JPH0323821B2 - - Google Patents

Info

Publication number
JPH0323821B2
JPH0323821B2 JP1645683A JP1645683A JPH0323821B2 JP H0323821 B2 JPH0323821 B2 JP H0323821B2 JP 1645683 A JP1645683 A JP 1645683A JP 1645683 A JP1645683 A JP 1645683A JP H0323821 B2 JPH0323821 B2 JP H0323821B2
Authority
JP
Japan
Prior art keywords
flow
flow control
air
guide wall
downward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1645683A
Other languages
Japanese (ja)
Other versions
JPS59142345A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1645683A priority Critical patent/JPS59142345A/en
Publication of JPS59142345A publication Critical patent/JPS59142345A/en
Publication of JPH0323821B2 publication Critical patent/JPH0323821B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調装置等の吹出口に設けられ、送
風源からの流れを任意の方向に偏向して吹き出さ
せるための流れ方向制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow direction control device that is installed at an air outlet of an air conditioner or the like and deflects the flow from an air source in an arbitrary direction. be.

従来例の構成とその問題点 冷房・暖房を行なう空調器においては、空調さ
れる部屋の温度分布を均一化するために暖房時は
下吹きに、冷房時は水平吹きに吹き出し流れ方向
を制御することが望ましい。
Conventional configurations and their problems In air conditioners that perform cooling and heating, the air flow direction is controlled to blow downward during heating and horizontally during cooling, in order to equalize the temperature distribution in the room being air-conditioned. This is desirable.

また、暖房時に多量の温風を下向きに吹き出し
た場合には、温風の量が多すぎて人体に当たつた
場合に不快に感じることがある。温度分布を一定
にする目的であれば、ある一定の量を下向きに吹
き出し、その他は水平方向に吹き出すことによつ
てほぼ一定の温度分布が得られることが実験によ
つて確認されている。従つて温度分布を良好にす
ると共に、吹き出し温風による不快感をなくすた
めには、ある一定量を下吹きに、その他を水平吹
きに吹き出すための機能すなわち分流の機能が必
要であつた。
Furthermore, if a large amount of hot air is blown downward during heating, the amount of hot air may be too large and may cause discomfort when it hits the human body. Experiments have confirmed that if the purpose is to maintain a constant temperature distribution, an almost constant temperature distribution can be obtained by blowing out a certain amount downward and the rest in the horizontal direction. Therefore, in order to improve the temperature distribution and eliminate the discomfort caused by the blown hot air, a function for blowing out a certain amount of hot air in a downward direction and the rest in a horizontal direction, that is, a function of dividing the flow, has been necessary.

この目的を達成するための従来例として特開昭
54−94492号公報がある。これにおいては第1図
に示す如く1枚の羽根 を回転することによつて
広角偏向・分流動作を行なうものであるが、分流
動作時には大きな風量抵抗が生ずるという問題が
あつた。
As a conventional example to achieve this purpose,
There is a publication No. 54-94492. As shown in FIG. 1, wide-angle deflection and diversion operations are performed by rotating a single blade, but there is a problem in that a large air flow resistance occurs during diversion operations.

発明の目的 本発明はかかる従来の問題を解消するもので、
吹き出し風量を殆ど変化させずに流れを大幅に偏
向させると共に、流れ制御翼を特殊な形状にする
ことによつて風量を殆ど変化させずに分流動作を
可能にし、空調時の快適性を向上させることを目
的とする。
Purpose of the invention The present invention solves such conventional problems,
In addition to significantly deflecting the flow with almost no change in the volume of air blown out, the special shape of the flow control vanes enables flow diversion operation with almost no change in the volume of air, improving comfort during air conditioning. The purpose is to

発明の構成 この目的を達成するために本発明は、吹出通路
の出口部の1つの面には曲線状または一部直線を
含む曲線状の案内壁を設け、前記の面に対向する
側には流れを内側に方向づける手段と、その下流
にはほぼ直線状の壁を設けると共に、軸を中心と
して回動可能な流れ制御翼を設け、前記流れ制御
翼はほぼ3角形の断面形状をした柱状体であり、
前記の柱状体をなす3つの面のうち2つの面はほ
ぼ直線状をなし、互いに鈍角をなすごとく結合さ
れ、他の1つの面はほぼ曲面状をなす如く形成
し、前記ほぼ直線状をなす2つの面にそれぞれの
作用を促進する突出部を形成したものである。こ
の構成によつて、流れ制御翼の回動に応じて、流
れが案内壁及び直線状の壁に効率良く付着し、広
角偏向及び分流動作を行なうものである。
Structure of the Invention In order to achieve this object, the present invention provides a guide wall having a curved shape or a curved shape including a partially straight line on one surface of the outlet part of the blowing passage, and on the side opposite to the said surface. means for directing the flow inward, downstream thereof a substantially straight wall, and flow control vanes rotatable about an axis, said flow control vanes being columnar bodies having a substantially triangular cross-section; and
Two of the three surfaces forming the columnar body are substantially linear and are connected to each other at obtuse angles, and the other surface is substantially curved, forming the substantially linear shape. It has protrusions formed on two surfaces to promote the respective actions. With this configuration, the flow efficiently adheres to the guide wall and the linear wall in accordance with the rotation of the flow control vane, thereby performing wide-angle deflection and diverting operations.

実施例の説明 以下、本発明の一実施例を第2図〜第5図を用
いて説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 5.

第2図〜第4図において、1が吹き出し通路、
2が出口部、3は曲線状(図の如く曲線の下流側
に一部直線を含む場合もある)の案内壁、4は案
内壁3に対向する側の壁に設けられ流れを内側
(案内壁側)に方向づける手段(以後簡単のため
にバイアス突起とする)、5はバイアス突起4の
下流に設けられた直線状の壁、6は軸60を中心
として回動可能な流れ制御翼であり、断面がほぼ
3角形の柱状体であり、互いに鈍角をなして交わ
るほぼ直線状の面7と8及び曲線部9から形成さ
れている。(簡単のため7の面をバイアス作用面、
8の面を分流作用面とする)。また、前記バイア
ス作用面7と曲線部9との結合部10はほぼ円弧
形状に形成されている。そのうえ、前記バイアス
作用面7と分流作用面8にはそれぞれの作用を促
進するための突出部70及び80が設けられてい
る。
In FIGS. 2 to 4, 1 is a blowout passage;
2 is an outlet part, 3 is a curved guide wall (sometimes a straight line is included on the downstream side of the curve as shown in the figure), and 4 is provided on the wall opposite to the guide wall 3 to direct the flow inside (guidance). 5 is a straight wall provided downstream of the bias projection 4, and 6 is a flow control vane rotatable about an axis 60. , is a columnar body with a substantially triangular cross section, and is formed of substantially linear surfaces 7 and 8 and a curved portion 9 that intersect with each other at an obtuse angle. (For simplicity, the surface 7 is the bias action surface,
8 is used as the diversion surface). Further, the connecting portion 10 between the bias acting surface 7 and the curved portion 9 is formed in a substantially arc shape. Moreover, the biasing surface 7 and the diversion surface 8 are provided with protrusions 70 and 80 for promoting their respective effects.

第5図には、前述の実施例を天吊り型のヒート
ポンプエアコンに応用した場合の図を示す。11
がエアコン本体ケーシング、12はシロツコフア
ン、13は熱交換器、14はヒータ、15は吹出
口を絞るための傾斜天板、16は下部絞りであ
る。
FIG. 5 shows a case where the above embodiment is applied to a ceiling-mounted heat pump air conditioner. 11
is the air conditioner main body casing, 12 is the Shirotsko fan, 13 is the heat exchanger, 14 is the heater, 15 is the inclined top plate for restricting the air outlet, and 16 is the lower aperture.

上記構成において、吹き出し流れは流れ制御翼
6の回動に応じて第2図〜第4図に示す如く吹き
出し方向を制御される。第2図においては水平吹
き、第3図には下吹き、第4図には分流動作時の
状態を示す。
In the above configuration, the blowing direction of the blowing flow is controlled according to the rotation of the flow control blade 6 as shown in FIGS. 2 to 4. Fig. 2 shows the horizontal blowing, Fig. 3 shows the downward blowing, and Fig. 4 shows the diversion operation.

まず、第2図の水平吹きの状態について説明す
る。この場合は流れ制御翼6は水平位置に設定さ
れている。(第2図における流れ制御翼6の位置
を水平位置とする。)上流からの流れFは流れ制
御翼6のところで、図において上側の流れFaと
下側の流れFbとに分かれる。この時、結合部1
0がほぼ円弧形状をしているので、流れは乱れる
ことなくスムーズに分かれる。Faはバイアス突
起4の作用による流れFcにより曲線部9に沿つ
て流れ、Fbはバイアス作用面7に沿つて流れる。
曲線部9に沿つた流れFaは、直線壁が近傍にあ
るためこれと干渉を起こして直線壁5に沿つて流
れる。
First, the horizontal blowing state shown in FIG. 2 will be explained. In this case, the flow control vanes 6 are set in a horizontal position. (The position of the flow control blade 6 in FIG. 2 is assumed to be a horizontal position.) At the flow control blade 6, the flow F from upstream is divided into an upper flow Fa and a lower flow Fb in the figure. At this time, joint part 1
0 has a nearly circular arc shape, so the flow separates smoothly without turbulence. Fa flows along the curved portion 9 due to the flow Fc due to the action of the bias protrusion 4, and Fb flows along the bias action surface 7.
The flow Fa along the curved portion 9 interferes with a straight wall because it is nearby, and flows along the straight wall 5.

一方、下側の流れFbはバイアス作用面7に沿
つて流れるが、上側の流れFaと合流し全体の流
れはほぼ水平方向に流れる。次に第3図に示す如
く下吹きの状態について説明する。この場合、流
れ制御翼は水平吹きの状態から図において反時計
方向に約60°回転している。この場合は、流れF
は水平吹きの場合と同様に流れ制御翼6の上側の
流れFaと下側の流れFbとに分かれる。そして上
側の流れFaはバイアス突起4による流れFcによ
つて下に向けられ、流れ制御翼6の曲線部9に付
着する。
On the other hand, the lower flow Fb flows along the bias action surface 7, but merges with the upper flow Fa so that the entire flow flows in a substantially horizontal direction. Next, the state of downward blowing as shown in FIG. 3 will be explained. In this case, the flow control vanes have been rotated approximately 60 degrees counterclockwise in the figure from the horizontal blow state. In this case, the flow F
is divided into a flow Fa above the flow control blade 6 and a flow Fb below, as in the case of horizontal blowing. The upper flow Fa is directed downward by the flow Fc caused by the bias protrusion 4 and adheres to the curved portion 9 of the flow control vane 6.

一方、下側の流れFbは、バイアス作用面7に
よつて下方向に向けられ、コアンダ効果によつて
案内壁3に付着する。上側の流れFaは、流れ制
御翼6の曲面部9に沿つて流れているので、下側
の流れFbと容易に合流し、全体の流れは共に案
内壁3に付着することによつて下側に偏向されて
吹き出すことになる。そのうえ、バイアス作用面
7に設けられた突出部70の効果により、下側の
流れFbの案内壁3への付着効果がより促進され
ると共に、分流作用部80に設けられた突出部8
0の効果により、上側の流れFaが曲線部9に付
着する効果を促進することにより下向き偏向角度
はより大きくなる。この結果として、流れの壁面
への付着効果を有効に利用しているため、風量の
低下率が水平吹きの場合と比較して10%以内にお
いて、約85°の下吹き偏向が可能となる(この場
合の突出部80の効果は、実験によると、突出部
80の無い場合に比較して、ほぼ同様の風量低下
率において約10°の偏向角度が増加している。)。
On the other hand, the lower flow Fb is directed downward by the biasing surface 7 and adheres to the guide wall 3 due to the Coanda effect. Since the upper flow Fa flows along the curved surface part 9 of the flow control vane 6, it easily merges with the lower flow Fb, and the entire flow is caused to flow downward by adhering to the guide wall 3. It will be deflected to the point where it will blow out. Moreover, the effect of the protrusion 70 provided on the bias action surface 7 further promotes the adhesion effect of the lower flow Fb to the guide wall 3, and the protrusion 8 provided on the diversion action part 80 further promotes the adhesion effect of the lower flow Fb to the guide wall 3.
0, the downward deflection angle becomes larger by promoting the effect of the upper flow Fa adhering to the curved portion 9. As a result, since the adhesion effect of the flow to the wall surface is effectively used, a downward blow deflection of approximately 85° is possible while the rate of decrease in air volume is within 10% compared to the case of horizontal blowing ( According to experiments, the effect of the protrusion 80 in this case is that the deflection angle is increased by about 10° at almost the same air volume reduction rate compared to the case without the protrusion 80.

次に第4図に示す如く分流動作の状態について
説明する。この場合は、流れ制御翼6は水平吹き
の設定状態から時計方向に約120°回転している。
この場合、流れFは前と同様に流れ制御翼6の上
側の流れFaと下側の流れFbとに分かれる。上側
の流れFaはバイアス作用面7の作用により直線
壁5に付着する方向に向けられ、効率良く直線壁
5に付着してそのまま水平方向に吹き出す。下側
の流れFbは、分流作用面8の作用により案内壁
3に付着する方向に向けられ、効率良く案内壁3
に付着し、そのまま下方向に向かつて吹き出す。
Next, the state of the flow dividing operation as shown in FIG. 4 will be explained. In this case, the flow control vanes 6 have been rotated approximately 120° clockwise from the horizontal blow setting state.
In this case, the flow F is divided into a flow Fa above the flow control blade 6 and a flow Fb below the flow control blade 6, as before. The upper flow Fa is directed in the direction of adhering to the straight wall 5 by the action of the bias action surface 7, efficiently adheres to the straight wall 5, and is blown out in the horizontal direction as it is. The flow Fb on the lower side is directed in the direction of adhering to the guide wall 3 by the action of the flow dividing surface 8, and is efficiently transferred to the guide wall 3.
It sticks to the surface and blows out in a downward direction.

この結果として流れは水平方向と下方向に分流
して吹き出すことになる。そのうえ、分流作用部
8に設けられた突出部80の効果により、案内壁
3への付着効果をより促進し、上流流れに乱れが
ある場合でも分流動作を確実に行なわしめる。
As a result, the flow is split horizontally and downwardly. Moreover, the effect of the protruding portion 80 provided on the flow diversion action portion 8 further promotes the adhesion effect to the guide wall 3, thereby ensuring the diversion operation even when there is turbulence in the upstream flow.

以上の結果として、下吹きの場合と同様に風量
の低下率が水平吹きの場合と比較して10%以内に
おいて、分流動作が可能となる。また実験による
と、制御翼6の大きさは、第2図の水平吹きの状
態では流れFの方向に対する投影幅が吹出し通路
1の高さの約2割〜3割の範囲、第3図の下吹き
および第4図の分流状態では約3割〜4割の範囲
において良好な作動を行なうものである。上記の
作用を行なう流れ方向制御装置を第5図に示す如
く天吊り型のヒートポンプエアコンに応用した場
合は、シロツコフアンによつて送られた流れが、
熱交換器13及びヒーター14を通過する間に加
熱あるいは冷却され、流れ制御装置の吹出通路1
に入る。
As a result of the above, as in the case of downward blowing, diversion operation is possible while the rate of decrease in air volume is within 10% compared to the case of horizontal blowing. Also, according to experiments, the size of the control blade 6 is such that the projected width in the direction of the flow F is in the range of about 20% to 30% of the height of the blowing passage 1 in the horizontal blowing state shown in FIG. In the downward blowing and divided flow conditions shown in FIG. 4, good operation is achieved in the range of about 30% to 40%. When the flow direction control device that performs the above action is applied to a ceiling-mounted heat pump air conditioner as shown in Fig. 5, the flow sent by the Sirotskov fan is
It is heated or cooled while passing through a heat exchanger 13 and a heater 14, and is heated or cooled while passing through a heat exchanger 13 and a heater 14.
to go into.

第6図には、第5図の吹出し部分の斜視図を示
す。17は制御翼6を回転させるモータである。
第7図にはこの天吊り型ヒートポンプエアコン1
1を、部屋18に設置した場合の空調流の流れを
示す。第7図からわかるように分流翼6を前記モ
ータ17によつて回転することにより、水平から
下へと殆ど風量を変えることなく大きく流れを偏
向させ部屋全体に流れを行き渡らせることができ
る。また下吹きの状態以上に制御翼6を回転する
ことにより風量を殆ど変えずに分流の状態を得る
ことが可能となる。すなわち、前述の作用によつ
て上下偏向あるいは分流動作を行なつて吹き出
す。この結果として、流れが冷風の時は水平に、
温風で小風量の時は下に、温風で大風量の時は分
流に吹き出しパターンを変えることにより、最も
快適な吹き出し制御を行なうことが可能となる。
FIG. 6 shows a perspective view of the blow-out portion of FIG. 5. 17 is a motor that rotates the control blade 6.
Figure 7 shows this ceiling-mounted heat pump air conditioner 1.
1 is installed in a room 18. As can be seen from FIG. 7, by rotating the flow dividing blade 6 by the motor 17, the flow can be largely deflected from horizontal to downward without changing the air volume, and the flow can be spread throughout the room. Further, by rotating the control blades 6 more than the downward blowing condition, it is possible to obtain a divided flow condition without changing the air volume substantially. That is, the air is blown out by vertically deflecting or dividing the flow by the above-mentioned action. As a result, when the flow is cold, it is horizontal;
The most comfortable blowout control can be achieved by changing the blowout pattern to downward flow when warm air has a small volume of air, and to branch flow when hot air has a large volume of air.

発明の効果 以上のように本発明の流れ方向制御装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the flow direction control device of the present invention provides the following effects.

(1) 流れ制御翼をバイアス作用を有する2つの面
と、曲線部とから構成することにより、曲線部
への流れの付着効果と、バイアス作用を有する
2つの面のバイアス効果により、案内壁及び直
線壁への付着を有効に利用して流れを偏向さ
せ、風量を殆ど低下させずに広角偏向・分流動
作を行なわせることができる。
(1) By configuring the flow control vane from two surfaces with a bias effect and a curved part, the adhesion effect of the flow to the curved part and the bias effect of the two surfaces with a bias effect can be used to control the guide wall and By effectively utilizing the adhesion to a straight wall to deflect the flow, wide-angle deflection and diversion operations can be performed with almost no reduction in air volume.

(2) 流れ制御翼のバイアス作用を有する2つの面
に方向ずけの作用を促進する突出部を設けるこ
とにより、下吹きの偏向を促進すると共に、流
れが乱れた場合でも確実に動作を行なうことが
可能となる。
(2) By providing a protrusion that promotes the deflection effect on the two biasing surfaces of the flow control vane, it promotes the deflection of the downward blow and ensures reliable operation even when the flow is turbulent. becomes possible.

(3) 流れ制御翼の断面形状がほぼ軸対称であり、
且つコンパクトであるため、軸の回転トルクが
小さくてすみ、制御性が良くなる。
(3) The cross-sectional shape of the flow control vane is almost axially symmetrical;
Moreover, since it is compact, the rotational torque of the shaft is small and controllability is improved.

(4) 流れ制御翼が、たわみの少ない断面形状であ
るため、長い幅に渡つて均一な制御が可能であ
る。
(4) Since the flow control blade has a cross-sectional shape with little deflection, uniform control is possible over a long width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流れ方向制御装置の断面図、第
2図〜第4図は本発明の流れ方向制御装置の一実
施例の断面図、第5図は本発明を天吊り型ヒート
ポンプエアコンに応用した場合の断面図、第6図
は同吹出し部分の斜視図、第7図は同吹出し空調
流の説明図である。 1……吹出通路、2……出口部、3……案内
壁、4……流れを内側に方向づける手段(バイア
ス突起)、5……直線壁、6……流れ制御翼、7,
8……バイアス作用を有する2つの面、9……曲
線部、60……軸、70,80……突出部。
Fig. 1 is a cross-sectional view of a conventional flow direction control device, Figs. 2 to 4 are cross-sectional views of an embodiment of the flow direction control device of the present invention, and Fig. 5 is a cross-sectional view of an embodiment of the flow direction control device of the present invention. FIG. 6 is a cross-sectional view of an applied case, FIG. 6 is a perspective view of the blowout portion, and FIG. 7 is an explanatory diagram of the blowout air conditioning flow. DESCRIPTION OF SYMBOLS 1...Blowout passage, 2...Outlet part, 3...Guide wall, 4...Means for directing the flow inward (bias protrusion), 5...Straight wall, 6...Flow control vane, 7,
8...Two surfaces having a bias effect, 9...Curved portion, 60...Axle, 70, 80...Protruding portion.

Claims (1)

【特許請求の範囲】 1 吹出通路の出口部の1つの面には曲線状また
は一部直線を含む曲線状の案内壁を設け、前記の
面に対向する側には流れを内側に方向づける手段
と、その下流にはほぼ直線状の壁を設けると共
に、軸を中心として回動可能な流れ制御翼を設
け、前記流れ制御翼は前記出口部のほぼ中央部を
横断して配されほぼ3角形の断面形状をした柱状
体であり、前記柱状体をなす3つの面のうちの2
つの面はほぼ直線状をなし、互いに鈍角をなすご
とく結合され、他の1つの面はほぼ曲面状をなす
如く形成し、前記ほぼ直線状をなす2つの面にそ
れぞれの方向付けの作用を促進する突出部を形成
した流れ方向制御装置。 2 流れ制御翼のほぼ直線状の2つの面と他の1
つの面との結合部の少なくとも上流側に位置する
部分はほぼ円弧形状に形成された特許請求の範囲
第1項記載の流れ方向制御装置。
[Scope of Claims] 1. A curved guide wall or a curved guide wall including a partially straight line is provided on one surface of the outlet of the blowing passage, and a means for directing the flow inward is provided on the side opposite to said surface. , a substantially straight wall is provided downstream thereof, and a flow control vane rotatable about an axis is provided, the flow control vane being disposed across a substantially central portion of the outlet portion and having a substantially triangular shape. It is a columnar body with a cross-sectional shape, and two of the three faces forming the columnar body are
Two surfaces are approximately linear and are connected to each other at an obtuse angle, and the other surface is approximately curved to promote orientation of the two approximately linear surfaces. A flow direction control device formed with a protruding portion. 2. Two nearly linear surfaces of the flow control vane and the other 1
2. The flow direction control device according to claim 1, wherein at least a portion located upstream of the connection portion with the two surfaces is formed into a substantially arc shape.
JP1645683A 1983-02-02 1983-02-02 Flow direction controlling device Granted JPS59142345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1645683A JPS59142345A (en) 1983-02-02 1983-02-02 Flow direction controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1645683A JPS59142345A (en) 1983-02-02 1983-02-02 Flow direction controlling device

Publications (2)

Publication Number Publication Date
JPS59142345A JPS59142345A (en) 1984-08-15
JPH0323821B2 true JPH0323821B2 (en) 1991-03-29

Family

ID=11916747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1645683A Granted JPS59142345A (en) 1983-02-02 1983-02-02 Flow direction controlling device

Country Status (1)

Country Link
JP (1) JPS59142345A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676860B2 (en) * 1988-06-08 1994-09-28 松下電器産業株式会社 Hot air heater
JP4999941B2 (en) * 2010-01-15 2012-08-15 木村工機株式会社 Pneumatic attracting radiation unit

Also Published As

Publication number Publication date
JPS59142345A (en) 1984-08-15

Similar Documents

Publication Publication Date Title
WO1983004290A1 (en) Direction-of-flow controller
JPS6135403B2 (en)
JPH0323821B2 (en)
JPS6135402B2 (en)
JPS6211268B2 (en)
JPS61256125A (en) Indoor unit of air conditioner
JPS5918614B2 (en) fluid deflection device
JP2545590Y2 (en) Air conditioner wind direction deflector
JPH0434352Y2 (en)
JPH0338496B2 (en)
JPS62757A (en) Airflow direction control type ventilating device
JPS604368B2 (en) Fluid flow direction control device
JPS58128495A (en) Blower
JPS59180225A (en) Air conditioning device
JPS6213578B2 (en)
JPH0338500B2 (en)
JPH0251097B2 (en)
JPS6364642B2 (en)
JPS60237209A (en) Flow direction controller
JPS6291747A (en) Blow-off port of air-conditioning machine
JPS5867994A (en) Blower unit
JPH0122479B2 (en)
JP2001241746A (en) Air conditioner
JPS6249150A (en) Indoor unit of air conditioner
JPH0215785B2 (en)