JPH02153017A - Method for controlling composition of atmosphere gas in furnace - Google Patents

Method for controlling composition of atmosphere gas in furnace

Info

Publication number
JPH02153017A
JPH02153017A JP30669188A JP30669188A JPH02153017A JP H02153017 A JPH02153017 A JP H02153017A JP 30669188 A JP30669188 A JP 30669188A JP 30669188 A JP30669188 A JP 30669188A JP H02153017 A JPH02153017 A JP H02153017A
Authority
JP
Japan
Prior art keywords
gas
furnace
carbon potential
concentration
potential factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30669188A
Other languages
Japanese (ja)
Inventor
Tadashi Imaizumi
正 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30669188A priority Critical patent/JPH02153017A/en
Publication of JPH02153017A publication Critical patent/JPH02153017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and surely control the compsn. of the atmosphere gas in a furnace by calculating the deviation value of a carbon potential factor in accordance with the analysis values of the gas in the furnace and correcting the value, the regulating the flow rate of the supply gas. CONSTITUTION:The gaseous RX to increase the carbon potential factor(PF) and the gaseous NX to lower this factor are supplied at supply flow rates mu1, mu2 respectively via gas flow rate regulating means 6, 13 to the treating furnace 1 using the atmosphere gas where steel products 8 are treated by the PF of the prescribed target value. The atmosphere gas of the above-mentioned furnace 1 is analyzed by an analyzer 2 by which the CO concn. x1 and the CO2 concn. x2 are detected. From the x1, to x2, PF=x /x2 is calculated in a computing element 3. The deviation PF between this measured value and the set value is determined by a PI integrating meter. Further, the relations between PF and mu1, mu2 are calculated in a computing element 11 and the gas flow rate command signals are outputted to the above-mentioned gas flow rate regulating means 6, 13 so as to satisfy the above-mentioned relations. The PF in the furnace 1 is surely controlled in this way by which the desired compsn. of the atmosphere gas is maintained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は鋼材等の雰囲気熱処理炉における炉内雰囲気ガ
スの成分組成を所期のカーボンポテンシャルに制御する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for controlling the composition of atmospheric gas in a furnace for atmospheric heat treatment of steel materials to a desired carbon potential.

[従来の技術] 鋼材等を熱処理する雰囲気熱処理炉において炉内雰囲気
ガスの成分組成は、一般にカーボンポテンシャルファク
タ(以下PFという)と称されるCO濃度の2乗をCO
2濃度で除した値を予め定めた目標値に合致させるべく
炉内へ供給する吸熱型雰囲気ガス或いは発熱型雰囲気ガ
スの供給量を制御することにより行なわれている。即ち
、例えば第3図に示したように炉1内の雰囲気ガスを所
定のサンプリング時間(例えば3分)毎にガス分析計2
により分析しCO濃度x1とCO2O2濃度x2を検出
し、これよりカーボンポテンシャルファクタPF(=χ
i/χ2)をPF演算器3により演算し、このPF測定
値とPFパターン設定器4に予め設定されたPF目標値
との偏差ΔPFを解消させるべく比例項と積分項とを調
節要素としたPI調節計5を介してガス量調整手段(バ
ルブ)6に開度指令信号を串してガス発生器7にて生成
した吸熱型雰囲気ガスの類1内への供給量を調節させる
ようにしている。なお同図中、8は類1内の鋼材、9は
類1内の雰囲気ガス撹拌用ファン、 10は雰囲気ガス
排出口を示す。
[Prior Art] In an atmospheric heat treatment furnace for heat treating steel materials, etc., the composition of the atmosphere gas in the furnace is determined by calculating the square of the CO concentration, which is generally referred to as the carbon potential factor (hereinafter referred to as PF).
This is done by controlling the amount of endothermic atmospheric gas or exothermic atmospheric gas supplied into the furnace so that the value divided by two concentrations matches a predetermined target value. That is, for example, as shown in FIG.
The CO concentration x1 and CO2O2 concentration x2 are detected, and from this the carbon potential factor PF (=χ
i/χ2) is calculated by the PF calculator 3, and a proportional term and an integral term are used as adjustment elements in order to eliminate the deviation ΔPF between this PF measurement value and the PF target value preset in the PF pattern setting device 4. An opening command signal is sent to the gas amount adjusting means (valve) 6 via the PI controller 5 to adjust the amount of endothermic atmosphere gas generated by the gas generator 7 into the Class 1 interior. There is. In the figure, 8 indicates a steel material within Class 1, 9 indicates an atmospheric gas stirring fan within Class 1, and 10 indicates an atmospheric gas discharge port.

[従来技術の課題] しかし上記従来のPF制御系では一定量の吸熱型雰囲気
ガスを類1内に供給したときのカーボンポテンシャルフ
ァクタPFの上昇分、即ちゲインがそのときの類1内の
CO濃度およびCO2濃度によって大きく変動するため
上記PI調節計5の比例帯Kpや積分時間T1を如何に
選択してもその時々の適切なガス供給量を指令できず、
このために炉内のカーボンポテンシャルファクタPFが
長時間を経過してもその目標値と大きく異なったままと
なったり或いは制御過敏となり炉内カーボンポテンシャ
ルファクタPFが大きくハンチングし、その結果炉内鋼
材を無用に脱炭、或いは浸炭させ所期の熱処理が達成で
きなくするおそれがあった。
[Problems with the Prior Art] However, in the conventional PF control system described above, when a certain amount of endothermic atmospheric gas is supplied into Class 1, the increase in carbon potential factor PF, that is, the gain, is the CO concentration within Class 1 at that time. And since it varies greatly depending on the CO2 concentration, no matter how you select the proportional band Kp and integral time T1 of the PI controller 5, it is impossible to command an appropriate gas supply amount at any given time.
For this reason, the carbon potential factor PF in the furnace remains significantly different from its target value even after a long period of time, or the control becomes oversensitive and the carbon potential factor PF in the furnace greatly hunts, resulting in the steel material in the furnace being damaged. There was a risk that the desired heat treatment could not be achieved due to unnecessary decarburization or carburization.

[発明の目的コ そこで本発明はカーボンポテンシャルファクタPFの制
御をより容易、確実ならしめ所期の炉内雰囲気ガス組成
を維持できることで良質の熱処理を施し得る炉内雰囲気
ガス組成制御方法を提供しようとするものである。
[Purpose of the Invention] Accordingly, the present invention provides a method for controlling the composition of a furnace atmosphere gas, which makes it easier and more reliable to control the carbon potential factor PF, and maintains the desired furnace atmosphere gas composition, thereby enabling high-quality heat treatment. That is.

[目的を達成するための手段] 上記目的を達成するため本発明は、吸熱型雰囲気ガス(
カーボンポテンシャルファクタを高める性質を持ったガ
ス)と発熱型雰囲気ガス(カーボンポテンシャルファク
タを低める性質を持ったガス)を夫々ガス量調整手段を
介して炉内に供給し、該吸熱型雰囲気ガスの供給量U工
と発熱型雰囲気ガスの供給量u2を調整することによっ
て炉内を予め定められたカーボンポテンシャルファクタ
PF (C0濃度の2乗をCO□濃度で除した値)の目
標値に制御する雰囲気ガス熱処理炉において、所定のサ
ンプリング時間Δを毎に炉内のCO濃度x1とC02濃
度χ2を検出し、該CO濃度χ4.CO□濃度χ2から
炉内のカーボンポテンシャルファクタPFの測定値を演
算すると共に、該CO濃度x1とCO2′a度χ2を演
算要素として繰り入れてカーボンポテンシャルファクタ
PFの目標値と測定値との偏差ΔPFと前記供給量U工
+ u2との関係式を演算し、該関係式を満たすように
前記ガス量調整手段にガス量指令信号を出すようにした
ことを特徴とするものである。
[Means for achieving the object] In order to achieve the above object, the present invention provides an endothermic atmospheric gas (
A gas having a property of increasing the carbon potential factor) and an exothermic atmospheric gas (a gas having a property of decreasing the carbon potential factor) are each supplied into the furnace through a gas amount adjustment means, and the endothermic atmospheric gas is supplied. The atmosphere inside the furnace is controlled to a predetermined target value of carbon potential factor PF (the value obtained by dividing the square of the C0 concentration by the CO□ concentration) by adjusting the amount U and the supply amount U2 of exothermic atmosphere gas. In a gas heat treatment furnace, the CO concentration x1 and CO2 concentration χ2 in the furnace are detected at every predetermined sampling time Δ, and the CO concentration χ4. The measured value of the carbon potential factor PF in the furnace is calculated from the CO□ concentration χ2, and the deviation ΔPF between the target value and the measured value of the carbon potential factor PF is calculated by incorporating the CO concentration x1 and CO2'a degrees χ2 as calculation elements. The present invention is characterized in that a relational expression between and the supply amount Uk+u2 is calculated, and a gas amount command signal is output to the gas amount adjusting means so as to satisfy the relational expression.

[作用] 所定のサンプリング時間Δし毎に炉内雰囲気ガスのCO
J度χ1およびCO、 fA度χ2を演算要素として繰
り入れた関係式を演算し、この関係式を満たすべく偏差
ΔPFに応じ供給量u4.供給量u2を指令するように
したことで常に適格な供給量U工、供給量u2が指令で
きる。
[Operation] CO in the furnace atmosphere gas every predetermined sampling time Δ
A relational expression is calculated in which J degree χ1 and CO, and fA degree χ2 are incorporated as calculation elements, and the supply amount u4. By commanding the supply amount u2, it is possible to always command a suitable supply amount U and supply amount u2.

[実施例] 次に第1図に従い本発明の一実施例を説明する。[Example] Next, an embodiment of the present invention will be described with reference to FIG.

図において1,1は炉、2はガス分析計、3はPF演算
器、4はPFパターン設定器、5はPI調節計、6はガ
ス量調整手段(バルブ)、7は吸熱層雰囲気ガス(以下
RXガスという)のガス発生器、8は鋼材、9は炉内雰
囲気ガス撹拌用ファン、10は炉内雰囲気ガス排出口で
、これにより第3図に従い説明した従来例と同じくカー
ボンポテンシャルファクタPFの目標値と測定値との偏
差ΔPFが演算される。そして、ガス発生器7で生成さ
れたRXガスはガス量調整手段6によりその供給量U工
が調整され炉1へ供給される。また、12は発熱形雰囲
気ガス(以下NXガスという)のガス発生器、13は該
ガス発生器12で生成されたNXガスの炉1への供給量
u2をrA整するガス量!l!!整手段(バルブ)であ
る。
In the figure, 1, 1 is a furnace, 2 is a gas analyzer, 3 is a PF calculator, 4 is a PF pattern setter, 5 is a PI controller, 6 is a gas amount adjustment means (valve), and 7 is an endothermic layer atmosphere gas ( 8 is a steel material, 9 is a fan for stirring the furnace atmosphere gas, and 10 is a furnace atmosphere gas discharge port, which has a carbon potential factor PF similar to the conventional example explained according to FIG. 3. The deviation ΔPF between the target value and the measured value is calculated. The RX gas generated by the gas generator 7 is supplied to the furnace 1 after its supply amount is adjusted by the gas amount adjusting means 6. Further, 12 is a gas generator for exothermic atmospheric gas (hereinafter referred to as NX gas), and 13 is a gas amount that adjusts the supply amount u2 of NX gas generated by the gas generator 12 to the furnace 1 by rA! l! ! It is a regulating means (valve).

なお、ガス発生器7およびガス発生器12にて生成され
る雰囲気ガスの成分の一例を示せば次のとおりである。
An example of the components of the atmospheric gas generated by the gas generator 7 and the gas generator 12 is as follows.

RXガス成分 Co ; 24.1〜23.3% N2;31.6〜30.3% Co2; 0.2〜0.5% N2;残り NXガス成分 CO; 1〜4% N2:0.5〜3% CO□≦0.2% N2;残り しかして、本発明ではこのRXガスの供給量U工とNX
ガスの供給量u2を偏差ΔPFに従い以下に説明する関
係式を満たすように関係式演算器11よりガス量調整手
段6.ガス量調整手段13に夫々ガス量指令信号を出さ
しめるがその関係式は次のようにして求められる。
RX gas component Co; 24.1 to 23.3% N2; 31.6 to 30.3% Co2; 0.2 to 0.5% N2; remaining NX gas component CO; 1 to 4% N2: 0.5 〜3% CO
The gas amount adjusting means 6. uses the relational expression calculator 11 to adjust the gas supply amount u2 according to the deviation ΔPF so that the following relational expression is satisfied. The gas amount adjustment means 13 is caused to issue a gas amount command signal, and the relational expression thereof is determined as follows.

まず関係式を求めるに必要な各文字を定義する。First, define each character necessary to find the relational expression.

Uよ;Rxガス供給量[27分]〉O u、;NXガス供給量[イ/分]〉0 χ工;炉内雰囲気ガスのCO濃度[VOL%]χ2;炉
内雰囲気ガスのCO2濃度[VOL%]V;炉内容積(
一定) なお、この容積一定の炉からの排気量はU工+u2とな
る。
U; Rx gas supply amount [27 minutes]〉O u,; NX gas supply amount [I/min]〉0 χ; CO concentration of furnace atmosphere gas [VOL%] χ2; CO2 concentration of furnace atmosphere gas [VOL%] V; Furnace internal volume (
Note that the exhaust volume from this furnace with a constant volume is U + u2.

またRXガスをlrn’炉内へ供給し炉内の化学変化が
平衡した後、CO量が体積でg工、/100増加したと
する時、このgL工を“RXガスからCO濃度への寄与
率”ということにする。
Furthermore, when we assume that after RX gas is supplied into the lrn' reactor and the chemical changes within the furnace are balanced, the amount of CO increases by volume by g/100. It will be called "rate".

同様に”RXガスからC02a度への寄与率″をgzL
”NXガスからCO濃度への寄与率″をg工2”NXガ
スからCO□濃度への寄与率″′をiz2とする。なお
化学変化が起こらないときには、これらは各々のガスの
CO、CO□濃度に等しい。ここでg ts + g 
iz v g zz + g 22の単位はVOL%で
ある。
Similarly, “contribution rate from RX gas to C02a degrees” is gzL
Let ``contribution rate from NX gas to CO concentration'' be g 2 and ``contribution rate from NX gas to CO□ concentration'' be iz2. Note that when no chemical change occurs, these are equal to the CO and CO□ concentrations of each gas. Here g ts + g
The unit of iz v g zz + g 22 is VOL%.

さて、炉1内の濃度χ、、濃度χ2は所定のサンプリン
グ時間Δを毎に検出されるが、Δを時間に炉内へ供給さ
れる雰囲気ガスにより増加する炉内のCO量は次式で表
わされる。
Now, the concentrations χ and χ2 in the furnace 1 are detected at every predetermined sampling time Δ, and the amount of CO in the furnace that increases due to the atmospheric gas supplied to the furnace in time Δ is expressed by the following equation. expressed.

一′−(ul・Δt)十青亡(u、・Δt)     
(1)また、雰囲気ガス排出口10からの排出ガスによ
り炉1内から失なわれるCO量は、炉内の撹拌能力が高
いとしてΔを時間内に 青ぜ(U工+t+z)・Δt(2) 炉1内のCO量増加は V…且五−V当=V堝 (3)式=(1)式−(2)式より ・・・(4) 同様にして、CO2Hに関して ・・・(5) で表わされる。上記(6)式を微分し偏差ΔPFを近似
的に求めると、 ・・・(7) ΔPF=2−”−”Δχ、−(−)”・Δχ2    
 (8)χ2        χ2 一方、(4)式と(5)式を整理し、U工+ u、でく
くると次式が導かれる。
1'-(ul・Δt) 100% (u,・Δt)
(1) In addition, the amount of CO lost from the furnace 1 due to the exhaust gas from the atmospheric gas outlet 10 is determined by Δ=(U+t+z)・Δt(2 ) The increase in the amount of CO in the furnace 1 is V...and 5 - V equivalent = V = Equation (3) = Equation (1) - (2)... (4) Similarly, regarding CO2H... ( 5) It is expressed as Differentiating the above equation (6) and approximately finding the deviation ΔPF, ...(7) ΔPF=2-"-"Δχ, -(-)"・Δχ2
(8) χ2 χ2 On the other hand, by rearranging equations (4) and (5) and combining them with U + u, the following equation is derived.

d Z x =L二二・u、+−二り、u、   (9
)dt       V          VdZ2
=らE≦LL、u、 +LL二ムー、u、    (1
o)dt      V           Vここ
で式を簡単にするため下記の置き換えをするC4=2−
    、C2=(工”)′χ1 χ2             χ2 c、=らL二LL  、 (4=g−7v      
       v c、=らL二り一 、CG=らL二Zi    (11
)■             v (9)、(10)式を差分形式で書くとΔχ、=C1・
ul・Δt+C4・u2・Δt    (12)Δχ2
=Cs−u□・Δt+C6・u2・Δt    (1,
3)又、(8)式は ΔPF=C工・Δχ1−C2・ΔχZ       (
t4)であるから(12)、 (13)式を(14)式
へ代入するとΔPF=(C,、・C−、−C,・C,)
・ul・Δt+(CL’C4Cz’Cs)’u2’Δt
 (15)(15)式より 空圧=(Cz’C3−Cz”C5)uxΔt +(C,−C,−C,−Cs)u2    (16)と
なる。(16)式におけるU工v u、の係数C1〜C
5は(11)式に定義した如く濃度χ4.濃度χ2の関
数である。このように偏差ΔPFは濃度χ11a度χ2
が演算要素として繰り入れられた関係式(16)により
供給量”11供給量u2の関数として表わされる。この
濃度χ1.濃度χ2はΔを時間毎に検出された値を入力
する。このように(16)式は2つの変数U工。
d Z x = L22・u, +−2, u, (9
)dt V VdZ2
=E≦LL,u, +LL2mu,u, (1
o) dt V VHere, to simplify the formula, make the following substitutionsC4=2-
, C2=(Work”)'χ1 χ2 χ2 c,=raL2LL, (4=g-7v
v c,=raL2ri1,CG=raL2Zi (11
)■ v When formulas (9) and (10) are written in differential form, Δχ, = C1・
ul・Δt+C4・u2・Δt (12)Δχ2
=Cs-u□・Δt+C6・u2・Δt (1,
3) Also, formula (8) is ΔPF=C・Δχ1−C2・ΔχZ (
t4), so by substituting equation (12) and (13) into equation (14), ΔPF=(C,,・C−,−C,・C,)
・ul・Δt+(CL'C4Cz'Cs)'u2'Δt
(15) From equation (15), air pressure = (Cz'C3-Cz''C5)uxΔt + (C, -C, -C, -Cs)u2 (16).U work v u in equation (16) , coefficients C1 to C
5 is the concentration χ4.5 as defined in equation (11). It is a function of concentration χ2. In this way, the deviation ΔPF is the concentration χ11a degrees χ2
is expressed as a function of the supply amount "11" and the supply amount u2 by the relational expression (16) in which "11" is inserted as a calculation element.For the concentration χ1, the concentration χ2 inputs the value Δ detected every time.In this way, ( 16) Equation has two variables U.

u2を持つものであるので実際に供給量ux+供給量u
2を指令するにはその一方の供給量U工または供給量u
2を一定値とし他方を偏差ΔPFに従い制御する方法が
考えられる。また、一方の供給量tlLまたはulを数
段階に変化させその際常に(16)式が満たされるよう
に他方の供給量を無段階に調整させてもよい0例えば供
給量u2を0.5.10.15Nrn”/ hのいずれ
かに設定し供給量U工を八PFに従い調整する。そのと
き供給量U工が最大になってもなおり−ボンポテンシャ
ルファクタPFが所定まで上がらないときu2=0に設
定しPFを上昇させるようにしてもよい。またカーボン
ポテンシャルファクタPFを下降させるときUよ=0と
してもPFが未だ下がらないときはu2を増すようにし
てもよい。
Since it has u2, the actual supply amount ux + supply amount u
To command 2, either the supply amount U or the supply amount u
A possible method is to set 2 as a constant value and control the other according to the deviation ΔPF. Alternatively, one supply amount tlL or ul may be changed in several stages, and the other supply amount may be adjusted steplessly so that equation (16) is always satisfied. For example, the supply amount u2 may be changed to 0.5. 10.15Nrn"/h and adjust the supply amount U according to the 8 PF. At that time, even if the supply amount U reaches the maximum, if the Bonn potential factor PF does not rise to the specified value, u2 = PF may be increased by setting it to 0.Also, even if U is set to 0 when decreasing the carbon potential factor PF, u2 may be increased if PF does not decrease yet.

以上により偏差ΔPFからRXガス供給1u工、 NX
ガス供給量u2が計算できる。
Based on the above deviation ΔPF, RX gas supply 1u, NX
The gas supply amount u2 can be calculated.

なお、第1図の実施例ではRXガスのガス発生器7とN
Xガスのガス発生器12を夫々−金兄具備しているが、
ガス供給能力が異なるものを夫々2金兄設けた場合、例
えば第2図に示したように供給能力25N rd/ h
 (7)RXガス発生器14ト、供給能カフ5Nrrr
/hのRXガス発生器15と、供給能力5Nrri’/
hのNXガス発生器16と、供給能力1ONrn’/h
のNXガス発生器17を設けた場合その一方を優先的に
使用するようにしてもよい。
In the embodiment shown in FIG. 1, the RX gas generator 7 and the N
Each is equipped with a gas generator 12 for X gas,
If two gases with different gas supply capacities are provided, for example, as shown in Fig. 2, the supply capacity is 25N rd/h.
(7) RX gas generator 14 tons, supply capacity cuff 5Nrrr
/h RX gas generator 15 and supply capacity 5Nrri'/
h NX gas generator 16 and supply capacity 1ONrn'/h
If two NX gas generators 17 are provided, one of them may be used preferentially.

[発明の効果] 濃度χ、および濃度χ2を演算要素として繰り入れた関
係式を演算し、常にこの関係式が満たされるように偏差
ΔPFに応じガス量調整手段にガス量指令信号を出すも
のであるので、これによって指令されるガス供給量uL
lu2はカーボンポテンシャルファクタPFの目標値と
測定値との偏差ΔPFを解消するのに常に適切な値とな
り炉内雰囲気ガスのカーボンポテンシャルを常に適正な
ものに確実性高く維持できる。このため炉内の鋼材等の
被処理材を常に適正なカーボンポテンシャルの基で熱処
理できその品質を向上させる有益な効果がある。
[Effects of the Invention] A relational expression incorporating the concentration χ and the concentration χ2 as calculation elements is calculated, and a gas amount command signal is issued to the gas amount adjustment means in accordance with the deviation ΔPF so that this relational expression is always satisfied. Therefore, the gas supply amount uL commanded by this
lu2 is always an appropriate value to eliminate the deviation ΔPF between the target value and the measured value of the carbon potential factor PF, and the carbon potential of the furnace atmosphere gas can always be maintained at an appropriate value with high reliability. Therefore, the material to be treated such as steel in the furnace can always be heat-treated at an appropriate carbon potential, which has the beneficial effect of improving its quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の炉内雰囲気ガス組成制御方法の一実施
例を示した制御系統図、第2図は雰囲気ガス供給系の他
の実施例を示した図、第3図は従来の炉内雰囲気ガス組
成制御方法の制御系統図である。 1・・・炉、2・・・ガス分析計、3・・・PF演算器
、4・・・PFパターン設定器、5・・・PItJR節
計、6・・・ガス量調整手段、7・・・吸熱層雰囲気ガ
ス発生器、8・・・鋼材、11・・・関係式演算器、1
2・・・発熱型雰囲気ガス発生器、13・・・ガス量調
整手段。
Fig. 1 is a control system diagram showing one embodiment of the furnace atmosphere gas composition control method of the present invention, Fig. 2 is a diagram showing another embodiment of the atmospheric gas supply system, and Fig. 3 is a diagram showing a conventional furnace atmosphere gas composition control method. FIG. 3 is a control system diagram of an internal atmosphere gas composition control method. DESCRIPTION OF SYMBOLS 1...Furnace, 2...Gas analyzer, 3...PF calculator, 4...PF pattern setter, 5...PItJR moderator, 6...Gas amount adjustment means, 7... ... Endothermic layer atmosphere gas generator, 8... Steel material, 11... Relational expression calculator, 1
2... Exothermic atmosphere gas generator, 13... Gas amount adjustment means.

Claims (1)

【特許請求の範囲】[Claims]  カーボンポテンシャルファクタ(CO濃度の2乗をC
O_2濃度で除した値)を高める性質を持ったガスとカ
ーボンポテンシャルファクタを低める性質を持ったガス
を夫々ガス量調整手段を介して炉内に供給し、該カーボ
ンポテンシャルファクタを高める性質を持ったガスの供
給量u_1と、低める性質を持ったガスの供給量u_2
を調整することによって炉内を予め定められたカーボン
ポテンシャルファクタの目標値に制御する雰囲気ガス使
用処理炉において、所定のサンプリング時間Δt毎に炉
内のCO濃度x_1とCO_2濃度x_2を検出し、C
O濃度x_1とCO_2濃度x_2から炉内のカーボン
ポテンシャルファクタPFの測定値を演算すると共に、
該CO濃度x_1とCO_2濃度x_2を演算要素とし
て繰り入れてカーボンポテンシャルファクタPFの目標
値と測定値との偏差ΔPFと前記供給量u_1、u_2
との関係式を演算し、該関係式を満たすように前記ガス
量調整手段にガス量指令信号を出すようにしたことを特
徴とする炉内雰囲気ガス組成制御方法。
Carbon potential factor (the square of the CO concentration is C
A gas that has the property of increasing the carbon potential factor (value divided by the O_2 concentration) and a gas that has the property of reducing the carbon potential factor are each supplied into the furnace through the gas amount adjustment means, and the gas has the property of increasing the carbon potential factor. Gas supply amount u_1 and gas supply amount u_2 with the property of lowering
In a processing furnace using atmospheric gas, in which the inside of the furnace is controlled to a predetermined target value of carbon potential factor by adjusting the
Calculating the measured value of carbon potential factor PF in the furnace from O concentration x_1 and CO_2 concentration x_2,
By incorporating the CO concentration x_1 and CO_2 concentration x_2 as calculation elements, the deviation ΔPF between the target value and the measured value of the carbon potential factor PF and the supply amounts u_1, u_2 are calculated.
A method for controlling an atmosphere gas composition in a furnace, characterized in that a relational expression is calculated between the above and a gas amount command signal is outputted to the gas amount adjusting means so as to satisfy the relational expression.
JP30669188A 1988-12-02 1988-12-02 Method for controlling composition of atmosphere gas in furnace Pending JPH02153017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30669188A JPH02153017A (en) 1988-12-02 1988-12-02 Method for controlling composition of atmosphere gas in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30669188A JPH02153017A (en) 1988-12-02 1988-12-02 Method for controlling composition of atmosphere gas in furnace

Publications (1)

Publication Number Publication Date
JPH02153017A true JPH02153017A (en) 1990-06-12

Family

ID=17960149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30669188A Pending JPH02153017A (en) 1988-12-02 1988-12-02 Method for controlling composition of atmosphere gas in furnace

Country Status (1)

Country Link
JP (1) JPH02153017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059703A (en) * 1991-06-28 1993-01-19 Nkk Corp Surface hardening treatment of titanium material
JPH059702A (en) * 1991-06-28 1993-01-19 Nkk Corp Surface treatment of heating and cooking appliance made of titanium
JP2010024535A (en) * 2008-07-24 2010-02-04 Aisin Seiki Co Ltd Carburization method for steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582729A (en) * 1978-12-14 1980-06-21 Kobe Steel Ltd Heat treating method for steel material
JPS5980713A (en) * 1982-10-29 1984-05-10 Oriental Eng Kk Heat treatment of steel product accompanied by no decarburization
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582729A (en) * 1978-12-14 1980-06-21 Kobe Steel Ltd Heat treating method for steel material
JPS5980713A (en) * 1982-10-29 1984-05-10 Oriental Eng Kk Heat treatment of steel product accompanied by no decarburization
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059703A (en) * 1991-06-28 1993-01-19 Nkk Corp Surface hardening treatment of titanium material
JPH059702A (en) * 1991-06-28 1993-01-19 Nkk Corp Surface treatment of heating and cooking appliance made of titanium
JP2010024535A (en) * 2008-07-24 2010-02-04 Aisin Seiki Co Ltd Carburization method for steel

Similar Documents

Publication Publication Date Title
KR920020668A (en) How to check the flow rate of semiconductor wafer processing device and process gas
JPS57177969A (en) Controlling method for carbon potential in furnace
JPH02153017A (en) Method for controlling composition of atmosphere gas in furnace
US3522035A (en) Determining operation of furnace vessel
JPH0645867B2 (en) Atmosphere heat treatment control device
US4202690A (en) Setting and controlling desired redox potentials in gases
JP2612604B2 (en) Dew point control method of furnace atmosphere gas
JPS5716164A (en) Gas cementation treatment
JPS62243754A (en) Control device for carburization furnace atmosphere
JPS61174309A (en) Furnace pressure control device in converter waste gas treatment device
JPS6020651B2 (en) Combustion control method for heating furnaces, etc.
JPH075958B2 (en) Atmosphere control method for heat treatment furnace
JPH0719989A (en) Pressure control device for blowout type wind tunnel
JPS5716165A (en) Gas cementation by nitrogen, org. liquid agent and hydrocarbon
JPS5629668A (en) Carbon concn. controlling method of carburizing atmosphere
JP2985163B2 (en) Atmosphere gas control method in strip atmosphere furnace
JPS5713169A (en) Method for controlling concentration of carbon in carburizing atmosphere
GB1296069A (en)
JPS5585622A (en) Controlling method for atmosphere of non-oxidizing furnace
JPS61276624A (en) Method for controlling oxygen-enriched combustion and controlling device thereof
JPS6327721B2 (en)
JPH03193863A (en) Continuous type gas carburization furnace
JPH0398677A (en) Exhaustion control method of coated matter drying oven
JP2602384B2 (en) Atmosphere control method and apparatus for heat treatment furnace
JPS63150503A (en) Feedwater controller for steam generator