JPS6213579B2 - - Google Patents

Info

Publication number
JPS6213579B2
JPS6213579B2 JP14453982A JP14453982A JPS6213579B2 JP S6213579 B2 JPS6213579 B2 JP S6213579B2 JP 14453982 A JP14453982 A JP 14453982A JP 14453982 A JP14453982 A JP 14453982A JP S6213579 B2 JPS6213579 B2 JP S6213579B2
Authority
JP
Japan
Prior art keywords
flow
wall
bias
flow control
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14453982A
Other languages
Japanese (ja)
Other versions
JPS5934013A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14453982A priority Critical patent/JPS5934013A/en
Publication of JPS5934013A publication Critical patent/JPS5934013A/en
Publication of JPS6213579B2 publication Critical patent/JPS6213579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調装置等の吹出口に設けられ、送風
源からの流れを任意の方向に偏向させて吹き出さ
せるための流れ方向制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flow direction control device that is installed at the outlet of an air conditioner or the like and deflects the flow from the air source in an arbitrary direction. .

従来例の構成とその問題点 以下本発明の先行技術について第1図〜第7図
の図面を用いて説明する。図において、4は流れ
を送り出す送風源(シロツコフアン、クロスフロ
ーフアンその他何でも良い)、5は吹出通路、6
は吹出通路5の長手方向の壁の一方側を形成する
平面壁、7は他方を形成する曲面壁で漸次拡大形
状に構成されている。8は流れの一部を前記曲面
壁に向かつて偏向させるためのバイアス突起であ
り、前記平面壁6に設けられている。前記バイア
ス突起8の下流側には直線壁9が形成されてい
る。10は流れ制御部材であり、吹出通路5の長
手方向にほぼ平行に設けられ、回転軸11を中心
として回転するものである。また流れ制御部材1
0は、中心0が回転軸11よりも偏心しているほ
ぼ円弧形状をした頭部10aを有し、前記頭部の
延長線上の片方のバイアス作用部10bと他方の
ほぼ円弧形状をした分流作用部10cと他の1つ
の面10dとの断面が3つの面からなる柱状体と
なつている。
Configuration of Conventional Example and its Problems The prior art of the present invention will be explained below with reference to the drawings of FIGS. 1 to 7. In the figure, 4 is a blowing source that sends out a flow (Syrotskov fan, crossflow fan, or any other type of fan), 5 is a blowing passage, and 6
7 is a flat wall forming one side of the longitudinal wall of the blow-off passage 5, and a curved wall 7 forming the other side, each of which has a gradually enlarged shape. A bias projection 8 is provided on the flat wall 6 to deflect a part of the flow toward the curved wall. A straight wall 9 is formed downstream of the bias protrusion 8 . Reference numeral 10 denotes a flow control member, which is provided substantially parallel to the longitudinal direction of the blow-off passage 5 and rotates around a rotating shaft 11. In addition, the flow control member 1
0 has a substantially arc-shaped head 10a whose center 0 is eccentric with respect to the rotation axis 11, and has one bias acting part 10b on an extension of the head and the other substantially arc-shaped flow dividing part. The cross section of 10c and the other surface 10d forms a columnar body consisting of three surfaces.

この実施例の構成によれば、流れ制御部材10
を回転することによつて以下に示す作動を示す。
まず第2図に示す位置に流れ制御部材10を回転
した場合について説明する。この場合、送風源4
から送り出され流れ制御部材10の位置に到達し
た流れは、頭部10aによつて上側の流れFaと
下側の流れFbとに分かれる。上側の流れFaは一
部の流れがバイアス突起8の作用により図におい
て下側に曲げられる結果として、流れ制御部材1
0の分流作用部10cに沿つて流れることにな
る。分流作用部10cは図のようにやや上方を向
いているので、Faはバイアス突起8の下流側に
設けられた直線壁9に沿つて流れることになり、
ほぼ水平方向に吹き出す。一方下側の流れFb
は、バイアス作用部10bがほぼ水平を向いてい
るのでそのまま水平方向に吹き出す。したがつて
全体の吹き出し流れは図のようにほぼ水平方向に
吹き出すことになる。次に第3図に示す位置に流
れ制御部材10を回転した場合について説明す
る。この場合、上側の流れFaは前記の場合と同
様にバイアス突起8の影響で分流作用部10cに
沿つて流れる。この時、図に示すように分流作用
部10cはやや下方を向いているのでFaもやや
下方を向いて吹き出す。一方下側の流れFbはバ
イアス作用部10bが下方を向いているためこの
作用によつて曲面壁7に付着し、下方に向かつて
流れ出る。この結果上側の流れFaと下側の流れ
Fbとの合流した流れは図のように下方に向かつ
て流れ出る。つぎに第4図に示す位置に流れ制御
部材10を回転した場合について説明する。この
場合、上側の流れFaは一部がバイアス突起8の
影響で図の下側に偏向されるが、流れ制御部材の
分流作用部10bが上方を向いているので、流れ
Faは直線壁9に沿つてほぼ水平方向に吹き出
す。一方下側の流れFbは分流作用部10cの反
対側の作用によつて曲面壁7に付着し下方に向つ
て吹き出す。この場合、2つの流れFaとFbはそ
れぞれ直線壁9および曲面壁7に沿つて流れるた
め、互いに合流は行なわず水平方向と下方向の
別々の方向に向かつて流れ出、分流動作となる。
According to the configuration of this embodiment, the flow control member 10
The following operations are shown by rotating .
First, the case where the flow control member 10 is rotated to the position shown in FIG. 2 will be described. In this case, the air source 4
The flow sent out from the flow control member 10 is divided into an upper flow Fa and a lower flow Fb by the head 10a. As a result of the upper flow Fa being partially bent downward in the figure by the action of the bias protrusion 8, the flow control member 1
0 will flow along the flow dividing portion 10c. Since the flow dividing portion 10c faces slightly upward as shown in the figure, Fa flows along the straight wall 9 provided on the downstream side of the bias protrusion 8.
It blows out almost horizontally. On the other hand, the flow Fb on the lower side
Since the bias acting portion 10b is oriented almost horizontally, the air is blown out in the horizontal direction. Therefore, the entire flow of air is blown out in a substantially horizontal direction as shown in the figure. Next, the case where the flow control member 10 is rotated to the position shown in FIG. 3 will be described. In this case, the upper flow Fa flows along the flow dividing portion 10c under the influence of the bias protrusion 8, as in the case described above. At this time, as shown in the figure, since the flow dividing portion 10c faces slightly downward, Fa also blows out facing slightly downward. On the other hand, the lower flow Fb adheres to the curved wall 7 due to the bias action portion 10b facing downward, and flows downward. As a result, the upper flow Fa and the lower flow
The flow that merges with Fb flows downward as shown in the figure. Next, the case where the flow control member 10 is rotated to the position shown in FIG. 4 will be described. In this case, a part of the upper flow Fa is deflected to the lower side of the diagram due to the influence of the bias protrusion 8, but since the flow dividing action part 10b of the flow control member faces upward, the flow
Fa is blown out along the straight wall 9 in a substantially horizontal direction. On the other hand, the flow Fb on the lower side adheres to the curved wall 7 by the action on the opposite side of the flow dividing action part 10c and is blown out downward. In this case, since the two flows Fa and Fb flow along the straight wall 9 and the curved wall 7, respectively, they do not merge with each other but flow out in separate directions, horizontally and downward, resulting in a branching operation.

以上のように、流れ制御部材10を回転するこ
とによつて、流れを水平から下へ広角に偏向させ
るとともに、水平方向と下方向へ分流させて吹き
出すことができる。またこの時の流れの制御は、
流減を強制的に曲げてやるのではなく、流れ制御
部材10や曲面壁7等への流れの付着効果を用い
て偏向させるものであるため、風量が殆ど低下す
ることがない。この流れ方向制御装置の一例の実
験データを第6図と第7図に示す。第6図は流れ
制御部材10の回転角度θに対する流れの偏向角
度α(第3図に示すす)の関係を示したもの、第
7図は流れ制御部材10の回転角度θに対する風
量低下率の関係を示したものである。第6図にお
いて角度θを増加させていくと、偏向角度αもそ
れに比例して増加し、θが約60゜の時にαが約80
゜に達する。また、θを100゜以上にすると流れ
は下成分と水平成分とに分かれ、分流の状態とな
る。第7図には、この時の風量の低下率を示す
が、角度θを回転させても約10%しか変化してい
ないことがわかる。
As described above, by rotating the flow control member 10, the flow can be deflected from the horizontal direction downward over a wide angle, and the flow can be branched horizontally and downward to be blown out. In addition, the control of the flow of time is
Since the flow is not forcibly bent but is deflected using the adhesion effect of the flow to the flow control member 10, the curved wall 7, etc., the air volume hardly decreases. Experimental data for an example of this flow direction control device are shown in FIGS. 6 and 7. FIG. 6 shows the relationship between the rotation angle θ of the flow control member 10 and the flow deflection angle α (shown in FIG. 3), and FIG. 7 shows the relationship between the rotation angle θ of the flow control member 10 and the air volume reduction rate. This shows the relationship. In Figure 6, as the angle θ increases, the deflection angle α also increases proportionally; when θ is about 60°, α becomes about 80°.
Reach ゜. Furthermore, when θ is set to 100° or more, the flow is divided into a lower component and a horizontal component, resulting in a divided flow state. FIG. 7 shows the rate of decrease in air volume at this time, and it can be seen that even if the angle θ is rotated, it changes by only about 10%.

しかしながら、理想的な空調を行なうために
は、風量の低下率は0にすることが望ましいと共
に、第2図に示す水平吹きの場合はバイアス突起
8の作用は無いことが望ましい。
However, in order to perform ideal air conditioning, it is desirable that the rate of decrease in air volume be zero, and in the case of horizontal blowing as shown in FIG. 2, it is desirable that the bias protrusion 8 have no effect.

発明の目的 本発明はこのような従来の欠点を除去するもの
で、吹き出し風量を殆ど変化させずに流れを大幅
に偏向させることにより、空調時の快適性を向上
させることを目的とするものである。
Purpose of the Invention The present invention aims to eliminate these conventional drawbacks, and to improve comfort during air conditioning by significantly deflecting the airflow without changing the volume of air blown. be.

発明の構成 この目的を達成するために本発明は、矩形断面
をした吹出通路の1つの壁を平面壁で、これに対
向する壁を漸次拡大形状をした曲面壁で形成し、
前記吹出通路の平面壁にほぼ平行で流れにほぼ直
角に回転軸を中心として回転する断面が3つの面
を有する流れ制御翼を設け、前記平面壁の前記流
れ制御翼に対向する部分にバイアス吹出口を設
け、前記バイアス吹出口を前記流れ制御翼の上流
側の通路と連通した構成にしたものである。
Structure of the Invention In order to achieve this object, the present invention forms one wall of a blowing passage having a rectangular cross section with a flat wall, and the opposite wall with a curved wall with a gradually enlarged shape.
A flow control vane having a cross section of three faces is provided which is substantially parallel to the plane wall of the blowing passage and rotates about a rotational axis at substantially right angles to the flow, and a bias blower is provided at a portion of the plane wall facing the flow control vane. An outlet is provided, and the bias outlet is configured to communicate with a passage on the upstream side of the flow control vane.

この構成によつて、前記流れ制御部材の回転に
応じて前記バイアス吹出口から吹出す流れの量が
変化し、偏向動作を確実にすると共に、低下した
風量を補い風量は殆ど変化しないで吹出方向が変
化する結果となる。
With this configuration, the amount of flow blown out from the bias outlet changes according to the rotation of the flow control member, ensuring deflection operation, and compensating for the decreased air volume, with almost no change in the air flow direction. The result is a change in

実施例の説明 本発明の一実施例は、先行技術の構成において
バイアス突起8の代わりにバイアス吹出口80を
設け、このバイアス吹出口80を流れ制御翼10
の上流側の吹出通路を連通したものである。この
構成によつて、それぞれの吹出状態に応じて次の
ような効果を生ずる。まず水平吹きの場合は第8
図に示すように流れ制御翼10による風量抵抗は
最も小さく、吹出通路5内の圧力は上昇しない。
このためバイアス吹出口80からは噴流が吹き出
すことがなく、上側の流れFaは直線壁9に抵抗
なしに付着し、合流した流れは水平方向に円滑に
吹き出す。下吹きの場合は第9図に示すように、
流れに対する流れ制御翼の抵抗面積が増加するた
めある程度の圧力上昇が吹出通路5内に生ずる。
この結果、流れは連通路90を通つてバイアス吹
出口80から吹き出し、バイアス作用を行なう。
この結果、上側の流れFaは、流れ制御翼10の
分流作用部10cに付着し、合流した流れは下吹
きとなる。そして、流れ制御翼10を下に傾ける
角度が大きいほど流れに対する抵抗が増加するた
め、バイアス吹出口から出る流れの量が増加す
る。したがつて、下吹きの偏向角度を大きくする
ため流れ制御翼10を下に傾けるにしたがつてバ
イアス流の量が増え、下吹きを促進することにな
る。このとき、流れ制御翼による流れの抵抗が増
えるにしたがつてバイアス吹出口80から吹き出
す流れの量が増加するため、流れ制御翼の回転に
よる全体としての風量の変化は殆ど生じないこと
になる。つぎに分流の場合は第10図に示すよう
に、流れ制御翼の回転による流れの抵抗が増し、
バイアス吹出口80からの流れは増加するが、上
側の流れFaが図のように上方に向いているため
Faは直線壁9に付着して水平に吹き出すことに
なる。すなわち、第8図〜第10図に示すよう
に、流れ制御翼10の回転に応じてバイアス吹出
口80からの吹き出し流量が変化することによ
り、バイアス流が必要ない水平吹きの時はバイア
ス流は発生せず、下吹きの場合は流れ制御翼の傾
き角度に応じてバイアス流が発生することにより
最も効率の良い制御を行なうことができる。ま
た、流れ制御翼の抵抗によつて減少した風量がバ
イアス吹出口80から吹き出すことによつて風量
の変化が殆ど生じないようにすることができる。
また、第11図に示すように流れ制御翼として一
枚の平板を用いた場合でも前記とほぼ同様の効果
を得ることができる。
DESCRIPTION OF THE EMBODIMENTS One embodiment of the present invention provides a bias outlet 80 in place of the bias protrusion 8 in the prior art configuration, and the bias outlet 80 is connected to the flow control vane 10.
The upstream side of the air outlet is connected to the air outlet passage. This configuration produces the following effects depending on the respective blowing conditions. First, in the case of horizontal blowing, the 8th
As shown in the figure, the airflow resistance due to the flow control blades 10 is the smallest, and the pressure within the blowout passage 5 does not increase.
Therefore, no jet stream is blown out from the bias outlet 80, the upper flow Fa adheres to the straight wall 9 without resistance, and the combined flow is blown out smoothly in the horizontal direction. In the case of downward blowing, as shown in Figure 9,
A certain pressure increase occurs in the blow-off passage 5 due to the increased resistance area of the flow control vanes to the flow.
As a result, the flow passes through the communication path 90 and is blown out from the bias outlet 80 to perform a bias effect.
As a result, the upper flow Fa adheres to the flow dividing portion 10c of the flow control blade 10, and the combined flow becomes a downward blow. The larger the angle at which the flow control blades 10 are tilted downward, the more resistance to the flow increases, and therefore the amount of flow exiting from the bias outlet increases. Therefore, as the flow control vane 10 is tilted downward to increase the deflection angle of the downward blow, the amount of bias flow increases, promoting the downward blow. At this time, as the flow resistance by the flow control vanes increases, the amount of flow blown out from the bias outlet 80 increases, so the rotation of the flow control vanes causes almost no change in the overall air volume. Next, in the case of split flow, as shown in Figure 10, the flow resistance increases due to the rotation of the flow control blades,
The flow from the bias outlet 80 increases, but because the upper flow Fa is directed upward as shown in the figure.
Fa adheres to the straight wall 9 and blows out horizontally. That is, as shown in FIGS. 8 to 10, the flow rate of the air blown from the bias air outlet 80 changes according to the rotation of the flow control vane 10, so that the bias air flow is reduced during horizontal blowing when no bias air flow is required. In the case of downward blowing without generation, a bias flow is generated according to the inclination angle of the flow control vane, thereby making it possible to perform the most efficient control. Moreover, the air volume reduced by the resistance of the flow control vanes is blown out from the bias outlet 80, so that almost no change in the air volume can be caused.
Moreover, even when a single flat plate is used as the flow control vane as shown in FIG. 11, substantially the same effect as described above can be obtained.

発明の効果 以上のように、本発明の流れ方向制御装置は、
矩形断面をした吹出通路の1つの壁を平面壁で、
これに対向する壁を漸次拡大形状をした曲面壁で
形成し、前記吹出通路の平面壁にほぼ平行で流れ
にほぼ直角に回転軸を中心として回転する流れ制
御翼を設け、前記平面壁の前記流れ制御翼に対向
する部分にバイアス吹出口を設け、前記バイアス
吹出口を前記流れ制御翼の上流側の通路と連通し
た構成であるため、次のような効果を奏する。
Effects of the Invention As described above, the flow direction control device of the present invention has the following features:
One wall of the outlet passage with a rectangular cross section is a flat wall,
A wall facing the blowout passage is formed of a curved wall having a gradually enlarged shape, and a flow control vane is provided which rotates about a rotation axis substantially parallel to the plane wall of the blowout passage and substantially perpendicular to the flow, and Since the bias outlet is provided in a portion facing the flow control vane and the bias outlet is communicated with a passage on the upstream side of the flow control vane, the following effects are achieved.

流れ制御翼の位置が水平吹き時のようにバイア
ス効果が不要でかつ風量低下の少ない場合は、バ
イアス吹出口からの流れは生じない。そして流れ
制御翼の位置が下吹き時のようにバイアス効果が
必要でかつ風量の低下が大きい場合はバイアス吹
出口から流れが生じてバイアス作用を生ずると共
に風量を増加させる。すなわち流れ制御翼のの回
転に応じて最適なバイアス噴流を生じさせ、より
快適な吹出し状態を実現できる。
If the position of the flow control blade is such that no bias effect is required and the decrease in air volume is small, such as during horizontal blowing, no flow will occur from the bias outlet. If the position of the flow control vane is such that a bias effect is required and the decrease in air volume is large, such as during downward blowing, a flow is generated from the bias outlet, producing a bias effect and increasing the air volume. In other words, it is possible to generate an optimal bias jet flow according to the rotation of the flow control vane, thereby realizing a more comfortable blowing condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の実施例の先行技術を
示す断面図、第6図は同先行技術の偏向特性を示
す特性図、第7図は風量特性を示す特性図、第8
図〜第10図は本発明の流方向制御装置の実施例
の断面図、第11図は他の実施例の断面図であ
る。 5……吹出通路、6……平面壁、7……曲面
壁、10……流れ制御翼、11……回転軸、80
……バイアス吹出口、90……連通路。
1 to 5 are cross-sectional views showing the prior art of the embodiment of the present invention, FIG. 6 is a characteristic diagram showing the deflection characteristics of the prior art, FIG. 7 is a characteristic diagram showing the air volume characteristics, and FIG. 8 is a characteristic diagram showing the deflection characteristics of the prior art.
10 to 10 are cross-sectional views of an embodiment of the flow direction control device of the present invention, and FIG. 11 is a cross-sectional view of another embodiment. 5... Blowout passage, 6... Plane wall, 7... Curved wall, 10... Flow control vane, 11... Rotating shaft, 80
...Bias air outlet, 90...Communication path.

Claims (1)

【特許請求の範囲】 1 矩形断面形状をした吹出通路の1つの壁を平
面壁にし、前記平面壁に対向する壁を漸次拡大形
状をした曲面壁とし、前記吹出通路に前記平面壁
とほぼ平行で流れにほぼ直角に、回転軸を中心と
して回転する断面が3つの面を有する柱状体の流
れ制御翼を設け、前記平面壁の前記流れ制御翼に
対向する部分にバイアス吹出口を設け、前記バイ
アス吹出口を前記流れ制御翼の上流側の通路と連
通した流れ方向制御装置。 2 流れ制御翼は、ほぼ円弧状をし前記円弧の中
心0を前記回転軸より偏心位置とした頭部を有
し、前記頭部の延長線上の片方はバイアス作用
部、他方はほぼ円弧形状をした分流作用部とから
なる柱状体とした特許請求の範囲第1項記載の流
れ方向制御装置。
[Scope of Claims] 1. One wall of a blowout passage having a rectangular cross-sectional shape is a flat wall, and the wall opposite to the flat wall is a curved wall with a gradually expanding shape, and the blowout passage is provided with a wall substantially parallel to the flat wall. A columnar flow control vane having a cross section of three faces is provided substantially perpendicular to the flow at a rotation axis, and a bias outlet is provided in a portion of the plane wall facing the flow control vane. A flow direction control device in which a bias outlet is communicated with a passage on an upstream side of the flow control vane. 2. The flow control vane has a head that is approximately arc-shaped and has the center 0 of the arc at an eccentric position from the rotation axis, one side of the extension of the head is a bias acting part, and the other is approximately arc-shaped. 2. The flow direction control device according to claim 1, wherein the flow direction control device is a columnar body comprising a flow dividing portion.
JP14453982A 1982-08-19 1982-08-19 Flow direction control unit Granted JPS5934013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14453982A JPS5934013A (en) 1982-08-19 1982-08-19 Flow direction control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453982A JPS5934013A (en) 1982-08-19 1982-08-19 Flow direction control unit

Publications (2)

Publication Number Publication Date
JPS5934013A JPS5934013A (en) 1984-02-24
JPS6213579B2 true JPS6213579B2 (en) 1987-03-27

Family

ID=15364655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453982A Granted JPS5934013A (en) 1982-08-19 1982-08-19 Flow direction control unit

Country Status (1)

Country Link
JP (1) JPS5934013A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255790B2 (en) 2018-06-15 2023-04-11 三菱重工業株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JPS5934013A (en) 1984-02-24

Similar Documents

Publication Publication Date Title
EP0109444B1 (en) Direction-of-flow controller
US4688472A (en) Noise reduction spoiler for a damper
JPS6213579B2 (en)
JPS6135402B2 (en)
JPH1061965A (en) Room unit for air conditioner
JPS6234957B2 (en)
JPS6213578B2 (en)
JPH0259379B2 (en)
JP2015218977A (en) Indoor unit of air conditioner
JPH11166498A (en) Multi-vane blower
JPH0337107B2 (en)
JPH055395Y2 (en)
JPH0215783B2 (en)
JPH0465303B2 (en)
JPS5950212A (en) Flow direction control device
JPS5934012A (en) Flow direction control unit
JPH0338500B2 (en)
JPS58119994A (en) Blower device
JPH10160235A (en) Air direction control device for air conditioner
JPH0338499B2 (en)
JPH03140743A (en) Outlet member
JPH0465302B2 (en)
JPS59121210A (en) Flow direction control device
JPS6246158A (en) Ventilating device provided with flow deflecting function
JPS5937310A (en) Flow direction controller