JPS63162820A - Atmosphere control method for heat treatment furnace - Google Patents

Atmosphere control method for heat treatment furnace

Info

Publication number
JPS63162820A
JPS63162820A JP31071186A JP31071186A JPS63162820A JP S63162820 A JPS63162820 A JP S63162820A JP 31071186 A JP31071186 A JP 31071186A JP 31071186 A JP31071186 A JP 31071186A JP S63162820 A JPS63162820 A JP S63162820A
Authority
JP
Japan
Prior art keywords
gas
value
heat treatment
carbon potential
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31071186A
Other languages
Japanese (ja)
Other versions
JPH075958B2 (en
Inventor
Masahito Yasuda
雅人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61310711A priority Critical patent/JPH075958B2/en
Publication of JPS63162820A publication Critical patent/JPS63162820A/en
Publication of JPH075958B2 publication Critical patent/JPH075958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To surely keep the suitable carbon potential value, by measuring the carbon potential of the atmosphere in a heat treatment furnace and controlling the atmosphere by adding a specified control gain to the measured value. CONSTITUTION:When a heat treatment for a steel material is carried out in the heat treatment furnace 1, the atmosphere gas is analyzed by a gas analyzer 10, and a carbon potential is calculated by a calculation means 11. The measured value and the set value in a standard value setting means 14 are inputted to an arithmetic means 12. The arithmetic means 12 carries out the calculation in such a way that a finite difference between the measured value and the set value is added to a control gain, etc., obtained from a constant value control means 13, and a gas flow rate changing signal is given to a control means 7 to control the opening a valve 5. At this time, as for the control gain, the control gain changing with the concn. of the atmospheric gas CO2 with a positive correlation is used. By this method, the carbon potential value of the atmospheric gas in the furnace 1 is coincident with the standard value.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする。[Detailed description of the invention] The present invention aims to solve the following problems.

(産業上の利用分野) この発明はバッチタイプの熱処
理炉において鋼材の熱処理をするに当たって炉内の雰囲
気を制御する方法に関する。
(Industrial Application Field) The present invention relates to a method for controlling the atmosphere in a batch type heat treatment furnace when heat treating steel materials.

(従来の技術) この種の熱処理炉においては、炉内の
雰囲気ガスのカーボンポテンシャルを測定し、それが予
め定められた基準値と合致するように上記熱処理炉内へ
のカーボンポテンシャル調整用のガスの供給量を制御す
ることが行われている。
(Prior art) In this type of heat treatment furnace, the carbon potential of the atmospheric gas in the furnace is measured, and a carbon potential adjusting gas is supplied into the heat treatment furnace so that the carbon potential matches a predetermined reference value. The supply amount is controlled.

この場合従来の方法にあっては、上記カーボンポテンシ
ャルの測定値と基!1!値との差値に一定の制御ゲイン
を加味して上記カーボンポテンシャル調整用ガスの供給
量の調整を行っている。この為、第4図に示される如く
、熱処理過程の中期や後期において炉内雰囲気ガス中の
CO□濃度が減少したときには、上記カーボンポテンシ
ャル調整用ガスの供給量の変更による炉内雰囲気ガスの
COW度の僅かな変化が、炉内におけるカーボンポテン
シャルの値に大きく影響し、即ち制御過敏となり、炉内
における雰囲気ガスのカーボンポテンシャルの値が大き
くハンチングを起こしてしまう問題点があり、その結果
として鋼材の表面に脱炭や浸炭の不均一層を発生させて
鋼材の材質を損なってしまう問題点があった。
In this case, in the conventional method, based on the above measured value of carbon potential! 1! The supply amount of the carbon potential adjusting gas is adjusted by adding a certain control gain to the difference value. Therefore, as shown in Fig. 4, when the CO□ concentration in the furnace atmosphere gas decreases in the middle or latter stages of the heat treatment process, the COW of the furnace atmosphere gas can be reduced by changing the supply amount of the carbon potential adjustment gas. There is a problem that a slight change in the carbon potential in the furnace greatly affects the value of carbon potential in the furnace, in other words, the control becomes oversensitive, and the value of the carbon potential of the atmospheric gas in the furnace increases, causing hunting.As a result, steel There is a problem in that a non-uniform layer of decarburization or carburization occurs on the surface of the steel, impairing the quality of the steel material.

(発明が解決しようとする問題点) この発明は上記従
来の問題点を除き、炉内雰囲気ガスのCowの濃度が減
少した場合においても炉内雰囲気ガスの適正なカーボン
ポテンシャル値の維持を確実性高く行い得るようにした
熱処理炉の雰囲気制御方法を提供しようとするものであ
る。
(Problems to be Solved by the Invention) This invention eliminates the above conventional problems and ensures that an appropriate carbon potential value of the furnace atmosphere gas is maintained even when the concentration of Cow in the furnace atmosphere gas decreases. It is an object of the present invention to provide a method for controlling the atmosphere of a heat treatment furnace that enables high performance.

本願発明の構成は次の通りである。The configuration of the present invention is as follows.

(問題点を解決する為の手段) 本願発明は前記請求の
範囲記載の通りの手段を講じたものであってその作用は
次の通りである。
(Means for Solving the Problems) The present invention takes the measures as described in the claims above, and its effects are as follows.

(作用) 熱処理炉内の雰囲気ガスのカーボンポテンシ
ャル値が測定される。その測定値は基準値と比較される
。そして両者の差値に制御ゲインを加味して得られるガ
ス量変更信号がガスll11M整手段に与えられる。ガ
ス量調整手段は上記信号に基づいて炉内へのカーボンポ
テンシャル調整用ガスの供給量を変更する。上記の場合
、制御ゲインと、しては炉内の雰囲気ガスのCowの濃
度と正の相関関係で変化する制御ゲインが用いられる。
(Function) The carbon potential value of the atmospheric gas in the heat treatment furnace is measured. The measured value is compared to a reference value. Then, a gas amount change signal obtained by adding the control gain to the difference value between the two is given to the gas ll11M adjusting means. The gas amount adjusting means changes the amount of carbon potential adjusting gas supplied into the furnace based on the signal. In the above case, a control gain that changes in a positive correlation with the Cow concentration of the atmospheric gas in the furnace is used.

(実施例)以下本願の実施例を示す図面について説明す
る。制御系統を示す第1図において、符号1乃至14で
示される部材はいずれも公知の部材であって、1は周知
の熱処理炉で、炉内の加熱及び雰囲気ガスの供給の為の
バーナ等周知の部材が備えられている。2は上記炉lに
対するカーボンポテンシャル調整用ガスの供給手段で、
管路をもって構成され、その一端は熱処理炉1に接続さ
れ、他端には変成ガスやエンリッチガス等のカーボンポ
テンシャル調整用ガスの発生手段が接続されている。3
は上記供給手段2に付設したガス量調整手段で、次に述
べる制御手段4からのガス贋変更信号に基づいて、供給
手段2から熱処理炉1に供給されるガス量を変更するよ
う構成されている。
(Embodiments) The drawings showing the embodiments of the present application will be explained below. In FIG. 1 showing the control system, members indicated by numerals 1 to 14 are all known members, and 1 is a well-known heat treatment furnace, which includes well-known burners for heating the furnace and supplying atmospheric gas. It is equipped with the following members. 2 is a means for supplying carbon potential adjustment gas to the furnace I;
It is composed of a pipe line, one end of which is connected to the heat treatment furnace 1, and the other end of which is connected to means for generating carbon potential adjustment gas such as a transformed gas or an enriched gas. 3
is a gas amount adjustment means attached to the supply means 2, which is configured to change the amount of gas supplied from the supply means 2 to the heat treatment furnace 1 based on a gas falsification change signal from the control means 4 described below. There is.

4は制御手段で、熱処理炉1内の雰囲気ガスのカーボン
ポテンシャルを測定すると共に、その測定値に応じて上
記ガス量調整手段3にガス量変更信号を与えるよう構成
されている。
4 is a control means configured to measure the carbon potential of the atmospheric gas in the heat treatment furnace 1 and to give a gas amount change signal to the gas amount adjusting means 3 in accordance with the measured value.

上記ガス量調整手段3において、5はバルブ、6はバル
ブ調節器、7は制御手段で、ガス量変更信号に基づいて
バルブ調節器6に作動信号を与えてそれを作動させ、そ
の結果バルブ5の開閉操作を行うと共に、バルブ調節器
6から作動量のフィードバック信号を得て、上記バルブ
5の開度が上記ガス量変更信号に対応する値となるよう
に制御するよう周知の如く構成されている。8はオリフ
ィスで、ガスの’tRIを検出するようにしたものであ
り、上記バルブ調節器6からのフィードバック信号を上
記制御手段7に与える代わりにこのオリフィス8による
ガス流量の検出信号を制御手段7にフィードバックして
も良い。また雰囲気制御をバルブ制御のみで行っても良
い。この場合オリフィス8及びバルブ調節器6からのフ
ィードバックが省略できる。
In the gas amount adjusting means 3, 5 is a valve, 6 is a valve adjuster, and 7 is a control means, which gives an actuation signal to the valve adjuster 6 based on the gas amount change signal to actuate it, and as a result, the valve 5 It is configured in a well-known manner to perform opening/closing operations of the valve 5 and to obtain a feedback signal of the operating amount from the valve controller 6 to control the opening degree of the valve 5 to a value corresponding to the gas amount change signal. There is. Reference numeral 8 denotes an orifice which detects the 'tRI of the gas, and instead of giving the feedback signal from the valve controller 6 to the control means 7, the gas flow rate detection signal from the orifice 8 is sent to the control means 7. You may give feedback. Alternatively, the atmosphere may be controlled only by valve control. In this case, feedback from the orifice 8 and the valve regulator 6 can be omitted.

次に制御手段4において、10はガス分析計で、炉内雰
囲気ガスをサンプリングしてそのCO濃度及びCota
度を検出するようにしたものである。11はカーボンポ
テンシャル値の計算手段で、上記分析計10から得られ
るCO濃度及びCot濃度の数値から、カーボンポテン
シャル値、即ち、CO?1度の2乗をCOzfM度で除
した値に比例する数値を計算するよう構成されている。
Next, in the control means 4, 10 is a gas analyzer that samples the atmosphere gas in the furnace and determines its CO concentration and Cota.
It is designed to detect the degree of Reference numeral 11 denotes a carbon potential value calculation means, which calculates the carbon potential value, that is, CO? from the CO concentration and Cot concentration values obtained from the analyzer 10. It is configured to calculate a numerical value proportional to the value obtained by dividing 1 degree squared by COzfM degrees.

12は周知のPID演算手段を示す、13はPID定数
管理手段で、P係数としては、−例として第2図に示さ
れるように、上記分析計10から得られる炉内雰囲気ガ
スのcolts度と正の相関関係で変化する制御ゲイン
を演算手段12に与え、■及びD係数としては夫々一定
値を演算手段12に与えるよう構成されている。向上記
制御ゲインはCOt濃度の違いに対し連続的でなく段階
的に値を変えても良い。14は基準値設定手段で、カー
ボンポテンシャルの基準値(この基準値は周知の如く熱
処理炉の制御時間の経過と共に変化する)を演算手段1
2に与えるよう構成しである。
Reference numeral 12 indicates a well-known PID calculation means, and reference numeral 13 indicates a PID constant control means, in which the P coefficient is - for example, as shown in FIG. A control gain that changes with a positive correlation is given to the computing means 12, and fixed values are given to the computing means 12 as the coefficients 1 and D, respectively. The above-mentioned control gain may change its value not continuously but in steps depending on the difference in COt concentration. Reference numeral 14 denotes a reference value setting means, which calculates a reference value of carbon potential (as is well known, this reference value changes with the passage of control time of the heat treatment furnace).
It is configured to give 2.

上記構成のものにあっては、炉1内に鋼材が入れられそ
の内部が閉じられた後、周知の如くバーナに着火され上
記鋼材の熱処理が開始される。そして熱処理中において
は供給手段2から炉1内へカーボンポテンシャル調整用
ガスの供給が次のように制御しながら行われて、炉内の
カーボンポテンシャルの調整が行われる。即ち、熱処理
中においては、炉1内の雰囲気ガスの一部がサンプリン
グされてガス分析計10で分析され、カーボンポテンシ
ャル値計算手段11によってカーボンポテンシャルの測
定値が計算される。その測定値及び基準値設定手段14
からのカーボンポテンシャルの基準値は演算手段12に
与えられ、両者の差値に定数管理手段13から得られる
制御ゲイン等を加味した演算がなされ、上記カーボンポ
テンシャルの測定値が基準値から外れている場合にはそ
れを是正する為のガス量変更信号が演算手段12から出
力される。
In the structure described above, after the steel material is put into the furnace 1 and the inside thereof is closed, the burner is ignited as is well known, and heat treatment of the steel material is started. During the heat treatment, the carbon potential adjusting gas is supplied from the supply means 2 into the furnace 1 under the following control, thereby adjusting the carbon potential inside the furnace. That is, during the heat treatment, a part of the atmospheric gas in the furnace 1 is sampled and analyzed by the gas analyzer 10, and the measured value of carbon potential is calculated by the carbon potential value calculation means 11. Measured value and reference value setting means 14
The reference value of the carbon potential from is given to the calculation means 12, and calculation is performed by adding the control gain etc. obtained from the constant management means 13 to the difference value between the two, and the measured value of the carbon potential deviates from the reference value. In this case, a gas amount change signal is outputted from the calculating means 12 to correct the problem.

その信号はガス量調整手段3における制御手段7に与え
られパルプ5の開度の制御が行われる。これにより供給
手段2から粋処理炉1内に送り込まれるカーボンポテン
シャル調整用ガスの量に変更が加えられる。このような
制御を閉ループの系において行うことにより、炉l内に
おける雰囲気ガスのカーボンポテンシャル値が上記基準
値に一致するようにされる。
The signal is given to the control means 7 in the gas amount adjustment means 3, and the opening degree of the pulp 5 is controlled. As a result, the amount of carbon potential adjustment gas sent from the supply means 2 into the pure processing furnace 1 is changed. By performing such control in a closed loop system, the carbon potential value of the atmospheric gas in the furnace I is made to match the above reference value.

次に上記のような制御を第3図に基づいて炉内における
鋼材の熱処理の時間の経過に従って説明すれば次の通り
である。先ず、炉内における昇温時にはカーボンポテン
シャルの基準値(設定値)が時間の経過と共に順次上昇
される。従ってカーボンポテンシャルの測定値もそれに
応じて上昇する。
Next, the above-mentioned control will be explained as follows, based on FIG. 3, according to the elapsed time of heat treatment of the steel material in the furnace. First, when the temperature inside the furnace is increased, the reference value (set value) of the carbon potential is gradually increased as time passes. The measured value of carbon potential therefore increases accordingly.

又この場合炉内におけるco、濃度も図示される如く順
次上昇する。尚この過程においては、co2濃度が未だ
低くても上記PID定数管理手段における制御ゲインの
値は(イ)に示される如(高い一定値に保持して早く所
定の雰囲気に到達するようにすると良い。次に炉内温度
が略所定値まで到達するとカーボンポテンシャルの基準
値は一定の値にされる。従って前記のような制御により
、カーボンポテンシャルの測定値もそれに対応する一定
値となる。その状態で時間が経過すると炉内におけるC
Ot濃度は図示されるように徐々に低下される。このC
O,濃度の低下に伴い上記PID定数管理手段13から
演算手段12に与えられる制御ゲインは、そのCow 
tar度の低下と共に低い値にされる。
In this case, the concentration of CO in the furnace also increases gradually as shown in the figure. In this process, even if the CO2 concentration is still low, the value of the control gain in the PID constant management means should be maintained at a high constant value as shown in (a) so that the predetermined atmosphere can be reached quickly. .Next, when the temperature inside the furnace reaches approximately a predetermined value, the reference value of the carbon potential is set to a constant value.Thus, by controlling as described above, the measured value of the carbon potential also becomes a corresponding constant value.That state As time passes, C in the furnace increases.
The Ot concentration is gradually decreased as shown. This C
O, the control gain given from the PID constant management means 13 to the calculation means 12 as the concentration decreases, the Cow
The value becomes lower as the tar degree decreases.

従って、ガス量変更信号の値は小さくなり、カーボンポ
テンシャル調整用ガスの供給量の変更幅は小さくなる。
Therefore, the value of the gas amount change signal becomes smaller, and the range of change in the supply amount of the carbon potential adjustment gas becomes smaller.

その結果、上記のようにcoxt1度が低下してきても
、炉内におけるカーボンポテンシャルの測定値が上記カ
ーボンポテンシャルの基準値から殆ど外れることがない
ように前記カーボンポテンシャル調整用ガスの供給量の
変更を行うことができる。即ち炉内においては予定され
た通りの雰囲気制御が行われる。更に熱処理過程の後期
に至り、上記CO□濃度が更に低下すると上記制御ゲイ
ンもそれに応じて更に低い値にされる。その結果、その
熱処理過程後期においても、炉内におけるカーボンポテ
ンシャルの測定値が基準値に正しく追随するように上記
カーボンポテンシャル調整用ガスの供給量を変更して、
適切な雰囲気制御を行うことができる。
As a result, even if COXT decreases by 1 degree as described above, the supply amount of the carbon potential adjustment gas is changed so that the measured value of carbon potential in the furnace hardly deviates from the reference value of carbon potential. It can be carried out. That is, the atmosphere inside the furnace is controlled as planned. Further, in the latter stage of the heat treatment process, when the CO□ concentration further decreases, the control gain is also set to a lower value accordingly. As a result, even in the latter half of the heat treatment process, the supply amount of the carbon potential adjustment gas is changed so that the measured value of carbon potential in the furnace accurately follows the reference value,
Appropriate atmosphere control can be performed.

このように炉内におけるカーボンポテンシャルの値が予
め設定した基準値に正しく追随するよう制御がなされる
為、炉内においては鋼材に脱炭や浸炭による不均一層の
発生を生ずることなく適切な熱処理を施すことができる
In this way, the carbon potential value in the furnace is controlled to accurately follow the preset reference value, so that the steel can be properly heat treated in the furnace without causing uneven layers due to decarburization or carburization. can be applied.

次に本件明細書中におけるカーボンポテンシャルは前に
も述べた如<Co?74度の2乗をco、)5度で除し
た値に比例する値であるが、上記のco濃度の2乗をC
O□濃度で除した値そのもの(この値は例えばポテンシ
ャルファクターと呼ぶ)を用いても前述のような雰囲気
制御は全く同様に行うことができ、本願の理解に当たっ
てはカーボンポテンシャルをポテンシャルファクターと
読み替えて理解しても良い。
Next, the carbon potential in this specification is as mentioned before <Co? It is a value proportional to the value obtained by dividing the square of 74 degrees by co, ) 5 degrees, but the square of the above co concentration is
Atmosphere control as described above can be performed in exactly the same way even if the value divided by the O□ concentration (this value is called, for example, the potential factor) is used, and in understanding this application, the carbon potential should be read as the potential factor. It's okay to understand.

(発明の効果) 以上のように本発明にあっては、鋼材
の熱処理に当り、炉内の雰囲気ガスを制御するに当って
は、炉内におけるCCotM度)”/COz?I4度に
対応する数値であるところりカーボンポテンシャルの測
定値と、予め定められたカーボンポテンシャルの基準値
との差値に、制御ゲインを加味して得られるガス量変更
信号を、ガス量調整手段に与えて雰囲気制御を行なうも
のであるから、炉内においでは適正なカーボンポテンシ
ャルの雰囲気の維持を期待できる特長がある。
(Effects of the Invention) As described above, in the present invention, when controlling the atmospheric gas in the furnace during heat treatment of steel materials, the temperature in the furnace corresponds to CCotM degree)''/COz?I4 degree. Atmosphere control is performed by giving a gas amount change signal obtained by adding a control gain to the difference value between the measured value of carbon potential, which is a numerical value, and a predetermined reference value of carbon potential, to the gas amount adjusting means. Therefore, it has the advantage that it can be expected to maintain an atmosphere with an appropriate carbon potential inside the furnace.

しかも上記の場合、熱処理過程の中期や後期において炉
内雰囲気ガスのCO!の濃度が減少すると、COの濃度
のわずかな変化が炉内におけるカーボンポテンシャルの
値に大きく影響して制御過敏となる恐れが生じても(従
来においては炉内のカーボンポテンシャルの値にハンチ
ングを生じさせてしまっていた状況となっても)、本願
発明では上記差値に炉内の雰囲気ガスのCotの4度と
正の相関関係で変化する制御ゲインを加味してガス量変
更信号を得るようにしているから、その信号は上記CO
,濃度の減少に伴なって小さくなり、その結果、炉内雰
囲気のカーボンポテンシャルの調整を上記COtの減少
に伴なってなだらかに(ハンチングを生ずることな()
行ない得て、適正なカーボンポテンシャル値の維持を確
実性高く行ない得る特長がある。このことは被熱処理材
である鋼材に脱炭や浸炭を発生させることなく良質の熱
処理を施し得る利点がある。
Moreover, in the above case, CO in the furnace atmosphere gas in the middle and later stages of the heat treatment process! As the concentration of In the present invention, the gas amount change signal is obtained by adding a control gain that changes in a positive correlation with 4 degrees of Cot of the atmospheric gas in the furnace to the above difference value. Therefore, the signal is the above CO
, becomes smaller as the concentration decreases, and as a result, the carbon potential in the furnace atmosphere is adjusted gradually (without causing hunting) as the COt decreases.
It has the advantage of being able to maintain an appropriate carbon potential value with high reliability. This has the advantage that high quality heat treatment can be applied to the steel material to be heat treated without causing decarburization or carburization.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は熱処理炉に
おける雰囲気制御の系統図、第2図は炉内cavi1度
と制御ゲインとの関係の一例を示すグラフ、第3図は熱
処理過程における時間の経過とカーボンポテンシャル及
び制御ゲインとの関係を示すグラフ、第4図は従来例を
示す第3図と類型の図。 1・・・熱処理炉、3・・・ガス量調整手段、4・・・
制御手段。 第1図 一一一一一−す COz濃度(%) α戸のゲイン〕第
3図 笛4図
The drawings show an embodiment of the present application, and Fig. 1 is a system diagram of atmosphere control in a heat treatment furnace, Fig. 2 is a graph showing an example of the relationship between the furnace cavity 1 degree and control gain, and Fig. 3 is a diagram showing the heat treatment process. FIG. 4 is a graph showing the relationship between the elapse of time, carbon potential, and control gain; FIG. 4 is a diagram similar to FIG. 3 showing a conventional example; 1... Heat treatment furnace, 3... Gas amount adjustment means, 4...
control means. Figure 1 11111-S COz concentration (%) α door gain] Figure 3 Whistle Figure 4

Claims (1)

【特許請求の範囲】[Claims] 雰囲気ガスがある熱処理炉内において鋼材の熱処理をす
るに当っては、上記熱処理炉内の雰囲気ガスのカーボン
ポテンシャルを調整する為に熱処理炉内に送り込まれる
ガスの量を、ガス量変更信号に基づいて調整するように
したガス量調整手段を予め備えておいて、上記炉内の雰
囲気ガスのカーボンポテンシャルを測定し、その測定値
と予め定められたカーボンポテンシャルの基準値との差
値に、制御ゲインを加味して得られるガス量変更信号を
、上記ガス量調整手段に与えて雰囲気制御を行なう熱処
理炉の雰囲気制御方法において、上記制御ゲインとして
炉内の雰囲気ガスのCO_2の濃度と正の相関関係で変
化する制御ゲインを用いて上記雰囲気制御を行なうこと
を特徴とする熱処理炉の雰囲気制御方法。
When heat treating steel materials in a heat treatment furnace with atmospheric gas, the amount of gas sent into the heat treatment furnace is controlled based on the gas amount change signal in order to adjust the carbon potential of the atmospheric gas in the heat treatment furnace. A gas amount adjustment means is provided in advance to measure the carbon potential of the atmospheric gas in the furnace, and control is performed based on the difference between the measured value and a predetermined carbon potential reference value. In an atmosphere control method for a heat treatment furnace, in which a gas amount change signal obtained by taking into account a gain is given to the gas amount adjusting means to control the atmosphere, the control gain has a positive correlation with the concentration of CO_2 in the atmospheric gas in the furnace. A method for controlling an atmosphere in a heat treatment furnace, characterized in that the atmosphere is controlled using a control gain that changes depending on the relationship.
JP61310711A 1986-12-26 1986-12-26 Atmosphere control method for heat treatment furnace Expired - Lifetime JPH075958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310711A JPH075958B2 (en) 1986-12-26 1986-12-26 Atmosphere control method for heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310711A JPH075958B2 (en) 1986-12-26 1986-12-26 Atmosphere control method for heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS63162820A true JPS63162820A (en) 1988-07-06
JPH075958B2 JPH075958B2 (en) 1995-01-25

Family

ID=18008548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310711A Expired - Lifetime JPH075958B2 (en) 1986-12-26 1986-12-26 Atmosphere control method for heat treatment furnace

Country Status (1)

Country Link
JP (1) JPH075958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280511A (en) * 1988-09-16 1990-03-20 Kawasaki Steel Corp Method for controlling dew point of atmospheric gas in furnace
JPH02153017A (en) * 1988-12-02 1990-06-12 Daido Steel Co Ltd Method for controlling composition of atmosphere gas in furnace
JPH05179365A (en) * 1991-12-27 1993-07-20 Nippon Steel Corp Method and device for atmosphere control of heat treatment furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231389A (en) * 1983-06-10 1984-12-26 東京熱処理工業株式会社 Method of controlling atmosphere in furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231389A (en) * 1983-06-10 1984-12-26 東京熱処理工業株式会社 Method of controlling atmosphere in furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280511A (en) * 1988-09-16 1990-03-20 Kawasaki Steel Corp Method for controlling dew point of atmospheric gas in furnace
JPH02153017A (en) * 1988-12-02 1990-06-12 Daido Steel Co Ltd Method for controlling composition of atmosphere gas in furnace
JPH05179365A (en) * 1991-12-27 1993-07-20 Nippon Steel Corp Method and device for atmosphere control of heat treatment furnace

Also Published As

Publication number Publication date
JPH075958B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JPH01162722A (en) Heat-treatment of steel material under gaseous atmosphere containing nitrogen and hydrocarbon
US11781209B2 (en) Surface hardening treatment device and surface hardening treatment method
US3522035A (en) Determining operation of furnace vessel
JPS63162820A (en) Atmosphere control method for heat treatment furnace
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JPH0645867B2 (en) Atmosphere heat treatment control device
JP3187991B2 (en) Furnace atmosphere control device
JP2619044B2 (en) Temperature control device
JPS6020651B2 (en) Combustion control method for heating furnaces, etc.
JPH04107256A (en) Carburizing furnace
CN109612269A (en) For oxygen content autocontrol method in the kiln of lithium battery material sintering
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
US20220341021A1 (en) Surface hardening treatment device and surface hardening treatment method
JP4443667B2 (en) Continuous sintering furnace and operation method thereof
JPH02153017A (en) Method for controlling composition of atmosphere gas in furnace
JP3122271B2 (en) Method of injecting oxygen into boiler feedwater in thermal power plant
JP3046467B2 (en) Heating furnace heating control method
JPS5935212A (en) Temperature controller for furnace with plural heating areas
SU384904A1 (en) INSTALLATION FOR AUTOMATIC CONTROL
JPH01316417A (en) Device for controlling dew point in atmospheric furnace
JPS5916002A (en) Pi controlling method
JPH03193863A (en) Continuous type gas carburization furnace
JPS6059060A (en) Method for controlling furnace atmosphere for carbonitriding
JPH0395448A (en) Gas supplying apparatus of thermal analyzer
JPH0293056A (en) Method for controlling fuel in galvanization alloying furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term