部のうち後方側の長辺11aを構成している。より詳細には、後述するガイド壁14の端部が、吹出口11の長辺11aを構成している。 The air flow downstream end of the first wall 121 constitutes the long side 11a on the rear side of the opening edge of the air outlet 11 shown in FIG. In more detail, the edge part of the guide wall 14 mentioned later comprises the long side 11a of the blower outlet 11. FIG.
 また、第2の壁122の空気流れ下流側端部が、図3に示す吹出口11の開口縁部のうち前方側の長辺11bを構成している。より詳細には、後述する突出部15の先端が、吹出口11の長辺11bを構成している。 Moreover, the air flow downstream end of the second wall 122 constitutes the long side 11b on the front side of the opening edge of the air outlet 11 shown in FIG. More specifically, the distal end of the protruding portion 15 described later constitutes the long side 11 b of the air outlet 11.
 気流偏向ドア13は、ダクト12内に流速が異なる2つの気流を発生させる気流偏向部材である。気流偏向ドア13は、ダクト12の内部の第1流路12aと第2流路12bのそれぞれの気流の速度を変更する。第1流路12aは、気流偏向ドア13とダクト12の第1の壁121との間に形成されている。第2流路12bは、気流偏向ドア13とダクト12の第2の壁122との間に形成されている。 The airflow deflecting door 13 is an airflow deflecting member that generates two airflows having different flow velocities in the duct 12. The airflow deflection door 13 changes the speed of each airflow in the first flow path 12a and the second flow path 12b inside the duct 12. The first flow path 12 a is formed between the airflow deflecting door 13 and the first wall 121 of the duct 12. The second flow path 12 b is formed between the airflow deflecting door 13 and the second wall 122 of the duct 12.
 本実施形態では、気流偏向ドア13として、バタフライドアを採用している。バタフライドアは、板状のドア本体部と、ドア本体部の中心部に設けられた回転軸とを備える。回転軸は、吹出口11の長手方向(すなわち、車両左右方向)に平行に配置されている。このため、気流偏向ドア13は、吹出口11の長手方向を軸心として回転する。ドア本体部の車両前後方向長さは、車両前後方向におけるダクト12の幅よりも小さい。このため、気流偏向ドア13を水平にしてもダクト12は閉じられない。回転軸は、ダクト12の車両前後方向での中心よりも車両後方側に位置する。これは、第1流路12aの流路断面積を小さくして、第1流路12aに高速の気流を形成するためである。 In this embodiment, a butterfly door is adopted as the airflow deflecting door 13. The butterfly door includes a plate-like door main body and a rotary shaft provided at the center of the door main body. The rotation axis is arranged in parallel to the longitudinal direction of the air outlet 11 (that is, the vehicle left-right direction). For this reason, the airflow deflection door 13 rotates with the longitudinal direction of the air outlet 11 as the axis. The vehicle front-rear direction length of the door main body is smaller than the width of the duct 12 in the vehicle front-rear direction. For this reason, even if the airflow deflecting door 13 is leveled, the duct 12 is not closed. The rotation axis is located on the vehicle rear side with respect to the center of the duct 12 in the vehicle front-rear direction. This is because the cross-sectional area of the first flow path 12a is reduced to form a high-speed air flow in the first flow path 12a.
 また、ダクト12の第1の壁121は、吹出口11側の部分にガイド壁14を有する。ガイド壁14は、インストルメントパネル1の上面部1aに連なっている。ガイド壁14は、後述する高速の気流をコアンダ効果によって壁面に沿わせて曲げることで、高速の気流の向きを吹出口11から後方に向かう向きとするように、高速の気流をガイドする。換言すれば、ガイド壁14は、空気流路を流れる空気を第2の壁122から第1の壁121に向かう方向に吹出口から吹き出るようにガイドする。ガイド壁14によって、ダクト12の吹出口11側部分における流路幅、すなわち、第1の壁121と第2の壁122との間隔が、空気流れ下流側に向かって広がっている。本実施形態では、ガイド壁14は、壁面がダクト12の内部に向けて凸となるように湾曲している。換言すれば、ガイド壁14は、第1の壁121のうち吹出口11側の部分よりも空気流れ上流側の部分121aから、第2の壁122に対して離れるように湾曲している。 Further, the first wall 121 of the duct 12 has a guide wall 14 at a portion on the outlet 11 side. The guide wall 14 is continuous with the upper surface portion 1 a of the instrument panel 1. The guide wall 14 guides the high-speed airflow so that the direction of the high-speed airflow is directed backward from the outlet 11 by bending the high-speed airflow described later along the wall surface by the Coanda effect. In other words, the guide wall 14 guides the air flowing through the air flow path so as to blow out from the outlet in the direction from the second wall 122 toward the first wall 121. By the guide wall 14, the flow path width in the air outlet 11 side portion of the duct 12, that is, the interval between the first wall 121 and the second wall 122 is widened toward the downstream side of the air flow. In this embodiment, the guide wall 14 is curved so that the wall surface is convex toward the inside of the duct 12. In other words, the guide wall 14 is curved so as to be away from the second wall 122 from the portion 121a on the upstream side of the air flow with respect to the portion on the outlet 11 side of the first wall 121.
 また、ダクト12は、第2の壁122から第1の壁121に向かって突出した突出部15を有している。この突出部15は、後述する第2の壁122に沿って流れる低速の気流を第2の壁122から第1の壁121に向かう方向に向かわせるためのものである。 The duct 12 has a protruding portion 15 that protrudes from the second wall 122 toward the first wall 121. This protrusion 15 is for directing a low-speed airflow flowing along the second wall 122 described later in a direction from the second wall 122 toward the first wall 121.
 突出部15は、第2の壁122のうち空気流れ最下流部に位置する。突出部15は、平板形状であり、突出部15の上面とインストルメントパネル1の上面部1aの表面とが面一で連なっている。突出部15の先端は、前後方向において、第1の状態のときの気流偏向ドア13よりも前方側(すなわち、第2の壁122側)に位置する。突出部15は、第2の壁122と一体に形成されている。なお、突出部15は、第2の壁122と別体として形成されていてもよい。 The protrusion 15 is located at the most downstream part of the air flow in the second wall 122. The protrusion 15 has a flat plate shape, and the upper surface of the protrusion 15 and the surface of the upper surface 1 a of the instrument panel 1 are flush with each other. The front end of the projecting portion 15 is located on the front side (that is, on the second wall 122 side) of the airflow deflecting door 13 in the first state in the front-rear direction. The protrusion 15 is formed integrally with the second wall 122. The protruding portion 15 may be formed as a separate body from the second wall 122.
 また、図3に示すように、突出部15は、第2の壁122において、吹出口11の左右方向の全域に形成されている。本実施形態では、突出部15の突出量L1は、吹出口11の左右方向の全域で均一である。なお、図3では、第2の壁122のうち突出部15よりも空気流れ上流側の部分の壁面の位置を破線で示している。このことは、後述する図11においても同様である。 Further, as shown in FIG. 3, the protrusion 15 is formed in the second wall 122 in the entire region in the left-right direction of the air outlet 11. In the present embodiment, the protrusion amount L1 of the protrusion 15 is uniform over the entire area of the air outlet 11 in the left-right direction. In FIG. 3, the position of the wall surface of the portion of the second wall 122 on the upstream side of the air flow from the protruding portion 15 is indicated by a broken line. The same applies to FIG. 11 described later.
 図5に示すように、空調ユニット20は、外殻を構成する空調ケーシング21を有する。この空調ケーシング21は、空調対象空間である車室内へ空気を導く空気通路を構成している。空調ケーシング21の空気流れ最上流部には、車室内の空気(すなわち、内気)を吸入する内気吸入口22と車室外の空気(すなわち、外気)を吸入する外気吸入口23とが形成される。さらに、空調ケーシング21の空気流れ最上流部には、内気吸入口22および外気吸入口23を選択的に開閉する吸入口開閉ドア24が設けられている。これら内気吸入口22、外気吸入口23、および吸入口開閉ドア24は、空調ケーシング21内への吸入空気を内気および外気に切り替える内外気切替部を構成している。なお、吸入口開閉ドア24は、図示しない制御装置から出力される制御信号により、その作動が制御される。 As shown in FIG. 5, the air conditioning unit 20 has an air conditioning casing 21 that constitutes an outer shell. The air conditioning casing 21 constitutes an air passage that guides air to the vehicle interior, which is the air conditioning target space. In the most upstream part of the air flow of the air conditioning casing 21, an inside air inlet 22 for sucking air inside the vehicle interior (that is, inside air) and an outside air inlet 23 for sucking air outside the vehicle compartment (ie, outside air) are formed. . Further, a suction port opening / closing door 24 for selectively opening / closing the inside air suction port 22 and the outside air suction port 23 is provided at the most upstream part of the air flow of the air conditioning casing 21. The inside air inlet 22, the outside air inlet 23, and the inlet opening / closing door 24 constitute an inside / outside air switching unit that switches the intake air into the air conditioning casing 21 between the inside air and the outside air. The operation of the inlet opening / closing door 24 is controlled by a control signal output from a control device (not shown).
 吸入口開閉ドア24の空気流れ下流側には、車室内へ空気を送風する送風装置としての送風機25が配置されている。本実施形態の送風機25は、遠心多翼ファン25aを駆動源である電動モータ25bにより駆動する電動送風機であって、図示しない制御装置から出力される制御信号により回転数(すなわち、送風量)が制御される。 A blower 25 as a blower that blows air into the passenger compartment is disposed on the downstream side of the air flow of the suction opening / closing door 24. The blower 25 of the present embodiment is an electric blower that drives the centrifugal multiblade fan 25a by an electric motor 25b that is a drive source, and the number of rotations (that is, the amount of blown air) is determined by a control signal output from a control device (not shown). Be controlled.
 送風機25の空気流れ下流側には、送風機25により送風された空気を冷却する冷却器として機能する蒸発器26が配置されている。蒸発器26は、その内部を流通する冷媒と空気とを熱交換させる熱交換器であり、図示しない圧縮機、凝縮器、膨張弁等と共に蒸気圧縮式の冷凍サイクルを構成する。 An evaporator 26 that functions as a cooler for cooling the air blown by the blower 25 is disposed on the downstream side of the air flow of the blower 25. The evaporator 26 is a heat exchanger that exchanges heat between the refrigerant flowing through the inside and the air, and constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, an expansion valve, and the like (not shown).
 蒸発器26の空気流れ下流側には、蒸発器26にて冷却された空気を加熱する加熱器として機能するヒータコア27が配置されている。本実施形態のヒータコア27は、車両エンジンの冷却水を熱源として空気を加熱する熱交換器である。なお、蒸発器26およびヒータコア27は、車室内へ送風する空気の温度を調整する温度調整部を構成している。 A heater core 27 that functions as a heater for heating the air cooled by the evaporator 26 is disposed on the downstream side of the air flow of the evaporator 26. The heater core 27 of the present embodiment is a heat exchanger that heats air using the cooling water of the vehicle engine as a heat source. The evaporator 26 and the heater core 27 constitute a temperature adjusting unit that adjusts the temperature of the air blown into the vehicle interior.
 また、蒸発器26の空気流れ下流側には、蒸発器26通過後の空気を、ヒータコア27を迂回して流す冷風バイパス通路28が形成されている。ここで、ヒータコア27および冷風バイパス通路28の空気流れ下流側にて混合される空気の温度は、ヒータコア27を通過する空気および冷風バイパス通路28を通過する空気の風量割合によって変化する。このため、蒸発器26の空気流れ下流側であって、ヒータコア27および冷風バイパス通路28の入口側には、エアミックスドア29が配置されている。このエアミックスドア29は、ヒータコア27および冷風バイパス通路28へ流入する冷風の風量割合を連続的に変化させるもので、蒸発器26およびヒータコア27と共に温度調整部として機能する。エアミックスドア29は、制御装置から出力される制御信号によってその作動が制御される。 Further, a cold air bypass passage 28 is formed on the downstream side of the air flow of the evaporator 26 to allow the air after passing through the evaporator 26 to flow around the heater core 27. Here, the temperature of the air mixed on the downstream side of the air flow of the heater core 27 and the cold air bypass passage 28 varies depending on the air volume ratio of the air passing through the heater core 27 and the air passing through the cold air bypass passage 28. For this reason, an air mix door 29 is arranged on the downstream side of the air flow of the evaporator 26 and on the inlet side of the heater core 27 and the cold air bypass passage 28. The air mix door 29 continuously changes the air volume ratio of the cold air flowing into the heater core 27 and the cold air bypass passage 28, and functions as a temperature adjusting unit together with the evaporator 26 and the heater core 27. The operation of the air mix door 29 is controlled by a control signal output from the control device.
 空調ケーシング21の空気流れ最下流部には、デフロスタ/フェイス開口部30やフット開口部31が設けられている。デフロスタ/フェイス開口部30は、ダクト12を介して、インストルメントパネル1の上面部1aに設けられた吹出口11に連なっている。フット開口部31は、フットダクト32を介して、フット吹出口33に連なっている。 A defroster / face opening 30 and a foot opening 31 are provided at the most downstream part of the air flow of the air conditioning casing 21. The defroster / face opening 30 is connected to the air outlet 11 provided in the upper surface 1 a of the instrument panel 1 through the duct 12. The foot opening 31 is connected to the foot outlet 33 via the foot duct 32.
 そして、デフロスタ/フェイス開口部30の空気流れ上流側には、デフロスタ/フェイス開口部30を開閉するデフロスタ/フェイスドア34が配置されている。また、フット開口部31の空気流れ上流側には、フット開口部31を開閉するフットドア35が配置されている。デフロスタ/フェイスドア34およびフットドア35は、車室内へ送風される空気の吹出状態を切り替える吹出モードドアである。 A defroster / face door 34 for opening and closing the defroster / face opening 30 is disposed on the upstream side of the air flow of the defroster / face opening 30. A foot door 35 that opens and closes the foot opening 31 is disposed on the upstream side of the air flow of the foot opening 31. The defroster / face door 34 and the foot door 35 are blowing mode doors for switching the blowing state of the air blown into the vehicle interior.
 気流偏向ドア13は、所望の吹出モードとなるように、これらの吹出モードドア34、35と連動して作動する。気流偏向ドア13および吹出モードドア34、35は、制御装置から出力される制御信号によってその作動が制御される。なお、気流偏向ドア13および吹出モードドア34、35は、乗員のマニュアル操作によってもドア位置が変更可能となっている。 The airflow deflecting door 13 operates in conjunction with these blowing mode doors 34 and 35 so as to be in a desired blowing mode. The operations of the air flow deflecting door 13 and the blowing mode doors 34 and 35 are controlled by a control signal output from the control device. Note that the airflow deflecting door 13 and the blowing mode doors 34 and 35 can be changed in position by a passenger's manual operation.
 例えば、吹出モードとして、フット吹出口33から乗員の足元に吹き出すフットモードが実行される場合、デフロスタ/フェイスドア34がデフロスタ/フェイス開口部30を閉じるとともに、フットドア35がフット開口部31を開く。一方、吹出モードとして、デフロスタモード、アッパーベントモード、フェイスモードのいずれか1つが実行される場合、デフロスタ/フェイスドア34がデフロスタ/フェイス開口部30を開くとともに、フットドア35がフット開口部31を閉じる。さらに、この場合、気流偏向ドア13の位置が所望の吹出モードに応じた位置となる。 For example, when a foot mode that blows out from the foot outlet 33 to the feet of the occupant is executed as the blowing mode, the defroster / face door 34 closes the defroster / face opening 30 and the foot door 35 opens the foot opening 31. On the other hand, when any one of the defroster mode, the upper vent mode, and the face mode is executed as the blowing mode, the defroster / face door 34 opens the defroster / face opening 30 and the foot door 35 closes the foot opening 31. . Furthermore, in this case, the position of the airflow deflecting door 13 is a position corresponding to a desired blowing mode.
 本実施形態では、気流偏向ドア13が回転することにより、第1流路12aを通過する気流と、第2流路12bを通過する気流のそれぞれの速度を変更する。これにより、吹出角度θ1を変更する。なお、ここでいう吹出角度θ1とは、図4に示すように、鉛直方向に対して吹出方向がなす角度である。ちなみに、鉛直方向を基準としているのは、第1の壁121のうちガイド壁14よりも空気流れ上流側の部分121aと第2の壁122との間を通過する気流の向きが下から上に向かう方向だからである。 In the present embodiment, the velocity of each of the airflow passing through the first flow path 12a and the airflow passing through the second flow path 12b is changed by rotating the airflow deflecting door 13. Thereby, the blowing angle θ1 is changed. The blow angle θ1 here is an angle formed by the blow direction with respect to the vertical direction as shown in FIG. Incidentally, the vertical direction is used as a reference because the direction of the airflow passing between the portion 121a upstream of the guide wall 14 and the second wall 122 of the first wall 121 from the guide wall 14 is from bottom to top. Because it is the direction to go.
 具体的には、吹出モードがフェイスモードの場合、気流偏向ドア13のドア角度φを図6に示す角度とする。すなわち、気流偏向ドア13のドア本体部を、ドア本体部と第1の壁121との距離が空気の流れ方向に進むにつれて小さくなるように傾ける。これにより、第1流路12aの断面積が第2流路12bの断面積よりも小さくなる。相対的に、第1流路12aに高速の気流F1が発生するとともに、第2流路12bに低速の気流F2が発生する第1状態となる。すなわち、第2流路12bの気流よりも高速の気流F1が第1流路12aに発生するとともに、第1流路11aの気流よりも低速の気流F2が第2流路12bに発生する第1状態となる。上記の第1流路12aの断面積とは、第1流路12aの空気流れを横切る横断面の面積を意味する。上記の第2流路12bの断面積とは、第1流路12aの空気流れを横切る横断面の面積を意味する。 Specifically, when the blowing mode is the face mode, the door angle φ of the airflow deflecting door 13 is set to an angle shown in FIG. That is, the door main body portion of the airflow deflecting door 13 is tilted so that the distance between the door main body portion and the first wall 121 decreases as the air flows in the air flow direction. Thereby, the cross-sectional area of the 1st flow path 12a becomes smaller than the cross-sectional area of the 2nd flow path 12b. Relatively, a high-speed air flow F1 is generated in the first flow path 12a, and a low-speed air flow F2 is generated in the second flow path 12b. That is, the first air flow F1 that is faster than the air flow in the second flow path 12b is generated in the first flow path 12a, and the air flow F2 that is lower in speed than the air flow in the first flow path 11a is generated in the second flow path 12b. It becomes a state. The cross-sectional area of the first flow path 12a means an area of a cross section that crosses the air flow of the first flow path 12a. The cross-sectional area of the second flow path 12b means an area of a cross section that crosses the air flow of the first flow path 12a.
 第1状態のときでは、高速の気流F1が、コアンダ効果によってガイド壁14に沿って流れることで、後方側に曲げられる。このとき、高速の気流F1が流れることによって、気流偏向ドア13の下流側に負圧が生じる。このため、低速の気流F2が気流偏向ドア13の下流側に引き込まれ、高速の気流F1側に曲げられながら高速の気流F1に合流する。これにより、ダクト12の内部を流れる空気が車両後方側に曲げられて吹出口11から吹き出される際の最大の曲げ角度θを大きくできる。この結果、空調ユニット20で温度調整された空気、例えば冷風が、吹出口11から前席乗員の上半身に向かって吹き出される。 In the first state, the high-speed air flow F1 flows along the guide wall 14 by the Coanda effect and is bent backward. At this time, a negative pressure is generated on the downstream side of the airflow deflection door 13 by the flow of the high-speed airflow F1. For this reason, the low-speed airflow F2 is drawn to the downstream side of the airflow deflection door 13, and merges with the high-speed airflow F1 while being bent toward the high-speed airflow F1. Thereby, the largest bending angle (theta) when the air which flows through the inside of the duct 12 is bent by the vehicle rear side and is blown off from the blower outlet 11 can be enlarged. As a result, air whose temperature has been adjusted by the air conditioning unit 20, for example, cold air, is blown out from the air outlet 11 toward the upper body of the front seat occupant.
 このとき、気流偏向ドア13の位置(すなわち、ドア角度)を乗員が手動で調節したり、制御装置が自動調節したりすることにより、高速の気流F1と低速の気流F2の速度差を調整することができる。高速の気流F1と低速の気流F2の速度差が大きいほど、吹出口11から吹き出される空気の曲がり角度が大きくなる。これにより、フェイスモード時の吹出角度θを任意の角度にすることが可能である。 At this time, the occupant manually adjusts the position of the airflow deflection door 13 (that is, the door angle), or the control device automatically adjusts the speed difference between the high-speed airflow F1 and the low-speed airflow F2. be able to. As the speed difference between the high-speed airflow F1 and the low-speed airflow F2 increases, the bending angle of the air blown out from the air outlet 11 increases. Thereby, the blowing angle θ in the face mode can be set to an arbitrary angle.
 また、このフェイスモード時では、図3中の矢印のように、吹出口11から乗員5に向かって空気が吹き出される。 In this face mode, air is blown out from the blowout port 11 toward the occupant 5 as indicated by the arrow in FIG.
 ここで、ガイド壁14に沿って曲げられた空気の吹出口11からの吹出方向は、ガイド壁14に沿って空気が流れることから、吹出口11を構成する開口縁部11a、11b、11c、11dのうちガイド壁14に連なる長辺11aの形状によって決まる。すなわち、開口縁部のうちガイド壁14に連なる長辺11aの垂線方向が空気の吹出方向となる。なお、長辺11aの垂線方向とは、長辺11aが直線状の場合は、長辺11aの垂線方向のことであり、長辺11aが曲線状の場合は、長辺11aの接線の垂線方向のことである。 Here, since the air flows from the air outlet 11 bent along the guide wall 14 along the guide wall 14, the opening edges 11 a, 11 b, 11 c constituting the air outlet 11 are provided. It is determined by the shape of the long side 11a connected to the guide wall 14 among 11d. That is, the perpendicular direction of the long side 11a connected to the guide wall 14 in the opening edge portion is the air blowing direction. The normal direction of the long side 11a is the normal direction of the long side 11a when the long side 11a is linear, and the normal direction of the tangent line of the long side 11a when the long side 11a is curved. That is.
 本実施形態では、図3に示すように、吹出口11を構成する開口縁部のうちガイド壁14に連なる長辺11aが、後方から前方に向かって凸形状であるので、吹出口11からの吹出空気を収束させることができ、吹出空気を乗員5に集中させることができる。 In the present embodiment, as shown in FIG. 3, the long side 11 a connected to the guide wall 14 in the opening edge portion constituting the air outlet 11 has a convex shape from the rear to the front. The blown air can be converged, and the blown air can be concentrated on the occupant 5.
 吹出モードがデフロスタモードの場合、気流偏向ドア13のドア角度を図7に示す角度とする。すなわち、気流偏向ドア13のドア本体部を、ドア本体部と第2の壁122との距離が空気の流れ方向に進むにつれて小さくなるように傾ける。これにより、第1流路12aと第2流路12bのそれぞれに速度が同じもしくは同じに近い気流F3、F4が発生する第2状態となる。第2状態では、気流F3、F4は、それぞれ、上向きに流れる。このため、空調ユニット20で温度調整された空気、例えば温風が、吹出口11からウインドシールド2に向かって吹き出される。 When the blowing mode is the defroster mode, the door angle of the airflow deflecting door 13 is the angle shown in FIG. That is, the door main body portion of the airflow deflecting door 13 is tilted so that the distance between the door main body portion and the second wall 122 decreases in the air flow direction. As a result, the first flow path 12a and the second flow path 12b are in the second state in which the airflows F3 and F4 having the same or similar speed are generated. In the second state, the airflows F3 and F4 flow upward. For this reason, the air whose temperature is adjusted by the air conditioning unit 20, for example, warm air, is blown out from the air outlet 11 toward the windshield 2.
 なお、吹出モードがデフロスタモードの場合、気流偏向ドア13の向きをドア本体部が上下方向に平行となる向きとしてもよい。このとき、第1流路12aの気流と第2流路12bの気流は、同じ速度となる。 When the blowing mode is the defroster mode, the direction of the air flow deflecting door 13 may be the direction in which the door main body is parallel to the vertical direction. At this time, the airflow in the first flow path 12a and the airflow in the second flow path 12b have the same speed.
 また、図示しないが、吹出モードがアッパーベントモードの場合、気流偏向ドア13の向きを、フェイスモード時とデフロスタモード時の間の向きとする。この場合も第1状態となるが、フェイスモードの場合よりも高速の気流F1が遅いので、フェイスモードの場合よりも吹出角度θ1が小さくなる。この結果、空調ユニット20で温度調整された空気、例えば冷風が、吹出口11から後席乗員に向かって吹き出される。 Although not shown, when the blowing mode is the upper vent mode, the direction of the airflow deflecting door 13 is the direction between the face mode and the defroster mode. In this case as well, the first state is entered, but since the high-speed air flow F1 is slower than in the face mode, the blowing angle θ1 is smaller than in the face mode. As a result, air whose temperature has been adjusted by the air conditioning unit 20, for example, cold air, is blown out from the air outlet 11 toward the rear seat occupant.
 次に、本実施形態の主な特徴について説明する。 Next, main features of this embodiment will be described.
 (1)本実施形態の空気吹出装置10では、ダクト12の第2の壁122に突出部15が設けられている。 (1) In the air blowing device 10 of this embodiment, the protrusion 15 is provided on the second wall 122 of the duct 12.
 ここで、図8に比較例1の空気吹出装置を示す。比較例1の空気吹出装置は、上記した従来の空気吹出装置に対応し、本実施形態の空気吹出装置10に対して、突出部15を有していない点のみが異なる。 Here, the air blowing device of Comparative Example 1 is shown in FIG. The air blowing device of Comparative Example 1 corresponds to the above-described conventional air blowing device, and differs from the air blowing device 10 of the present embodiment only in that the protrusion 15 is not provided.
 図8に示すように、比較例1の空気吹出装置では、気流偏向ドア13が第1状態のとき、第2流路12bからの低速の気流F2のうち第2の壁122から離れた側の気流F2aは、高速の気流F1に引き込まれる。しかし、低速の気流F2のうち第2の壁122に近い側の気流F2bは、第2の壁122に沿って流れるため、高速の気流F1に引き込まれない。このため、低速の気流F2bが吹出口11から拡散してしまう。 As shown in FIG. 8, in the air blowing device of Comparative Example 1, when the airflow deflecting door 13 is in the first state, the low-speed airflow F2 from the second flow path 12b is on the side away from the second wall 122. The airflow F2a is drawn into the high-speed airflow F1. However, the airflow F2b on the side close to the second wall 122 in the low-speed airflow F2 flows along the second wall 122, and thus is not drawn into the high-speed airflow F1. For this reason, the low-speed air flow F <b> 2 b diffuses from the outlet 11.
 これに対して、本実施形態の空気吹出装置10では、図6に示すように、気流偏向ドア13が第1状態のとき、突出部15によって、第2の壁122に沿って流れる低速の気流F2を第2の壁122から第1の壁121に向かう方向に導くことができる。このため、低速の気流F2の全体を高速の気流F1に引き込ませることができる。よって、本実施形態の空気吹出装置10によれば、比較例1の空気吹出装置と比較して、高速の気流F1に引きこまれる低速の気流F1を増大でき、車両後方に向かって吹出口11から吹き出される吹出風の風量を増大させることができる。 On the other hand, in the air blowing device 10 of the present embodiment, as shown in FIG. 6, when the airflow deflection door 13 is in the first state, the low-speed airflow that flows along the second wall 122 by the protrusion 15. F2 can be guided in the direction from the second wall 122 toward the first wall 121. For this reason, the entire low-speed air flow F2 can be drawn into the high-speed air flow F1. Therefore, according to the air blowing device 10 of this embodiment, compared with the air blowing device of the comparative example 1, the low-speed air flow F1 drawn into the high-speed air flow F1 can be increased, and the blower outlet 11 toward the vehicle rear side. It is possible to increase the air volume of the blown air blown out from.
 この突出部15の突出量については、図9、10に示すように、次のように設定することが好ましい。 The protrusion amount of the protrusion 15 is preferably set as follows as shown in FIGS.
 図10は、図9に示す突出部15の突出量L1と、突出部15と気流偏向ドア13の距離L2との比(すなわち、L1/L2)に対する低速の気流F2の曲がり角度θ2および吹出圧損の関係を示す図である。これは、本発明者が、突出部15の突出量L1が種々の大きさの本実施形態の空気吹出装置10を用いて、曲がり角度θ2および吹出圧損を測定した実験結果である。なお、吹出圧損とは、吹出口11からの吹出風の圧力損失である。 FIG. 10 shows the bending angle θ2 and the blowing pressure loss of the low-speed air flow F2 with respect to the ratio (ie, L1 / L2) between the protrusion amount L1 of the protrusion 15 and the distance L2 between the protrusion 15 and the air flow deflecting door 13 shown in FIG. It is a figure which shows the relationship. This is an experimental result in which the inventor measured the bending angle θ2 and the blowing pressure loss using the air blowing device 10 of the present embodiment in which the protruding amount L1 of the protruding portion 15 has various sizes. The blowout pressure loss is the pressure loss of the blown air from the blowout port 11.
 突出部15の突出量L1は、前後方向での第2の壁122の表面から突出部15の先端までの距離である。より詳細には、次の通りである。気流偏向ドア13が第1状態のときに、第2の壁122のうち気流偏向ドア13との距離が最も短い位置を基準位置Psとする。このときの前後方向での第2の壁122の基準位置Psから突出部15の先端までの距離が突出量L1である。 The protrusion amount L1 of the protrusion 15 is the distance from the surface of the second wall 122 to the tip of the protrusion 15 in the front-rear direction. More details are as follows. When the airflow deflection door 13 is in the first state, the position of the second wall 122 that is the shortest distance from the airflow deflection door 13 is set as the reference position Ps. At this time, the distance from the reference position Ps of the second wall 122 in the front-rear direction to the tip of the protruding portion 15 is the protruding amount L1.
 また、突出部15と気流偏向ドア13の距離L2は、突出部15の先端と気流偏向ドア13との前後方向での距離である。より詳細には、気流偏向ドア13が第1状態のときに、気流偏向ドア13のうち最も第2の壁122に近い端部と、突出部15の先端との前後方向での距離である。 The distance L2 between the protrusion 15 and the airflow deflection door 13 is the distance in the front-rear direction between the tip of the protrusion 15 and the airflow deflection door 13. More specifically, this is the distance in the front-rear direction between the end of the airflow deflecting door 13 that is closest to the second wall 122 and the tip of the protruding portion 15 when the airflow deflecting door 13 is in the first state.
 突出量L1が0のとき、L2に対するL1の比(すなわち、L1/L2)は0であり、突出量L1が0から増加するにつれて、L2に対するL1の比(すなわち、L1/L2)も増大する。 When the protrusion amount L1 is 0, the ratio of L1 to L2 (ie, L1 / L2) is 0. As the protrusion amount L1 increases from 0, the ratio of L1 to L2 (ie, L1 / L2) also increases. .
 図10に示すように、L2に対するL1の比(すなわち、L1/L2)が増大するほど、低速気流F2の曲がり角度θ2が大きくなるが、吹出圧損が増大してしまう。ここで、本発明者の実験において、低速の気流F2を高速の気流F1に合流させるためには、低速の気流F2の曲がり角度θ2は、70度以上にすればよいことが確認されている。また、吹出圧損が20Pa以下であれば、吹出風の風量低下の影響が小さいことが確認されている。 As shown in FIG. 10, as the ratio of L1 to L2 (ie, L1 / L2) increases, the bending angle θ2 of the low-speed airflow F2 increases, but the blowout pressure loss increases. Here, in the experiments by the present inventors, it has been confirmed that the bending angle θ2 of the low-speed air flow F2 may be 70 degrees or more in order to join the low-speed air flow F2 to the high-speed air flow F1. Moreover, if the blowout pressure loss is 20 Pa or less, it has been confirmed that the influence of the reduction in the blown air volume is small.
 そこで、突出部15の突出量L1を、下記の数式(1)を満たすように設定する。 Therefore, the protrusion amount L1 of the protrusion 15 is set so as to satisfy the following formula (1).
 1.5≦L1/L2≦1.7・・・(1)
 これにより、比較例1の空気吹出装置と比較して、車両後方に向かって吹出口11から吹き出す吹出風の風量を増大させることができる。
1.5 ≦ L1 / L2 ≦ 1.7 (1)
Thereby, compared with the air blowing apparatus of the comparative example 1, the air volume of the blowing wind which blows off from the blower outlet 11 toward the vehicle rear can be increased.
 (2)本実施形態の空気吹出装置10では、突出部15は、第2の壁122のうち空気流れ最下流部に位置している。そして、突出部15の上面とインストルメントパネル1の上面部1aの表面とが面一で連なっている。この場合、突出部15が上面部1aの一部を構成するとともに、突出部15の先端が吹出口11の開口縁部11bを構成することになる。 (2) In the air blowing device 10 of this embodiment, the protrusion 15 is located in the most downstream portion of the air flow in the second wall 122. And the upper surface of the protrusion part 15 and the surface of the upper surface part 1a of the instrument panel 1 are continuing on the same plane. In this case, the projecting portion 15 constitutes a part of the upper surface portion 1 a, and the tip of the projecting portion 15 constitutes the opening edge portion 11 b of the outlet 11.
 このため、本実施形態の空気吹出装置10によれば、比較例1の空気吹出装置と比較して、吹出口11の前後方向での開口幅を小さくでき、インストルメントパネル1の意匠性を向上できる。 For this reason, according to the air blowing apparatus 10 of this embodiment, compared with the air blowing apparatus of the comparative example 1, the opening width in the front-back direction of the blower outlet 11 can be made small, and the designability of the instrument panel 1 is improved. it can.
 (第2実施形態)
 本実施形態の空気吹出装置10は、第1実施形態の空気吹出装置10において、吹出口11の左右方向の両端部における突出部15の突出量L1を大きくしたものであり、その他の構成は、第1実施形態の空気吹出装置10と同じである。なお、吹出口11の前後方向が吹出口11の縦方向であり、吹出口11の左右方向が吹出口11の横方向である。
(Second Embodiment)
The air blowing device 10 of the present embodiment is a device in which, in the air blowing device 10 of the first embodiment, the protruding amount L1 of the protruding portion 15 at both ends in the left-right direction of the air outlet 11 is increased. This is the same as the air blowing device 10 of the first embodiment. In addition, the front-back direction of the blower outlet 11 is the vertical direction of the blower outlet 11, and the left-right direction of the blower outlet 11 is the horizontal direction of the blower outlet 11.
 図11に示すように、本実施形態においても、突出部15は、第2の壁122において、吹出口11の左右方向の全域に形成されている。図12、13と図14とを比較してわかるように、本実施形態では、吹出口11の左右方向における第2の壁122の両端部の突出部15a、15bの突出量L1a、L1bが、吹出口11の左右方向における第2の壁122の両端部よりも中央側の突出部15cの突出量L1cよりも大きくなっている。 As shown in FIG. 11, also in this embodiment, the protrusion 15 is formed in the second wall 122 in the entire region in the left-right direction of the air outlet 11. As can be seen by comparing FIGS. 12 and 13 and FIG. 14, in this embodiment, the protrusion amounts L1a and L1b of the protrusions 15a and 15b at both ends of the second wall 122 in the left-right direction of the outlet 11 are It is larger than the projecting amount L1c of the projecting portion 15c on the center side than both end portions of the second wall 122 in the left-right direction of the air outlet 11.
 さらに、図11に示すように、吹出口11の左右方向における第2の壁122の両端部よりも中央側における突出部15cの突出量L1cは、吹出口11の左右方向の両端部よりも中央側の範囲内全域で均一である。一方、吹出口11の左右方向における第2の壁の122の両端部の突出部15a、15bの突出量L1a、L1bは、吹出口11の左右方向における中央側から端に向かうにつれて徐々に大きくなっている。 Furthermore, as shown in FIG. 11, the protrusion amount L1c of the protrusion 15 c on the center side with respect to the both ends of the second wall 122 in the left-right direction of the outlet 11 is more central than the ends of the outlet 11 in the left-right direction. Uniform throughout the entire range. On the other hand, the protrusions L1a and L1b of the protrusions 15a and 15b at both ends of the second wall 122 in the left and right direction of the air outlet 11 gradually increase from the center side to the end of the air outlet 11 in the left and right direction. ing.
 このため、突出部15a、15bの先端が構成する辺11b1、11b2と吹出口11の開口縁部の後方側の長辺11aとの間隔が、突出部15cの先端が構成する辺11b3と吹出口11の開口縁部の後方側の長辺11aとの間隔と比較して、吹出口11の左右方向における中央側から端に向かうにつれて徐々に狭くなっている。すなわち、吹出口11の左右方向の両端部では、吹出口11の前後方向における開口幅が、吹出口11の左右方向における中央側から端に向かうにつれて徐々に狭くなっている。 For this reason, the distance between the sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b and the long side 11a on the rear side of the opening edge of the outlet 11 is the side 11b3 and the outlet formed by the tip of the protrusion 15c. Compared with the space | interval with the long side 11a of the back side of 11 opening edge parts, it becomes narrow gradually as it goes to the end from the center side in the left-right direction of the blower outlet 11. FIG. That is, at both ends in the left-right direction of the air outlet 11, the opening width in the front-rear direction of the air outlet 11 is gradually narrowed from the center side in the left-right direction of the air outlet 11 toward the end.
 また、突出部15cの先端が構成する辺11b3は、吹出口11の長辺11aに沿って湾曲している。 Further, the side 11b3 formed by the tip of the protruding portion 15c is curved along the long side 11a of the air outlet 11.
 一方、突出部15aの先端が構成する辺11b1は、直線状となっている。そして、図15に示すように、辺11b1に垂直な仮想直線VL1を吹出口11からの吹出方向側に延長させたとき、この仮想直線Vl1が狙いの点P1を通過するように、辺11b1の向きが設定されている。なお、図15では、仮想直線VL1を、辺11b1の中心点から延ばしているが、辺11b1のいずれの点から延ばしてもよい。 On the other hand, the side 11b1 formed by the tip of the protruding portion 15a is linear. Then, as shown in FIG. 15, when the virtual straight line VL1 perpendicular to the side 11b1 is extended to the blowing direction side from the outlet 11, the virtual straight line Vl1 passes through the target point P1 and the side 11b1 The direction is set. In FIG. 15, the virtual straight line VL1 extends from the center point of the side 11b1, but may extend from any point of the side 11b1.
 突出部15bの先端が構成する辺11b2も、辺11b1と同様の直線状である。ただし、左右方向に対する角度は、辺11b1と辺11b2では異なっている。したがって、本実施形態では、突出部15aと突出部15bの先端形状は非対称である。 The side 11b2 formed by the tip of the protruding portion 15b is also a straight line similar to the side 11b1. However, the angle with respect to the left-right direction is different between the side 11b1 and the side 11b2. Therefore, in this embodiment, the front-end | tip shape of the protrusion part 15a and the protrusion part 15b is asymmetrical.
 なお、本実施形態では、突出部15cの突出量L1cのみを、第1実施形態で説明した数式(1)を満たすように、設定すればよい。 In the present embodiment, only the protrusion amount L1c of the protrusion 15c may be set so as to satisfy the formula (1) described in the first embodiment.
 次に、本実施形態の主な特徴について説明する。 Next, main features of this embodiment will be described.
 (1)本実施形態では、第2の壁122の左右方向の両端部における突出部15a、15bの突出量L1a、L1bが、第2の壁122の左右方向の両端部よりも内側の部位における突出部15cの突出量L1cよりも大きくなっている。 (1) In the present embodiment, the protruding amounts L1a and L1b of the protruding portions 15a and 15b at the both ends in the left and right direction of the second wall 122 are in the regions inside the both ends in the left and right direction of the second wall 122. It is larger than the protrusion amount L1c of the protrusion 15c.
 ここで、第1実施形態のように、第2の壁122の左右方向全域で、突出部15の突出量L1が均一の場合について説明する。この場合、吹出口11の左右方向の両端部では、図16に示すように、気流偏向ドア13が第1状態とされるフェイスモード時に、低速気流F2が、吹出口11の短辺11c、11dに連なるダクト12の側壁123、124に沿って流れる。側壁123、124に沿って流れる低速気流F2が、吹出口11から上に向かって吹き出される。このため、吹出口11の左右後方の両端部では、吹出口11の左右後方の両端部よりも内側の部位と比較して、高速の気流F1に合流する低速の気流F2が少なくなってしまう。 Here, as in the first embodiment, the case where the protrusion amount L1 of the protrusion 15 is uniform in the entire left and right direction of the second wall 122 will be described. In this case, at both ends in the left and right direction of the air outlet 11, as shown in FIG. 16, in the face mode in which the air current deflecting door 13 is set to the first state, the low speed air current F 2 is converted into the short sides 11 c and 11 d Flows along the side walls 123 and 124 of the duct 12. A low-speed air flow F <b> 2 flowing along the side walls 123 and 124 is blown upward from the air outlet 11. For this reason, compared with the site | part inside the both ends of the left-right back of the blower outlet 11, the low-speed airflow F2 which merges with the high-speed airflow F1 will decrease in the both ends of the blower outlet 11 right and left back.
 これに対して、図12、13に示すように、本実施形態では、吹出口11の左右方向の両端部において、突出部15a、15bの突出量L1a、L1bを大きくしている。このため、ダクト12の側壁123、124の近くを流れる低速の気流F2を第1の壁121に向けることができる。これにより、吹出口11の左右方向の両端部において、高速の気流F1に合流する低速の気流F2を増大でき、前方から後方に向かう方向に吹出口11から吹き出す吹出風の風量をより増大させることができる。 On the other hand, as shown in FIGS. 12 and 13, in the present embodiment, the protruding amounts L1a and L1b of the protruding portions 15a and 15b are increased at both ends of the outlet 11 in the left-right direction. For this reason, the low-speed airflow F <b> 2 flowing near the side walls 123 and 124 of the duct 12 can be directed to the first wall 121. Accordingly, the low-speed air flow F2 that merges with the high-speed air flow F1 can be increased at both ends in the left-right direction of the air outlet 11, and the air volume of the air blown out from the air outlet 11 in the direction from the front to the rear is further increased. Can do.
 (2)本実施形態では、第2の壁122の左右方向の両端部における突出部15a、15bの突出量L1a、L1bが、左右方向の中央側から端に向かうにつれて、徐々に大きくなっている。そして、突出部15a、15bの先端が構成する辺11b1、11b2が、直線状となっている。この辺11b1、11b2の垂線方向は、狙いの点P1である乗員5の顔を向いている。 (2) In the present embodiment, the protruding amounts L1a and L1b of the protruding portions 15a and 15b at both ends in the left and right direction of the second wall 122 gradually increase from the center side in the left and right direction toward the end. . The sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b are linear. The perpendicular direction of the sides 11b1 and 11b2 faces the face of the occupant 5 that is the target point P1.
 ここで、気流偏向ドア13が第1状態とされるフェイスモード時において、辺11b1、11b2の垂線方向が、低速の気流F2の流れ方向となる。このため、本実施形態では、低速の気流F2が狙いの点P1に向かうように、辺11b、11cの向きが設定されている。 Here, in the face mode in which the airflow deflecting door 13 is in the first state, the perpendicular direction of the sides 11b1 and 11b2 is the flow direction of the low-speed airflow F2. For this reason, in this embodiment, the directions of the sides 11b and 11c are set so that the low-speed air flow F2 is directed to the target point P1.
 これにより、図11に示すように、フェイスモード時において、吹出口11の左右方向の両端部を流れる低速の気流F2を、乗員5の顔に向けることができる。この結果、低速の気流F2が合流する高速の気流F1も、乗員5の顔に導くことができる。なお、このことは、本発明者が行った実験で確認されている。 As a result, as shown in FIG. 11, the low-speed air flow F <b> 2 flowing through both ends in the left-right direction of the outlet 11 can be directed to the face of the occupant 5 in the face mode. As a result, the high-speed airflow F1 where the low-speed airflow F2 merges can also be guided to the face of the occupant 5. This has been confirmed by experiments conducted by the present inventors.
 したがって、本実施形態によれば、第1実施形態と比較して、乗員5の顔の位置での風速を上げることができる。本発明者が行った実験では、吹出口11の中央から後方へ1m離れた地点P1での風速が、0.5m/s上がることが確認されている。 Therefore, according to the present embodiment, it is possible to increase the wind speed at the face position of the occupant 5 as compared with the first embodiment. In the experiment conducted by the present inventor, it has been confirmed that the wind speed at the point P1 that is 1 m away from the center of the outlet 11 increases by 0.5 m / s.
 (第3実施形態)
 本実施形態の空気吹出装置10は、第1実施形態の空気吹出装置10に対して、突出部の形状が異なるものであり、その他の構成は、第1実施形態の空気吹出装置10と同じである。
(Third embodiment)
The air blowing device 10 of the present embodiment is different from the air blowing device 10 of the first embodiment in the shape of the protrusions, and the other configurations are the same as the air blowing device 10 of the first embodiment. is there.
 図17に示すように、本実施形態の空気吹出装置10においても、ダクト12の第2の壁122に突出部16が設けられている。この突出部16は、第1実施形態の突出部15に対応するものである。 As shown in FIG. 17, also in the air blowing device 10 of the present embodiment, the protruding portion 16 is provided on the second wall 122 of the duct 12. This protrusion 16 corresponds to the protrusion 15 of the first embodiment.
 突出部16は、突出部16の先端よりも空気流れ上流側に、前方側に向かって凸状に湾曲する湾曲面16aを有する。この湾曲面16aは、第2の壁122のうち突出部16の空気流れ上流側の位置から突出部16の先端の位置まで延びている。 The protrusion 16 has a curved surface 16a that curves in a convex shape toward the front side upstream of the tip of the protrusion 16 on the upstream side of the air flow. The curved surface 16 a extends from the position on the upstream side of the air flow of the protrusion 16 in the second wall 122 to the position of the tip of the protrusion 16.
 ここで、第1実施形態のように、突出部15が、板状であって、第2の壁122の表面から直交する方向に延びている場合、フェイスモード時に、突出部15の空気流れ上流側に淀みが発生する。 Here, as in the first embodiment, when the protruding portion 15 is plate-shaped and extends in a direction orthogonal to the surface of the second wall 122, the air flow upstream of the protruding portion 15 is in the face mode. Itching occurs on the side.
 これに対して、本実施形態によれば、フェイスモード時に、湾曲面16aに沿って低速の気流F2を流すことができ、ダクト12の内部において、突出部16の空気流れ上流側に淀みが発生することを回避できる。 On the other hand, according to the present embodiment, in the face mode, a low-speed air flow F2 can flow along the curved surface 16a, and stagnation occurs on the upstream side of the air flow of the protrusion 16 inside the duct 12. Can be avoided.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、下記のように、請求の範囲に記載した範囲内において適宜変更が可能である。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims as follows. The present disclosure also allows the following modifications and equivalent ranges of the above-described embodiments.
 (1)上記各実施形態では、突出部15、16は、第2の壁122の空気流れ最下流部に位置していたが、この位置よりも空気流れ上流側に位置していてもよい。突出部15、16は、第2の壁122のうち気流偏向ドア13よりも空気流れ下流側の部位に位置していればよい。 (1) In each of the above embodiments, the protrusions 15 and 16 are located on the most downstream portion of the second wall 122 in the air flow, but may be located on the upstream side of the air flow from this position. The protrusions 15 and 16 only need to be located in a portion of the second wall 122 on the downstream side of the air flow with respect to the airflow deflection door 13.
 (2)突出部15、16の形状は、上記各実施形態で説明した形状に限られない。突出部15、16は、第2の壁122から第1の壁121に向かって突出し、第2の壁122に沿って流れる低速の気流F2を第2の壁122から第1の壁121に向かう方向に向かわせることができる形状であればよい。 (2) The shapes of the protrusions 15 and 16 are not limited to the shapes described in the above embodiments. The projecting portions 15 and 16 project from the second wall 122 toward the first wall 121, and the low-speed airflow F <b> 2 flowing along the second wall 122 travels from the second wall 122 to the first wall 121. Any shape that can be directed in the direction is acceptable.
 (3)第2実施形態では、第2の壁122の左右方向の両端部における突出部15a、15bの突出量L1a、L1bが、左右方向の中央側から端に向かうにつれて、徐々に大きくなっていたが、これに限られない。第2の壁122の左右方向の両端部において、突出部15a、15bの突出量L1a、L1bが一定であってもよい。第2の壁122の左右方向の両端部における突出部15a、15bの突出量L1a、L1bが、第2の壁122の左右方向の両端部よりも内側の部位における突出部15cの突出量L1cよりも大きくなっていれば、第2実施形態で説明した(1)の効果が得られる。 (3) In 2nd Embodiment, protrusion amount L1a, L1b of protrusion part 15a, 15b in the both ends of the left-right direction of the 2nd wall 122 becomes large gradually as it goes to the end from the center side of the left-right direction. However, it is not limited to this. The protruding amounts L1a and L1b of the protruding portions 15a and 15b may be constant at both the left and right ends of the second wall 122. The protruding amounts L1a and L1b of the protruding portions 15a and 15b at both the left and right end portions of the second wall 122 are larger than the protruding amount L1c of the protruding portion 15c at a portion inside the both end portions of the second wall 122 in the left and right direction. If it is larger, the effect (1) described in the second embodiment can be obtained.
 また、突出部15a、15bの突出量L1a、L1bの両方に限らず、これらの一方が、第2の壁122の左右方向の両端部よりも内側の部位における突出部15cの突出量L1cよりも大きくなっていればよい。これにより、第2実施形態で説明した(1)の効果が得られる。 Moreover, not only both protrusion amount L1a and L1b of protrusion part 15a, 15b but one of these is more than protrusion amount L1c of protrusion part 15c in the site | part inside the both ends of the left-right direction of the 2nd wall 122. It only needs to be large. Thereby, the effect (1) described in the second embodiment can be obtained.
 また、第2実施形態では、突出部15が、第2の壁122において、吹出口11の左右方向の全域に形成されていたが、これに限られない。吹出口11の左右方向における第2の壁122の両端部よりも中央側の範囲内において、突出部15cが形成されている部分と、突出部15cが形成されていない部分とがあってもよい。吹出口11の左右方向における第2の壁122の両端部の突出部15a、15bのうちどちらか一方のみが形成されていてもよい。すなわち、突出部15は、少なくとも、第2の壁122のうち吹出口11の左右方向での端部と、第2の壁122のうち吹出口11の左右方向での端部よりも中央側の部分とに形成されていればよい。このとき、第2実施形態と同様に、端部での突出部15の突出量は、中央側の部分での突出部15の突出量よりも大きくされる。これにより、第2実施形態で説明した(1)の効果が得られる。さらに、第2実施形態と同様に、端部での突出部15の突出量は、吹出口11の左右方向における中央側から端側に向かうにつれて徐々に大きくされる。これにより、第2実施形態で説明した(2)の効果が得られる。 Further, in the second embodiment, the protruding portion 15 is formed in the entire area in the left-right direction of the outlet 11 in the second wall 122, but is not limited thereto. Within the range of the center side rather than the both ends of the 2nd wall 122 in the left-right direction of the blower outlet 11, there may exist the part in which the protrusion part 15c is formed, and the part in which the protrusion part 15c is not formed. . Only one of the protrusions 15a and 15b at both ends of the second wall 122 in the left-right direction of the air outlet 11 may be formed. That is, the projecting portion 15 is at least on the center side of the end portion in the left-right direction of the air outlet 11 of the second wall 122 and the end portion of the second wall 122 in the left-right direction of the air outlet 11. What is necessary is just to be formed in the part. At this time, similarly to the second embodiment, the protruding amount of the protruding portion 15 at the end portion is made larger than the protruding amount of the protruding portion 15 at the central portion. Thereby, the effect (1) described in the second embodiment can be obtained. Further, similarly to the second embodiment, the protruding amount of the protruding portion 15 at the end portion is gradually increased from the center side in the left-right direction of the air outlet 11 toward the end side. Thereby, the effect (2) described in the second embodiment can be obtained.
 (4)第2実施形態では、突出部15a、15bの先端が構成する辺11b1、11b2が直線状であって、この辺11b1、11b2の垂線方向が、狙いの点P1である乗員5の顔を向いていた。しかし、突出部15a、15bの先端が構成する辺11b1、11b2の形状は直線状に限らす、曲線であってもよい。例えば、第1の壁121から第2の壁122に向かう方向に凸の円弧形状としてもよい。この場合、辺11b1、11b2の接線の垂線方向が、狙いの点P1を向くようにする。これにより、第2実施形態で説明した(2)の効果が得られる。 (4) In the second embodiment, the sides 11b1 and 11b2 formed by the ends of the protrusions 15a and 15b are linear, and the perpendicular direction of the sides 11b1 and 11b2 is the face of the occupant 5 that is the target point P1. It was suitable. However, the shape of the sides 11b1 and 11b2 formed by the tips of the protrusions 15a and 15b is not limited to a straight line, and may be a curve. For example, an arc shape that is convex in the direction from the first wall 121 toward the second wall 122 may be used. In this case, the perpendicular direction of the tangent line of the sides 11b1 and 11b2 is set to face the target point P1. Thereby, the effect (2) described in the second embodiment can be obtained.
 (5)上記各実施形態では、吹出口11の平面形状が湾曲した形状であったが、直線状に延びた形状であってもよい。すなわち、ガイド壁14の先端によって構成される吹出口11の長辺11aが曲線でなく、直線であってもよい。 (5) In each of the above embodiments, the planar shape of the air outlet 11 is a curved shape, but it may be a shape extending linearly. That is, the long side 11a of the air outlet 11 constituted by the tip of the guide wall 14 may be a straight line instead of a curve.
 (6)上記各実施形態では、吹出口11が一方向に延びた扁平形状であったが、扁平形状でなくてもよい。すなわち、吹出口11の開口縁部における一対の辺11a、11bと一対の辺11c、11dが同じ長さであってもよい。 (6) In each of the above embodiments, the air outlet 11 has a flat shape extending in one direction, but may not have a flat shape. That is, the pair of sides 11a and 11b and the pair of sides 11c and 11d at the opening edge of the outlet 11 may have the same length.
 (7)上記各実施形態では、気流偏向ドア13として、バタフライドアを採用したが、スライドドア等の他のドアを採用してもよい。スライドドアを採用する場合、気流偏向ドア13の位置を、第1流路12aの断面積が第2流路12bの断面積よりも小さくなる位置とする。これにより、第1流路12aに高速の気流が発生するとともに、第2流路12bに低速の気流が発生する第1状態となる。 (7) In each of the above embodiments, the butterfly door is employed as the airflow deflecting door 13, but other doors such as a sliding door may be employed. When the sliding door is employed, the position of the air flow deflecting door 13 is set to a position where the cross-sectional area of the first flow path 12a is smaller than the cross-sectional area of the second flow path 12b. As a result, a high-speed air flow is generated in the first flow path 12a and a low-speed air flow is generated in the second flow path 12b.
 (8)上記各実施形態では、本開示の空気吹出装置をインストルメントパネル1の上面部1aの吹出口11に適用したが、本開示の空気吹出装置をインストルメントパネル1の下面の吹出口(すなわち、フット吹出口)に適用しても良い。この場合、フット吹出口から吹き出される空気の吹出角度を任意に変更することができる。また、上記各実施形態では、本開示の空気吹出装置を車両用空調装置に適用したが、本開示の空気吹出装置を車両以外の空調装置に適用しても良い。 (8) In each of the embodiments described above, the air blowing device of the present disclosure is applied to the air outlet 11 of the upper surface portion 1a of the instrument panel 1. However, the air blowing device of the present disclosure is applied to the air outlet of the lower surface of the instrument panel 1 ( That is, you may apply to a foot blower outlet. In this case, the blowing angle of the air blown from the foot outlet can be arbitrarily changed. Moreover, in each said embodiment, although the air blowing apparatus of this indication was applied to the vehicle air conditioner, you may apply the air blowing apparatus of this indication to air conditioners other than a vehicle.
 (9)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (9) The above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.

Claims (8)

  1.  空気を吹き出す空気吹出装置であって、
     対象空間に空気を吹き出す吹出口(11)と、
     第1の壁(121)および前記第1の壁に対向する第2の壁(122)を有し、前記吹出口の空気流れ上流側に連なる空気流路を内部に形成する流路形成部(12)と、
     前記空気流路に設けられ、前記空気流路に流速が異なる2つの気流を発生させる気流偏向部材(13)とを備え、
     前記空気流路において、前記気流偏向部材と前記第1の壁との間を第1流路(12a)とし、前記気流偏向部材と前記第2の壁との間を第2流路(12b)としたとき、
     前記気流偏向部材は、相対的に、前記第1流路に高速の気流(F1)が発生するとともに、前記第2流路に低速の気流(F2)が発生するように構成されており、
     前記第1の壁のうち前記吹出口側の一部は、前記気流偏向部材が発生させた前記第1流路からの高速の気流を壁面に沿わせて曲げて、前記高速の気流の向きを前記第2の壁から前記第1の壁に向かう方向とするように、前記高速の気流をガイドするガイド壁(14)を構成し、
     前記流路形成部は、前記第2の壁のうち前記気流偏向部材よりも空気流れ下流側の部位において、前記第2の壁から前記第1の壁に向かって突出し、前記第2の壁に沿って流れる低速の気流を前記第2の壁から前記第1の壁に向かう方向に向かわせる突出部(15、16)を有する空気吹出装置。
    An air blowing device for blowing out air;
    An air outlet (11) for blowing air into the target space;
    A flow path forming section (1) having a first wall (121) and a second wall (122) facing the first wall, and forming therein an air flow path connected to the upstream side of the air flow of the outlet. 12)
    An air flow deflecting member (13) provided in the air flow path and generating two air flows having different flow velocities in the air flow path;
    In the air flow path, a first flow path (12a) is defined between the air flow deflecting member and the first wall, and a second flow path (12b) is defined between the air flow deflecting member and the second wall. When
    The air flow deflecting member is relatively configured to generate a high speed air flow (F1) in the first flow path and to generate a low speed air flow (F2) in the second flow path,
    A part of the first wall on the outlet side bends a high-speed air flow from the first flow path generated by the air-flow deflecting member along the wall surface so as to change the direction of the high-speed air flow. Configuring a guide wall (14) for guiding the high-speed air flow so as to be directed from the second wall toward the first wall;
    The flow path forming portion protrudes from the second wall toward the first wall at a portion of the second wall on the downstream side of the air flow deflecting member with respect to the airflow deflecting member, and is formed on the second wall. An air blowing device having protrusions (15, 16) for directing a low-speed airflow flowing along the second wall in a direction from the second wall toward the first wall.
  2.  空気を吹き出す空気吹出装置であって、
     対象空間に空気を吹き出す吹出口(11)と、
     第1の壁(121)および前記第1の壁に対向する第2の壁(122)を有し、前記吹出口の空気流れ上流側に連なる空気流路を内部に形成する流路形成部(12)と、
     前記空気流路に設けられ、前記空気流路に流速が異なる2つの気流を発生させる気流偏向部材(13)とを備え、
     前記空気流路において、前記気流偏向部材と前記第1の壁との間を第1流路(12a)とし、前記気流偏向部材と前記第2の壁との間を第2流路(12b)としたとき、
     前記気流偏向部材は、前記第1流路の断面積が前記第2流路の断面積よりも小さくなることにより、前記第2流路の気流よりも高速の気流(F1)が前記第1流路に発生するとともに、前記第1流路の気流よりも低速の気流(F2)が前記第2流路に発生するように構成されており、
     前記第1の壁のうち前記吹出口側の一部は、前記気流偏向部材が発生させた前記第1流路からの高速の気流を壁面に沿わせて曲げて、前記高速の気流の向きを前記第2の壁から前記第1の壁に向かう方向とするように、前記高速の気流をガイドするガイド壁(14)を構成し、
     前記流路形成部は、前記第2の壁のうち前記気流偏向部材よりも空気流れ下流側の部位において、前記第2の壁から前記第1の壁に向かって突出し、前記第2の壁に沿って流れる低速の気流を前記第2の壁から前記第1の壁に向かう方向に向かわせる突出部(15、16)を有する空気吹出装置。
    An air blowing device for blowing out air;
    An air outlet (11) for blowing air into the target space;
    A flow path forming section (1) having a first wall (121) and a second wall (122) facing the first wall, and forming therein an air flow path connected to the upstream side of the air flow of the outlet. 12)
    An air flow deflecting member (13) provided in the air flow path and generating two air flows having different flow velocities in the air flow path;
    In the air flow path, a first flow path (12a) is defined between the air flow deflecting member and the first wall, and a second flow path (12b) is defined between the air flow deflecting member and the second wall. When
    In the airflow deflecting member, since the cross-sectional area of the first flow path is smaller than the cross-sectional area of the second flow path, the airflow (F1) faster than the airflow in the second flow path is generated in the first flow. An air flow (F2) that is generated in the road and slower than the air flow in the first flow path is generated in the second flow path,
    A part of the first wall on the outlet side bends a high-speed air flow from the first flow path generated by the air-flow deflecting member along the wall surface so as to change the direction of the high-speed air flow. Configuring a guide wall (14) for guiding the high-speed air flow so as to be directed from the second wall toward the first wall;
    The flow path forming portion protrudes from the second wall toward the first wall at a portion of the second wall on the downstream side of the air flow deflecting member with respect to the airflow deflecting member, and is formed on the second wall. An air blowing device having protrusions (15, 16) for directing a low-speed airflow flowing along the second wall in a direction from the second wall toward the first wall.
  3.  前記吹出口は、前記第1の壁と前記第2の壁とが対向する方向を縦方向とし、前記第1の壁と前記第2の壁とが対向する方向に対して交差する方向を横方向とし、
     前記突出部は、前記吹出口の横方向における前記第2の壁の全域に形成されており、
     前記吹出口の横方向における前記第2の壁の両端部の少なくとも一方での前記突出部の突出量が、前記吹出口の横方向における前記第2の壁の両端部よりも内側の部位での前記突出部の突出量よりも大きくなっている請求項1または2に記載の空気吹出装置。
    The blower outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is horizontal. Direction,
    The protrusion is formed in the entire area of the second wall in the lateral direction of the air outlet,
    The amount of protrusion of the projecting portion at at least one of both end portions of the second wall in the lateral direction of the air outlet is at a portion inside the both end portions of the second wall in the lateral direction of the air outlet. The air blowing device according to claim 1, wherein the air blowing device is larger than a protruding amount of the protruding portion.
  4.  前記吹出口の横方向における前記第2の壁の両端部の少なくとも一方において、前記突出量が、前記吹出口の横方向における中央側から端側に向かうにつれて徐々に大きくなっている請求項3に記載の空気吹出装置。 The at least one of the both ends of the said 2nd wall in the horizontal direction of the said blower outlet WHEREIN: The said protrusion amount is gradually large as it goes to the end side from the center side in the horizontal direction of the said blower outlet. The air blowing device described.
  5.  前記吹出口は、前記第1の壁と前記第2の壁とが対向する方向を縦方向とし、前記第1の壁と前記第2の壁とが対向する方向に対して交差する方向を横方向とし、
     前記突出部は、少なくとも、前記第2の壁のうち前記横方向での端部と、前記第2の壁のうち前記横方向での前記端部よりも中央側の部分とに形成されており、
     前記端部での前記突出部の突出量が、前記中央側の部分での前記突出部の突出量よりも大きくなっている請求項1または2に記載の空気吹出装置。
    The blower outlet has a direction in which the first wall and the second wall are opposed to each other as a vertical direction, and a direction intersecting the direction in which the first wall and the second wall are opposed to each other is horizontal. Direction,
    The projecting portion is formed at least on an end portion in the lateral direction of the second wall and on a portion of the second wall on the center side of the end portion in the lateral direction. ,
    The air blowing device according to claim 1, wherein a protruding amount of the protruding portion at the end portion is larger than a protruding amount of the protruding portion at the central portion.
  6.  前記端部での前記突出部は、前記突出量が前記横方向における中央側から端側に向かうにつれて徐々に大きくなっている請求項5に記載の空気吹出装置。 6. The air blowing device according to claim 5, wherein the protruding portion at the end portion gradually increases as the protruding amount moves from the center side to the end side in the lateral direction.
  7.  前記突出部の突出量をL1とし、前記第1の壁と前記第2の壁とが対向する方向での前記突出部の先端と前記気流偏向部材との距離をL2としたとき、下記数式(1)
     1.5≦L1/L2≦1.7・・・(1)
    を満たす請求項1ないし6のいずれか1つに記載の空気吹出装置。
    When the protrusion amount of the protrusion is L1, and the distance between the tip of the protrusion and the airflow deflecting member in the direction in which the first wall and the second wall face each other is L2, the following formula ( 1)
    1.5 ≦ L1 / L2 ≦ 1.7 (1)
    The air blowing device as described in any one of Claim 1 thru | or 6 satisfy | filling these.
  8.  前記吹出口は、車両のインストルメントパネルの上面部に設けられ、
     前記突出部は、前記第2の壁のうち空気流れ最下流部に位置し、前記突出部の上面と前記上面部の表面とが面一で連なっている請求項1ないし7のいずれか1つに記載の空気吹出装置。
    The air outlet is provided on the upper surface of the instrument panel of the vehicle,
    8. The projection according to claim 1, wherein the projecting portion is located at a most downstream portion of the second wall in the air flow, and the upper surface of the projecting portion and the surface of the upper surface portion are flush with each other. The air blowing device described in 1.
PCT/JP2016/057230 2015-04-08 2016-03-08 Air discharge device WO2016163193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017511506A JP6424953B2 (en) 2015-04-08 2016-03-08 Air blowing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-079399 2015-04-08
JP2015079399 2015-04-08

Publications (1)

Publication Number Publication Date
WO2016163193A1 true WO2016163193A1 (en) 2016-10-13

Family

ID=57073174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057230 WO2016163193A1 (en) 2015-04-08 2016-03-08 Air discharge device

Country Status (2)

Country Link
JP (1) JP6424953B2 (en)
WO (1) WO2016163193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135743A (en) * 2018-05-11 2020-12-25 株式会社电装 Fluid blowing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460662A (en) * 1977-10-24 1979-05-16 Matsushita Electric Ind Co Ltd Air blow direction changer
JPS5937310A (en) * 1982-08-24 1984-02-29 Matsushita Electric Ind Co Ltd Flow direction controller
JPS619313U (en) * 1984-06-25 1986-01-20 小島プレス工業株式会社 Automotive indoor air conditioner
JPS61101314U (en) * 1984-12-10 1986-06-28
JPS6242161B2 (en) * 1977-10-24 1987-09-07 Matsushita Denki Sangyo Kk
JPH01172909U (en) * 1988-05-25 1989-12-07
JPH02103334A (en) * 1988-10-13 1990-04-16 Matsushita Refrig Co Ltd Wind direction altering device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210564A (en) * 2013-04-05 2014-11-13 株式会社デンソー Air blower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460662A (en) * 1977-10-24 1979-05-16 Matsushita Electric Ind Co Ltd Air blow direction changer
JPS6242161B2 (en) * 1977-10-24 1987-09-07 Matsushita Denki Sangyo Kk
JPS5937310A (en) * 1982-08-24 1984-02-29 Matsushita Electric Ind Co Ltd Flow direction controller
JPS619313U (en) * 1984-06-25 1986-01-20 小島プレス工業株式会社 Automotive indoor air conditioner
JPS61101314U (en) * 1984-12-10 1986-06-28
JPH01172909U (en) * 1988-05-25 1989-12-07
JPH02103334A (en) * 1988-10-13 1990-04-16 Matsushita Refrig Co Ltd Wind direction altering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135743A (en) * 2018-05-11 2020-12-25 株式会社电装 Fluid blowing device
CN112135743B (en) * 2018-05-11 2024-04-02 株式会社电装 Fluid blowout device

Also Published As

Publication number Publication date
JP6424953B2 (en) 2018-11-21
JPWO2016163193A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2015146124A1 (en) Air-blowing device
WO2014162670A1 (en) Air blowing device
US20190070936A1 (en) Air discharge device
JP6318931B2 (en) Air blowing device
US20190168566A1 (en) Air blowout apparatus
JP2008100593A (en) Ventilation passage switching device and vehicular air conditioner
JP2006315437A (en) Air passage opening and closing device
WO2014156061A1 (en) Vehicular air conditioner
JP6547656B2 (en) Vehicle air blowing device
WO2016163193A1 (en) Air discharge device
JP5924230B2 (en) Air conditioner
JP6394796B2 (en) Air blowing device
JP6399211B2 (en) Air blowing device
JP4811384B2 (en) Air conditioner for vehicles
WO2020066524A1 (en) Blowing device for vehicle
JP6481631B2 (en) Air blowing device for vehicle
JP5721549B2 (en) Air conditioner for vehicles
JP6565739B2 (en) Air blowing device for vehicle
JP6634799B2 (en) Air blowing device for vehicles
JP2017100553A (en) Air blowout device for vehicle
JP6565738B2 (en) Air blowing device for vehicle
JP2017149302A (en) Air blowout device for vehicle
JP2002264633A (en) Device for opening/closing air passage and vehicle air conditioner
JP2016011009A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776362

Country of ref document: EP

Kind code of ref document: A1