JPH0122479B2 - - Google Patents

Info

Publication number
JPH0122479B2
JPH0122479B2 JP245282A JP245282A JPH0122479B2 JP H0122479 B2 JPH0122479 B2 JP H0122479B2 JP 245282 A JP245282 A JP 245282A JP 245282 A JP245282 A JP 245282A JP H0122479 B2 JPH0122479 B2 JP H0122479B2
Authority
JP
Japan
Prior art keywords
flow
control member
head
flow control
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP245282A
Other languages
Japanese (ja)
Other versions
JPS58119994A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP245282A priority Critical patent/JPS58119994A/en
Publication of JPS58119994A publication Critical patent/JPS58119994A/en
Publication of JPH0122479B2 publication Critical patent/JPH0122479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/068Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as perforated walls, ceilings or floors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre

Description

【発明の詳細な説明】 本発明は空調装置等の吹出し流れ方向を任意に
偏向させるためのものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is for arbitrarily deflecting the blowing flow direction of an air conditioner or the like.

本発明はクロスフローフアンを用いた送風装置
に関し、下流側が漸次拡大形状に設けられたリア
ガイダと、スタビライザと、前記フアンの吐出側
でフアンの渦の近傍に設けられた、回転軸を中心
として回転する柱状体の流れ制御部材とからな
り、前記流れ制御部材は断面形状が円弧状の頭部
の中心を前記回転軸より偏心位置とし、前記頭部
の延長線上の片方には第1のほぼ平らな面を有
し、他方は付着効果を有するようにほぼ円弧状と
した面を有すると共に、前記頭部と対向し前記ほ
ぼ平らな面と鈍角をなす第2のほぼ平らな面を有
する形状にし、前記円弧状の面の前記頭部に近接
する部分と、前記第1のほぼ平らな面と第2のほ
ぼ平らな面が交わるところまたはその近傍の部分
とを連通させることによつて、回転軸の回動のみ
によつて流れの吹き出し方向を風量をあまり低下
せずに大幅に変えたり、流れを下吹きと水平吹き
に分けて吹き出す分流を行わせたり、前記流れ制
御部材に設けた連通口によつて流れの合流を容易
にし、流れの吹き出し速度分布を鋭くして、吹き
出し流れの到達距離を増加させて室内の温度分布
の均一化を計ることにより空調効果を高めること
を可能とするものである。
The present invention relates to an air blowing device using a crossflow fan, which includes a rear guider whose downstream side is provided with a gradually expanding shape, a stabilizer, and a rotating shaft provided near the vortex of the fan on the discharge side of the fan, which rotates around a rotation axis. The flow control member has a head having an arcuate cross-sectional shape, and the center of the head is located eccentrically from the rotation axis, and a first substantially flat head is located on one side of the extension of the head. the other has a substantially arc-shaped surface to have an adhesion effect, and a second substantially flat surface facing the head and forming an obtuse angle with the substantially flat surface. , by communicating a portion of the arcuate surface close to the head with a portion at or near the intersection of the first substantially flat surface and the second substantially flat surface; It is possible to significantly change the blowing direction of the flow without significantly reducing the air volume only by rotating the shaft, or to separate the flow into downward blowing and horizontal blowing, or to create a connection provided in the flow control member. It is possible to improve the air conditioning effect by making it easier to merge the flows through the mouth, sharpening the flow velocity distribution, increasing the reach of the flow, and uniformizing the temperature distribution in the room. It is something.

従来の送風装置を壁掛け型ヒートポンプに使用
した場合を例にあげて説明する。第1図において
1がクロスフローフアン、2がスタビライザ、3
がリアガイダ、4が複数枚のルーバーから構成さ
れた流れ偏向部であり、この4つで送風装置を構
成している。5は熱交換器、6はケーシングであ
る。クロスフローフアン1が回転すると、流れは
熱交換器5を通つて吸い込まれ、流れ偏向部4で
吹き出し方向を変えられて出ていく。元来、ヒー
トポンプにおいては、被空調室内の温度分布を均
一化するために暖房時は下吹きに、冷房時は水平
吹きに吹き出し流れ方向を制御することが望まし
い。しかしながら第1図の破線で示すように、下
吹きに偏向させる場合にはルーバー4が吹き出し
口を殆ど塞いでしまう格好になり、風量が大幅に
低下してしまい、十分な空調効果を得ることがで
きなかつた。また、従来のように複数枚のルーバ
ーを用いた場合には吹出口のスペースが大きくな
るため薄型化においても問題があつた。
An example in which a conventional air blower is used in a wall-mounted heat pump will be explained. In Figure 1, 1 is a crossflow fan, 2 is a stabilizer, and 3
4 is a rear guider, and 4 is a flow deflection section composed of a plurality of louvers, and these four constitute a blower device. 5 is a heat exchanger, and 6 is a casing. When the cross-flow fan 1 rotates, the flow is sucked in through the heat exchanger 5, and the flow direction is changed by the flow deflector 4 before exiting. Originally, in a heat pump, in order to equalize the temperature distribution in the air-conditioned room, it is desirable to control the blowing flow direction to downward blowing during heating and horizontal blowing during cooling. However, as shown by the broken line in Figure 1, when the air is deflected downward, the louvers 4 almost block the air outlet, resulting in a significant drop in air volume and making it impossible to obtain a sufficient air conditioning effect. I couldn't do it. Furthermore, when a plurality of louvers are used as in the past, the space for the air outlet becomes large, which poses a problem in making the device thinner.

また、暖房時に多量の温風を下向きに吹き出し
た場合には、温風の量が多すぎて人体に当たつた
場合に不快に感じることがある。温度分布を良好
にする目的であれば、ある一定の風量を下向きに
吹き出し、その他は水平方向に吹き出すことによ
つてほぼ一定の温度分布が得られることが、実験
によつて確認されている。したがつて温度分布を
良好にするとともに、吹き出し温風による不快感
をなくすためには、ある一定量を下吹きに、その
他を水平吹き出すための機能すなわち分流の機能
が必要であつた。従来の送風装置においては、上
記の分流の機能を持たせることは困難であつた。
本発明は前記従来の欠点を除去して分流の動作を
可能にすると共に、流れの吹出し速度分布を鋭く
とがつたものにし、吹出し流れの到達距離を伸ば
して被空調室の温度分布を均一にするものであ
る。
Furthermore, if a large amount of hot air is blown downward during heating, the amount of hot air may be too large and may cause discomfort when it hits the human body. It has been confirmed through experiments that if the purpose is to improve the temperature distribution, a substantially constant temperature distribution can be obtained by blowing a certain amount of air downward and the rest in the horizontal direction. Therefore, in order to improve the temperature distribution and eliminate the discomfort caused by the blown hot air, it is necessary to have a function for blowing out a certain amount of hot air downward and blowing out the rest horizontally, that is, a dividing function. In conventional air blowers, it has been difficult to provide the above-mentioned flow dividing function.
The present invention eliminates the above-mentioned drawbacks of the conventional method and enables the operation of dividing the flow, and also makes the blowout velocity distribution of the flow sharp and sharp, extends the reach of the blowout flow, and makes the temperature distribution in the air-conditioned room uniform. It is something to do.

そのための構成として、本発明はクロスフロー
フアンと、下流側が漸次拡大形状に設けられたリ
アガイダと、スタビライザと、前記フアンの吐出
側で前記フアン近傍に設けられた流れ制御部材と
を設け、前記流れ制御部材は偏心して設けた回転
軸を中心として所定の範囲で回動する如く構成す
るとともに、前記流れ制御部材の前記フアンに対
向する側面はほぼ円弧状に構成し、下流側の側面
はこれを前記リアガイダ側に傾けた場合に、前記
リアガイダと流れ制御部材との間の流れが前記リ
アガイダに付着するようなバイアス効果を持つた
形状にし、前記流れ制御部材のクロスフローフア
ンに対向する部分の下流側に、この部材の周囲を
流れの圧力を連通させる連通口を設けたもので、
回転軸の回転に応じて流れの付着位置が変化して
分流・偏向動作を行うと共に、連通口の作用によ
つて制御部材の周囲を流れる流れの合流が容易に
なり、吹出し分布がとがり、到達距離が増大する
ものである。
As a configuration for this purpose, the present invention includes a cross flow fan, a rear guider whose downstream side is provided with a gradually expanding shape, a stabilizer, and a flow control member provided near the fan on the discharge side of the fan, and The control member is configured to rotate within a predetermined range around a rotating shaft provided eccentrically, and the side surface of the flow control member facing the fan is configured in a substantially arc shape, and the downstream side surface is configured to have an arc shape. The shape has a bias effect such that the flow between the rear guider and the flow control member adheres to the rear guider when the rear guider is tilted toward the rear guider, and the downstream portion of the flow control member facing the cross flow fan is shaped so that the flow between the rear guider and the flow control member adheres to the rear guider. A communication port is provided on the side to communicate the pressure of the flow around this member.
The adhesion position of the flow changes according to the rotation of the rotary shaft to perform branching and deflection operations, and the action of the communication port facilitates the merging of the flows flowing around the control member, making the blowout distribution sharp and reaching the target. The distance increases.

以下本発明における先行技術について説明す
る。
The prior art related to the present invention will be explained below.

まず第2図〜第5図において、流れ制御部材に
連通口がない場合について説明する。7はこれが
フアン軸70を中心として回転することによつて
渦Vを発生し、流れを生じさせるクロスフローフ
アン、8は渦Vを安定させるスタビライザ、9は
リアガイダであり、上流側の部材9aと下流側の
部材9bとから構成されている。リアガイダ9b
は下流側に向かつて漸次拡大形状に構成されてい
る。10は流れ制御部材であり、クロスフローフ
アン7の吐出側11でクロスフローフアン7の近
傍に設けられている。また、流れ制御部材10は
回転軸100を中心として第2図〜第3図に示す
範囲内で回動する。流れ制御部材10のクロスフ
ローフアン7に対向する部分すなわち頭部10a
は渦Vを安定化させるためにほぼ円弧状をしてい
る。すなわちリアガイダ9bが従来のクロスフロ
ーフアンのリアガイダと比較して、クロスフロー
フアンからの流れを案内する部分が短くなつてい
るために、渦Vが不安定になるのを防ぐためにこ
のような形状になつている。一方、回転軸100
は流れ制御部材のクロスフローフアン7に対向し
た部分すなわち頭部10aの円弧の中心に対し
て、偏心した位置に設けられている。この結果流
れ制御部材10が回動するに応じて、流れ制御部
材のフアンに対向する部分すなわる第2のほぼ平
らな面10dとクロスフローフアン7との間の距
離が変化することになる。また流れ制御部材の下
流側の第1のほぼ平らな面10bは、第3図に示
すようにリアガイダ9bの方向に回動した場合
に、リアガイダ9bと流れ制御部材10の間の流
れをリアガイダ9bに付着させるようなバイアス
効果を持つような形状に形成している。第8図に
示すように流れ制御部材の下流側の第1のほぼ平
らな面10bの他方は付着効果を有する面すなわ
ちほぼ円弧状の面10cにより形成され、前記頭
部10aと対向し、前記第1のほぼ平らな面10
bと鈍角をなす第2のほぼ平らな面10dとから
流れ制御部材10が構成されている。
First, referring to FIGS. 2 to 5, a case where the flow control member does not have a communication port will be described. 7 is a cross-flow fan that generates a vortex V and generates a flow by rotating around the fan shaft 70, 8 is a stabilizer that stabilizes the vortex V, and 9 is a rear guider, which is connected to an upstream member 9a. and a downstream member 9b. rear guider 9b
is constructed in a shape that gradually expands toward the downstream side. Reference numeral 10 denotes a flow control member, which is provided near the cross-flow fan 7 on the discharge side 11 of the cross-flow fan 7. Further, the flow control member 10 rotates within the range shown in FIGS. 2 and 3 around the rotating shaft 100. A portion of the flow control member 10 facing the cross flow fan 7, that is, a head portion 10a
has an almost arc shape to stabilize the vortex V. In other words, the part of the rear guider 9b that guides the flow from the crossflow fan is shorter than the rear guider of a conventional crossflow fan, so this shape is used to prevent the vortex V from becoming unstable. It's summery. On the other hand, the rotating shaft 100
is provided at an eccentric position with respect to the portion of the flow control member facing the cross flow fan 7, that is, the center of the circular arc of the head portion 10a. As a result, as the flow control member 10 rotates, the distance between the cross flow fan 7 and the second substantially flat surface 10d, which is the portion of the flow control member facing the fan, changes. . Further, when the flow control member is rotated in the direction of the rear guider 9b as shown in FIG. It is formed into a shape that has a bias effect that makes it adhere to the surface. As shown in FIG. 8, the other of the downstream first substantially flat surfaces 10b of the flow control member is formed by a surface having an adhesion effect, that is, a substantially arcuate surface 10c, facing the head 10a and facing the said head 10a. first substantially flat surface 10
The flow control member 10 is comprised of a second substantially flat surface 10d forming an obtuse angle with the second substantially flat surface 10d.

第5図において本発明を壁掛け型のヒートポン
プに応用した場合を説明する。12はケーシン
グ、13は熱交換器、14は図において流れを左
右方向に偏向させるための左右偏向羽根、15は
流れ制御部材10を回動するためのレバーであ
る。
A case where the present invention is applied to a wall-mounted heat pump will be explained with reference to FIG. 12 is a casing, 13 is a heat exchanger, 14 is a left and right deflection vane for deflecting the flow in the left and right directions in the figure, and 15 is a lever for rotating the flow control member 10.

上記構成において動作を説明する。まず第2図
に示す位置に流れ制御部材10がある場合につい
て説明する。この場合、流れは図に示すようにほ
ぼ水平方向に吹き出す。フアン軸70を中心とし
てフアン7が矢印の方向に回転すると渦Vがスタ
ビライザ8の近傍に発生する。この結果流れFが
発生し、吐出口11から流れ出る。この場合、図
において流れ制御部材10の上側の流れFaはそ
のまま水平方向に向かつて流れる。(渦Vからの
流れはもともと渦の回転方向すなわち水平方向に
向かつて流れようとする。)流れ制御部材10の
下側の流れFbは、フアン7から出たところでリ
アガイダ9bとの間で干渉を起こしてリアガイダ
9bに付着しかけるが、リアガイダ9bは漸次拡
大形状をしているためと、上側の流れFaに誘引
される結果として、リアガイダ9bから途中で剥
離し、上側の流れFaと合流して共に水平方向に
吹き出すことになる。つぎに、第3図に示すよう
に、流れ制御部材10を図において反時計方向に
回転した場合すなわち、流れ制御部材10の下流
側10bをガイダ9bに近づけた場合について説
明する。この場合は流れは図において下側に向か
つて吹き出す。まず流れ制御部材10の下側の流
れ(流れ制御部材10とリアガイダ9bにはさま
れた流れ)Fbは、前述と同様にリアガイダ9b
に付着しかけるがこの場合は流れ制御部材10の
下流側の第1のほぼ平らな面10bのバイアス効
果によつてリアガイダ9bに完全に付着し、剥離
することなくリアガイダ9bに沿つた方向に流
れ、下向きに吹き出す。一方流れ制御部材10の
上側の流れFaに関しては、流れ制御部材10を
回転した結果、この流れ制御部材10aは偏心し
た回転軸100を中心として回転するため、流れ
制御部材10のフアンに対向する部分すなわち頭
部10aがフアンに近ずくことになる。したがつ
て図で示してある渦Vと流れ制御部材10との間
の距離が短かくなり、その間の流れFaは減少す
る。この結果上側の流れFaは前述の場合と逆に
下側の流れFbによつて誘引され、ともにガイダ
ー9bに沿つて流れることになる。つぎに第4図
に示すように、流れ制御部材10を反時計方向に
前述の場合以上に回転した場合について説明す
る。この場合は、流れ制御部材10の上側の流れ
Faと下側の流れFbは合流することなく別々の方
向に向かつて流れ出る。このときは、まず下側の
流れFbは、図でわかるとおり、流れ制御部材1
0とリアガイダ9bとの間の流路がせまくなると
ともに、流れ制御部材10の下流側の第1のほぼ
平らな面10bによるバイアス効果が大きくなる
ために、リアガイダ9bにほぼ完全に付着して流
れることになる。一方、上側の流れFaについて
は、フアン7と流れ制御部材10との間の距離が
再び大きくなり、流れFaは増加する。この結果
流れFaの水平に行うとする力が大きくなり流れ
は水平に向かつて吹き出す。そしてこの場合は流
れFaと流れFbとの間の間隔が最も大きくなるた
めに、この2つの流れは互いに干渉し合うことが
なくなり合流せずに別々の方向に流れることにな
る。また、流れ制御部材10の回転角度を変える
ことによつて分流の比率を任意に変えることがで
きる。
The operation in the above configuration will be explained. First, the case where the flow control member 10 is located at the position shown in FIG. 2 will be described. In this case, the flow blows out in a nearly horizontal direction as shown in the figure. When the fan 7 rotates in the direction of the arrow around the fan shaft 70, a vortex V is generated near the stabilizer 8. As a result, a flow F is generated and flows out from the discharge port 11. In this case, the flow Fa above the flow control member 10 in the figure continues to flow in the horizontal direction. (The flow from the vortex V originally tends to flow in the direction of rotation of the vortex, that is, in the horizontal direction.) The flow Fb on the lower side of the flow control member 10 interferes with the rear guider 9b when it exits the fan 7. It almost sticks to the rear guider 9b, but because the rear guider 9b has a gradually expanding shape and is attracted by the upper flow Fa, it separates from the rear guider 9b halfway and joins the upper flow Fa. It will blow out horizontally. Next, as shown in FIG. 3, a case where the flow control member 10 is rotated counterclockwise in the figure, that is, a case where the downstream side 10b of the flow control member 10 is brought closer to the guider 9b will be described. In this case, the flow blows out toward the bottom in the figure. First, the flow Fb below the flow control member 10 (the flow sandwiched between the flow control member 10 and the rear guider 9b) is expressed by the rear guider 9b as described above.
However, in this case, due to the bias effect of the first substantially flat surface 10b on the downstream side of the flow control member 10, it completely adheres to the rear guider 9b, and flows in the direction along the rear guider 9b without peeling off. Blow out downwards. On the other hand, regarding the flow Fa above the flow control member 10, as a result of rotating the flow control member 10, this flow control member 10a rotates around the eccentric rotation axis 100, so the portion of the flow control member 10 facing the fan In other words, the head 10a approaches the fan. The distance between the illustrated vortex V and the flow control member 10 is therefore reduced, and the flow Fa therebetween is reduced. As a result, the upper flow Fa is induced by the lower flow Fb, contrary to the above case, and both flow along the guider 9b. Next, as shown in FIG. 4, a case will be described in which the flow control member 10 is rotated counterclockwise more than in the above case. In this case, the flow above the flow control member 10 is
Fa and the lower flow Fb flow in different directions without merging. At this time, first, the lower flow Fb is caused by the flow control member 1 as shown in the figure.
0 and the rear guider 9b becomes narrower, and the bias effect by the first substantially flat surface 10b on the downstream side of the flow control member 10 increases, so that the flow almost completely adheres to the rear guider 9b. It turns out. On the other hand, regarding the upper flow Fa, the distance between the fan 7 and the flow control member 10 increases again, and the flow Fa increases. As a result, the force acting horizontally on the flow Fa increases, and the flow blows out in a horizontal direction. In this case, since the gap between the flow Fa and the flow Fb is the largest, these two flows do not interfere with each other and flow in different directions without merging. Furthermore, by changing the rotation angle of the flow control member 10, the ratio of split flow can be changed arbitrarily.

以上の説明をまとめると、第2図に示すような
角度に流れ制御部材10を回動した場合は水平方
向に流れが吹き出し、徐々に反時計方向に回動し
て行くと徐々に流れは下方向に偏向して行き、第
3図に示す位置に回動すると流れはほぼ真下に偏
向する。つぎに第4図に示す位置まで流れ制御部
材10を回動すると流れは水平方向と下方向の2
つに分かれて吹き出す。すなわち分流の状態にな
る。したがつて、流れ制御部材10の回動のみ
で、水平方向から下方向へ任意に流れを向けられ
るとともに分流の動作も行わせることができる。
また流れ制御部材10は流れを強制的に曲げるこ
とによつて流れを偏向させるのではなく、流れ制
御部材10の上下の流れの比率を変えるとともに
ガイダ9bへの流れの付着効果を用いて偏向を行
わせるものであるため、風量の低下は非常に少な
くできるものである。
To summarize the above explanation, when the flow control member 10 is rotated at an angle as shown in Fig. 2, the flow blows out in the horizontal direction, and when it is gradually rotated counterclockwise, the flow gradually decreases. When it is rotated to the position shown in FIG. 3, the flow is deflected almost directly downward. Next, when the flow control member 10 is rotated to the position shown in FIG.
Split into parts and blow out. In other words, it becomes a state of branching. Therefore, by simply rotating the flow control member 10, the flow can be directed downwardly from the horizontal direction, and the flow can also be divided.
Furthermore, the flow control member 10 does not deflect the flow by forcibly bending the flow, but by changing the ratio of the flow above and below the flow control member 10 and using the effect of the flow adhering to the guider 9b. Since the airflow is carried out, the decrease in air volume can be minimized.

これを第5図に示すように、壁掛け型のヒート
ポンプに応用した場合には、レバー15を動かす
ことによつて、冷房時は水平方向に、暖房時は下
方向に、そして暖房時に風に当たりたくない場合
は分流に切り替えることによつて快適な空調効果
をレバー1本の操作で風量を殆ど低下させること
なく得ることができる。
As shown in Fig. 5, when this is applied to a wall-mounted heat pump, by moving the lever 15, the lever can be moved horizontally for cooling, downward for heating, and directed toward the wind during heating. If not, by switching to branch flow, a comfortable air conditioning effect can be obtained with a single lever operation, with almost no reduction in air volume.

つぎに、本発明の一実施例として流れ制御部材
10に連通口120を設けた場合について第6図
〜第8図において説明する。
Next, a case where a communication port 120 is provided in the flow control member 10 as an embodiment of the present invention will be described with reference to FIGS. 6 to 8.

連通口120は第6図に示すように、流れ制御
部材10の表面から裏面へ貫通して穿孔され、一
定間隔で設けられている。この連通口120の位
置は、流れ制御部材10のクロスフローフアンに
対向する部分すなわち頭部10aの近傍と、流れ
制御部材の下流側の第1のほぼ平らな面10bの
間に設けられている。この理由および効果を以下
第7図〜第8図において説明する。第7図は流れ
制御部材10を水平吹きの方向に傾けた場合の周
囲の流れと表面圧力分布を示す。破線の矢印で示
したものは負圧の大きさである。第8図は下吹き
の場合のものである。水平吹きの場合、表面の圧
力分布は第7図に示すように流れの流速の最も大
きい流れ制御部材のクロスフローフアンに対向す
る部分すなわち頭部10a近傍の負圧が最も大き
い。したがつてこの負圧を用いて、反対側の面に
沿う流れを誘引してやることにより、流れは実線
から破線のように流れ制御部材に沿つた流れとな
り、第7図における上の流れと下の流れの合流が
容易になり、合流後の速度分布は鋭く尖つたもの
になる。
As shown in FIG. 6, the communication ports 120 are bored through the flow control member 10 from the front surface to the back surface, and are provided at regular intervals. The communication port 120 is located between the portion of the flow control member 10 facing the crossflow fan, that is, the vicinity of the head 10a, and the first substantially flat surface 10b on the downstream side of the flow control member. . The reason and effect will be explained below with reference to FIGS. 7 and 8. FIG. 7 shows the surrounding flow and surface pressure distribution when the flow control member 10 is tilted in the direction of horizontal blowing. The dashed arrow indicates the magnitude of negative pressure. FIG. 8 shows the case of downward blowing. In the case of horizontal blowing, as shown in FIG. 7, in the surface pressure distribution, the negative pressure is greatest in the portion facing the crossflow fan of the flow control member where the flow velocity is highest, that is, in the vicinity of the head 10a. Therefore, by using this negative pressure to induce a flow along the opposite surface, the flow changes from a solid line to a flow along the flow control member as shown by a broken line, resulting in the upper flow and lower flow in Figure 7. The merging of flows becomes easier, and the velocity distribution after merging becomes sharp and pointed.

一方、第8図のように下吹きの場合の圧力分布
は、流れ制御部材の下流側の第1のほぼ平らな面
10b近傍が最も流速が大きくなり負圧の最も大
きくなる。従つてこの場合は、8図において上側
の流れが破線の如く変化し、下向きへの合流が容
易になり、下吹きの流れの速度分布が鋭く尖つた
ものとなる。
On the other hand, as shown in FIG. 8, in the case of downward blowing, the pressure distribution has the highest flow velocity and the highest negative pressure near the first substantially flat surface 10b on the downstream side of the flow control member. Therefore, in this case, the upper flow changes as shown by the broken line in FIG. 8, the downward merging becomes easier, and the velocity distribution of the downward flow becomes sharp.

以上のように、流れ制御部材10に連通口12
0を設けることによつて、水平吹きおよび下吹き
での流れの速度分布が鋭くなる。この結果、吹き
出し流れの到達距離が伸びることになり、吹き出
し流れが空調流等の場合は被空調室内の温度分布
がより均一化し、空調効果が大きくなるものであ
る。
As described above, the communication port 12 is provided in the flow control member 10.
By providing 0, the flow velocity distribution in horizontal blowing and downward blowing becomes sharp. As a result, the reach of the blowout flow is extended, and when the blowout flow is an air conditioning flow, the temperature distribution in the air-conditioned room becomes more uniform, and the air conditioning effect becomes greater.

以上の説明から明らかなように本発明の送風装
置は、クロスフローフアンと、下流側が漸次拡大
形状に設けられたリアガイダと、スタビライザ
と、前記フアンの吐出側で前記フアンの近傍に設
けられた流れ制御部材とを設け、前記流れ制御部
材は断面形状が円弧状の頭部の中心を前記回転軸
より偏心位置とし、前記頭部の延長線上の片方に
は第1のほぼ平らな面を有し、他方は付着効果を
有するようにほぼ円弧状とした面を有すると共
に、前記頭部と対向し前記ほぼ平らな面と鈍角を
なす第2のほぼ平らな面を有し、前記ほぼ円弧状
の面の前記頭部に近接する部分と、前記第1のほ
ぼ平らな面と第2のほぼ平らな面が交わるところ
またはその近傍の部分とを連通させる連通口を設
けたもので回転軸の回動のみで水平からほぼ真下
まで流れを偏向させることができるとともに、流
れを水平と下とに別々に吹き出させる分流の状態
を得ることができ、かつ断面が単なる円弧状のも
のと比較して、偏向および分流の全ての状態にお
いて風量が殆ど変化することがない。また、水平
吸きおよび下吹きの場合に、流れによつて生ずる
負圧を生かして、流れを付着効果を有するほぼ円
弧状の面およびほぼ平らな面に付着させることが
でき(断面が円弧状のものでは、付着する面は1
つしかないため効果は少ない)、吹き出し速度分
布が鋭く尖つた形となるため、吹き出し流れの到
達距離を伸ばすことができ、吹き出し流れを空調
流にした場合は、被空調室の温度分布を均一化す
ることができ、空調効果を大きくすることができ
る。また、本発明は流体自身の性質を利用して偏
向を行わせるため風量の低下を非常に少なくする
ことができる。その上、構造が非常に簡単である
ためこの送風機を応用した機器の薄型化を計るこ
とも可能となる優れた効果を奏するものである。
As is clear from the above description, the air blowing device of the present invention includes a cross flow fan, a rear guider whose downstream side is provided with a gradually expanding shape, a stabilizer, and a cross flow fan provided near the fan on the discharge side of the fan. a control member, the flow control member has a head having an arcuate cross-sectional shape, the center of which is located eccentrically from the rotational axis, and a first substantially flat surface on one side on an extension of the head; , the other has a substantially arc-shaped surface to have an adhesion effect, and a second substantially flat surface facing the head and forming an obtuse angle with the substantially flat surface; A communication hole is provided for communicating between a portion of the surface near the head and a portion at or near the intersection of the first substantially flat surface and the second substantially flat surface, and the rotation of the rotation axis is It is possible to deflect the flow from horizontal to almost directly below with only movement, and it is also possible to obtain a split flow state in which the flow is blown out horizontally and downwards separately.Compared to a case where the cross section is a simple arc, The air volume hardly changes under all conditions of deflection and diversion. In addition, in the case of horizontal suction and downward blowing, the negative pressure generated by the flow can be utilized to cause the flow to adhere to a substantially arc-shaped surface and a substantially flat surface that have an adhesion effect (the cross section is arc-shaped). In this case, the surface to which it attaches is 1
Since the blowout velocity distribution becomes sharp and pointed, it is possible to extend the reach of the blowout flow, and when the blowout flow is an air conditioning flow, the temperature distribution in the air-conditioned room is uniform. It is possible to increase the air conditioning effect. Furthermore, since the present invention utilizes the properties of the fluid itself to perform deflection, it is possible to significantly reduce the decrease in air volume. Moreover, since the structure is very simple, it is possible to make equipment to which this blower is applied thinner, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の送風装置を使用した壁掛け型ヒ
ートポンプの一実施例を示す断面図、第2図〜第
4図は本発明の送風装置の一実施例を示す断面
図、第5図は同送風装置を使用した壁掛け型ヒー
トポンプの一実施例を示す断面図、第6図は同送
風装置の流れ制御部材の拡大斜視図、第7図〜第
9図は同送風装置の流れ制御部材の拡大断面図で
ある。 7……クロスフローフアン、8……スタビライ
ザ、9……リアガイダ、9b……リアガイダ下流
側、10……流れ制御部材、10a……頭部、1
0b……第1のほぼ平らな面、10c……ほぼ円
弧状の面、10d……第2のほぼ平らな面、11
……吐出口、70……フアン軸、100……回転
軸、120……連通口。
FIG. 1 is a sectional view showing an embodiment of a wall-mounted heat pump using a conventional blower, FIGS. 2 to 4 are sectional views showing an embodiment of the blower of the present invention, and FIG. A cross-sectional view showing an example of a wall-mounted heat pump using a blower, FIG. 6 is an enlarged perspective view of the flow control member of the blower, and FIGS. 7 to 9 are enlarged views of the flow control member of the blower. FIG. 7... Crossflow fan, 8... Stabilizer, 9... Rear guider, 9b... Rear guider downstream side, 10... Flow control member, 10a... Head, 1
0b...First substantially flat surface, 10c...Substantially arc-shaped surface, 10d...Second substantially flat surface, 11
...Discharge port, 70...Fan shaft, 100...Rotation shaft, 120...Communication port.

Claims (1)

【特許請求の範囲】 1 フアン軸を中心とした回転によつて渦を発生
し、前記渦の発生により流れを生じさせるクロス
フローフアンと、下流側が漸次拡大形状に設けら
れたリアガイダと、スタビライザと、前記クロス
フローフアンの吐出側で前記クロスフローフアン
の渦の近傍に設けられた回転軸を中心として回転
する柱状の流れ制御部材とを設け、前記流れ制御
部材は断面形状が円弧状の頭部の中心を前記回転
軸より偏心位置とし、前記頭部の延長線上の片方
には第1のほぼ平らな面を有し、他方は付着効果
を有するようにほぼ円弧状とした面を有すると共
に、前記頭部と対向し前記ほぼ平らな面と鈍角を
なす第2のほぼ平らな面を有し、前記ほぼ円弧状
の面の前記頭部に近接する部分と、前記第1のほ
ぼ平らな面と第2のほぼ平らな面が交わるところ
またはその近傍の部分とを連通させる連通口を設
けた送風装置。 2 連通口は互いにほぼ一定の間隙を置いて複数
個設けた特許請求の範囲第1項記載の送風装置。
[Scope of Claims] 1. A cross-flow fan that generates a vortex by rotating around a fan axis and generates a flow due to the generation of the vortex, a rear guider whose downstream side is provided with a gradually expanding shape, and a stabilizer. , a columnar flow control member that rotates around a rotation axis provided near the vortex of the crossflow fan on the discharge side of the crossflow fan, and the flow control member has a head having an arcuate cross-sectional shape. The center of the head is located eccentrically from the rotation axis, one side on an extension of the head has a first substantially flat surface, and the other has a substantially arcuate surface to have an adhesion effect, and a second substantially flat surface that faces the head and forms an obtuse angle with the substantially flat surface; a portion of the substantially arcuate surface that is close to the head; and a second substantially flat surface that is close to the head; An air blowing device provided with a communication port that communicates between the intersection of the surface and the second substantially flat surface or a portion near the intersection. 2. The air blowing device according to claim 1, wherein a plurality of communication ports are provided at substantially constant intervals from each other.
JP245282A 1982-01-11 1982-01-11 Blower device Granted JPS58119994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP245282A JPS58119994A (en) 1982-01-11 1982-01-11 Blower device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP245282A JPS58119994A (en) 1982-01-11 1982-01-11 Blower device

Publications (2)

Publication Number Publication Date
JPS58119994A JPS58119994A (en) 1983-07-16
JPH0122479B2 true JPH0122479B2 (en) 1989-04-26

Family

ID=11529671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP245282A Granted JPS58119994A (en) 1982-01-11 1982-01-11 Blower device

Country Status (1)

Country Link
JP (1) JPS58119994A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637548B1 (en) * 1988-10-12 1994-02-18 Valeo AIR AND HEATING AND / OR AIR CONDITIONING SYSTEM FOR A MOTOR VEHICLE

Also Published As

Publication number Publication date
JPS58119994A (en) 1983-07-16

Similar Documents

Publication Publication Date Title
JP2021516305A (en) Indoor unit of fan and air conditioner equipped with it
JPS6135403B2 (en)
JPH0122479B2 (en)
JPS6135402B2 (en)
JP3589803B2 (en) Indoor unit for air conditioner
JPS6234957B2 (en)
JPS6211268B2 (en)
JP3526156B2 (en) Air conditioner wind direction control device and ceiling cassette type air conditioner wind direction control method
JPS621504B2 (en)
JP4698818B2 (en) Multi-blade blower
JPS61237960A (en) Flow direction control device
JPS604368B2 (en) Fluid flow direction control device
JPH06307711A (en) Air-conditioning device
JPS6213578B2 (en)
JPS642800B2 (en)
JPS5934012A (en) Flow direction control unit
JPH0465303B2 (en)
JPS6040776B2 (en) flow direction control device
JPS5888493A (en) Fan
JPH0338499B2 (en)
JPH0323821B2 (en)
JPS604369B2 (en) Fluid flow direction control device
JPS6343599B2 (en)
JPS5950212A (en) Flow direction control device
JPH0215783B2 (en)