JPH02152224A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH02152224A
JPH02152224A JP30578888A JP30578888A JPH02152224A JP H02152224 A JPH02152224 A JP H02152224A JP 30578888 A JP30578888 A JP 30578888A JP 30578888 A JP30578888 A JP 30578888A JP H02152224 A JPH02152224 A JP H02152224A
Authority
JP
Japan
Prior art keywords
wafers
wafer
vapor phase
phase growth
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30578888A
Other languages
Japanese (ja)
Inventor
Shuichi Samata
秀一 佐俣
Yoshiaki Matsushita
松下 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30578888A priority Critical patent/JPH02152224A/en
Publication of JPH02152224A publication Critical patent/JPH02152224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To be excellent in a uniformity inside a face and a uniformity between wafers and to treat the waters in large quantities by a method wherein the wafers or a nozzle are moved up and down during a vapor growth operation and the wafers are turned inside their face. CONSTITUTION:A quartz boat 16 where a plurality of wafers 17, 17,... have been housed in a definite direction is arranged on a boat cradle 15 inside a quartz bell jar 11. While the bell jar is kept in a vacuum state, a reaction gas is blown to the wafers 17, 17,... from blowoff holes formed at a nozzle 13 for gas introduction use. During this process, the boat cradle 15 is turned and driven simultaneously clockwise or counterclockwise by using a motor. That is to say, when the boat cradle 15 is turned, the wafers 17, 17,... are turned inside their face and are moved up and down. It is most effective to execute this up-and-down motion several times at larger than an interval between the blowoff holes formed at the nozzle 13 for gas introduction use. By using this vapor growth apparatus, a large quantity of waters can be treated at a time without increasing the number of blowoff holes; a throughput can be enhanced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体薄膜の気相成長装置に関するもので、特
にシリコンデバイス用基板として用いられるシリコン薄
膜のエピタキシャル成長装置として使用されるものであ
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a vapor phase growth apparatus for semiconductor thin films, and in particular is used as an epitaxial growth apparatus for silicon thin films used as substrates for silicon devices. It is something.

(従来の技術) 従来、シリコン薄膜のエピタキシャル成長装置(CVD
膜成長装置、プラズマCVD装置等も含めて、以下単に
「気相成長装置」という。)としては、第4図に示す縦
型気相成長装置又は第5図に示すバレル型気相成長装置
が用いられている。
(Conventional technology) Conventionally, epitaxial growth equipment (CVD) for silicon thin films has been used.
Including film growth apparatuses, plasma CVD apparatuses, etc., these devices are simply referred to as "vapor phase growth apparatuses" hereinafter. ), a vertical vapor phase growth apparatus shown in FIG. 4 or a barrel type vapor phase growth apparatus shown in FIG. 5 is used.

これらの気相成長装置は、ウェハlを平板状のサセプタ
 2に載せるか(第4図)又は立て掛けるか(第5図)
した後、加熱用ランプ又は高周波加熱ヒータ 3でウェ
ハ 1を加熱し、石英ベルジャ 4へ反応ガスを流し込
んで気相成長を行なうものである。このため、−度に多
量のウェハ1を処理することが困難であり、特にウェハ
 lの口径が6インチφ〜8インチφと大口径化すると
1回の気相成長工程で5〜15枚程度しか処理できずス
ルーブツト(基板処理能力)に問題があった。
In these vapor phase growth apparatuses, the wafer l is placed on a flat susceptor 2 (Fig. 4) or propped up (Fig. 5).
Thereafter, the wafer 1 is heated with a heating lamp or a high-frequency heater 3, and a reaction gas is poured into a quartz bell jar 4 to perform vapor phase growth. For this reason, it is difficult to process a large number of wafers 1 at a time, and especially when the diameter of the wafer 1 increases from 6 inches to 8 inches, approximately 5 to 15 wafers are processed in one vapor phase growth process. There was a problem with throughput (substrate processing capacity).

そこで、近年、拡散炉(ホットウォール)型の熱処理炉
に多量のウェハをセットした後、そこへ5iCfi、1
,5tH2(1!2.SiH4等のソースガスをH2を
キャリアとして導入し、ウェハ表面で反応を起こさせる
気相成長装置が開発されつつある。この場合、横型炉で
は気相成長時にウェハをその表面に垂直となるような軸
で回転(以下「面内回転」という。)させることが困難
であり、ウェハ面内の膜厚分布の均一性(以下「面内均
一性」という。)が悪くなるため縦型炉が一般に用いら
れる。
Therefore, in recent years, after setting a large number of wafers in a diffusion furnace (hot wall) type heat treatment furnace, 5iCfi, 1
, 5tH2 (1!2.A vapor phase growth apparatus is being developed in which a source gas such as SiH4 is introduced with H2 as a carrier to cause a reaction on the wafer surface. In this case, in a horizontal furnace, the wafer is It is difficult to rotate the wafer around an axis perpendicular to the surface (hereinafter referred to as "in-plane rotation"), and the uniformity of the film thickness distribution within the wafer surface (hereinafter referred to as "in-plane uniformity") is poor. Therefore, vertical furnaces are generally used.

第6図及び第7図は縦型拡散炉型の熱処理炉を示してい
る。これらの気相成長装置は、反応炉内に配置されたウ
ェハ5を加熱用ランプ又は高周波加熱ヒータ 6て加熱
し、ノズル(反応ガスを噴出又は吸入するための装置、
以下「ノズル」という。)7から反応室へ反応ガスを導
入することにより(第6図)又はノズル7に設けられた
噴出孔からウェハ5へ直接反応ガスを吹き付けることに
より(第7図)気相成長を行なうものである。そして、
矢印aに示すようなウェハ5の面内回転が容品であるた
め、ウェハ面内の膜厚分布のバラツキは7%以下と面内
均一性に優れ、前記第4図及び第5図に示した気相成長
工程並の均一性を得ることができる。
6 and 7 show a vertical diffusion furnace type heat treatment furnace. These vapor phase growth apparatuses heat a wafer 5 placed in a reactor using a heating lamp or a high-frequency heater 6, and a nozzle (a device for ejecting or inhaling a reaction gas).
Hereinafter referred to as "nozzle". ) 7 into the reaction chamber (Fig. 6) or by blowing the reaction gas directly onto the wafer 5 from the nozzle 7 (Fig. 7). be. and,
Since the in-plane rotation of the wafer 5 as shown by the arrow a is controlled, the variation in the film thickness distribution within the wafer plane is 7% or less, which is excellent in-plane uniformity, as shown in FIGS. 4 and 5 above. It is possible to obtain uniformity comparable to that of a vapor phase growth process.

しかしながら、ウェハ5の間隔を狭め、例えばl O+
u+n以下としてウェハ5を多量にセットしスルーブツ
トを高めようとすると、ウェハ間の膜厚分布のバラツキ
は10%〜50%以上となりウェハ間の膜厚分布の均一
性(以下「ウェハ間均−性」という。)が悪くなるとい
う欠点がある。
However, if the spacing between the wafers 5 is narrowed, e.g.
When trying to increase the throughput by setting a large number of wafers 5 to U + n or less, the variation in the film thickness distribution between wafers will be 10% to 50% or more, and the uniformity of the film thickness distribution between wafers (hereinafter referred to as "inter-wafer uniformity") ”) has the disadvantage of becoming worse.

ところで、第7図に示す縦型拡散炉型の熱処理炉におい
ては、ウェハ間隔が狭くなった分、反応ガスの噴出孔の
数を増やすことでウェハ間均−性を良好にすることがで
きる。ところが、反応ガス流量が一定の場合にはこれに
より反応ガスの流速が低下するため、面内均一性の劣化
が生じる欠点がある。一方、これを防止するためには多
量の反応ガスを必要とするのでコスト的に不利となる欠
点がある。
By the way, in the vertical diffusion furnace type heat treatment furnace shown in FIG. 7, uniformity among wafers can be improved by increasing the number of reaction gas ejection holes to compensate for the narrower wafer spacing. However, when the flow rate of the reactant gas is constant, the flow rate of the reactant gas decreases, resulting in a disadvantage that in-plane uniformity deteriorates. On the other hand, in order to prevent this, a large amount of reaction gas is required, which is disadvantageous in terms of cost.

(発明が解決しようとする課題) このように、従来の気相成長装置では面内均一性の良い
ウェハが提供できたが、ウェハを多量に処理しようとす
ると面内又はウェハ間均−性が悪くなる欠点があった。
(Problems to be Solved by the Invention) As described above, conventional vapor phase growth apparatuses have been able to provide wafers with good in-plane uniformity, but when processing a large number of wafers, the in-plane or inter-wafer uniformity deteriorates. There were drawbacks that made it worse.

よって、本発明の目的は、面内均一性及びウェハ間均−
性が共に優れ、かつ、ウェハを多量に処理できるスルー
ブツトの高い気相成長装置を提供することである。
Therefore, an object of the present invention is to improve in-plane uniformity and wafer-to-wafer uniformity.
It is an object of the present invention to provide a vapor phase growth apparatus which has both excellent properties and a high throughput capable of processing a large number of wafers.

[発明の構成] (課題を解決するための手段とその作用)上記目的を達
成するために、本発明の気相成長装置は、気相成長時に
おいてウェハ又はノズルを上下に運動させている。また
、これに加えて前記ウェハを面内回転させればさらに効
果的である。
[Structure of the Invention] (Means for Solving the Problems and Their Effects) In order to achieve the above object, the vapor phase growth apparatus of the present invention moves the wafer or the nozzle up and down during vapor phase growth. Moreover, it is even more effective if the wafer is rotated in the plane in addition to this.

なお、運動はノズルに設けられた噴出孔がウェハ表面を
垂直に横切る方向へ行なうのが良い。さらに、反応炉内
の圧力を0.O1〜300t o r rの範囲で真空
に保つことにより気相成長時の低in化及び選択成長に
貢献できる。
Note that the movement is preferably performed in a direction in which the ejection hole provided in the nozzle perpendicularly traverses the wafer surface. Furthermore, the pressure inside the reactor was reduced to 0. Maintaining the vacuum in the range of 01 to 300 t o r r can contribute to lower in and selective growth during vapor phase growth.

このような構成によれば、面内均一性及びウェハ間均−
性が共に優れ、かつ、ウェハを多量に処理できるスルー
ブツトの高い気相成長装置を提供することができる。
With this configuration, in-plane uniformity and wafer-to-wafer uniformity can be improved.
Therefore, it is possible to provide a vapor phase growth apparatus which has excellent properties in both properties and can process a large number of wafers and has a high throughput.

(実施例) 以下、本発明の一実施例を図面を参照しつつ詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の気相成長装置を示したものである。石
英ベルジャ(反応炉) 11外には熱源として例えば加
熱用ヒータ12が設けられている。ガス導入用のノズル
13及びガス排気用のノズル14並びにボート受台15
が下方から石英ベルジャ11内へ取り付けられている。
FIG. 1 shows a vapor phase growth apparatus of the present invention. For example, a heater 12 is provided outside the quartz bell jar (reactor) 11 as a heat source. Nozzle 13 for gas introduction, nozzle 14 for gas exhaust, and boat cradle 15
is attached into the quartz belljar 11 from below.

ガス導入用のノズル13は例えば筒状であり、−側には
単数又は複数の噴出孔が設けられている。ガス排気用の
ノズル14も例えば筒状てあり、−側には単数又は複数
の吸入孔が設けられている。そして、前記噴出孔から石
英ボート1Bにセットされたウェハ17.17.  ・
・へ反応ガスを吹き付けることができる。なお、これら
の噴出孔及び吸入孔はウェハ17.17.・・・の表面
上にそれぞれ対応して設けられているのが良い。さらに
、ボート受台15には所定の領域に螺旋状の溝18が形
成されている。この溝18付近には磁気シール19が施
され、ガス排気用のノズル14はロータリーポンプ等の
減圧ポンプ20に接続されている。
The gas introduction nozzle 13 has a cylindrical shape, for example, and is provided with one or more ejection holes on the minus side. The gas exhaust nozzle 14 also has a cylindrical shape, for example, and is provided with one or more suction holes on the minus side. Wafers 17.17. are set in the quartz boat 1B from the ejection hole.・
・Reactive gas can be sprayed onto. Note that these ejection holes and suction holes are located on the wafer 17.17. It is preferable that they be provided correspondingly on the surface of... Furthermore, a spiral groove 18 is formed in a predetermined area of the boat pedestal 15. A magnetic seal 19 is provided near this groove 18, and a gas exhaust nozzle 14 is connected to a pressure reducing pump 20 such as a rotary pump.

次に、前記気相成長装置の動作について説明する。Next, the operation of the vapor phase growth apparatus will be explained.

まず、一定方向にウェハ17.17.・・・が複数枚収
納された石英ボート16を石英ベルジャ11内のホト受
台15に配置する。この後、石英ベルジャ11内を減圧
ポンプ20により 0.01torr以下の真空状態に
保持する。そして、ガス導入用のノズル13に設けられ
た噴出孔からウェハ17.1?、・・・へ反応ガスを吹
き(=Jける。この時、同時にボート受台15は図示し
ないモータで時計回り又は反時計回りに回転駆動される
。すなわち、ボート受台15を矢印すに示すように回転
させることにより、ウェハ17、17.・・・は面内回
転とともに矢印Cに示すような上下運動を行なう。なお
、上下運動はガス導入用のノズル13に設けられた噴出
孔の間隔以上に複数回行なうのが最も効果的である。
First, the wafer 17.17. A quartz boat 16 containing a plurality of . Thereafter, the inside of the quartz bell jar 11 is maintained in a vacuum state of 0.01 torr or less by the pressure reducing pump 20. Then, the wafer 17.1? , . . . Reactant gas is blown (=J). At this time, the boat cradle 15 is simultaneously driven to rotate clockwise or counterclockwise by a motor (not shown). That is, the boat cradle 15 is rotated as shown by the arrow. By rotating as shown in FIG. It is most effective to do the above multiple times.

このような気相成長装置によれば、ウェハ17゜17、
・・・は面内回転とともに噴出孔の間隔以上に」二下運
動を行なうことができる。よって、噴出孔の数を増やす
ことなく多量のウェハを一度に処理することができ、ス
ルーブツトを高めることができる。
According to such a vapor phase growth apparatus, the wafer 17°17,
. . . can perform in-plane rotation and two-lower motion that is greater than the gap between the ejection holes. Therefore, a large number of wafers can be processed at once without increasing the number of ejection holes, and throughput can be increased.

ところで、本発明は前記実施例に限られるものではなく
、種々の変形が可能であることは言うまでもない。例え
ば、ボード受台15に形成された螺旋状の溝18に変え
て、ボード受台15の下部に凹凸を持った台をセットす
ることにより上下運動をさせることもできる。さらに、
第1図に示した実施例ではウェハ側、すなわちボート受
台15を回転駆動させ、同時に上下運動もさせているが
、第2図に示すようにウェハ17.17.・・・は従来
どうり矢印dに示すような面内回転のみを行い、ガス導
入用のノズル13を矢印eに示すように上下運動させる
ことも可能である。この場合、ガス導入用のノズル13
はウェハ17.17.・・・表面を垂直に横切る方向に
動かすのが効果的である。なお、ボート受台15とガス
導入用のノズル13とを同時に動かすことも可能である
By the way, it goes without saying that the present invention is not limited to the above embodiments, and that various modifications are possible. For example, instead of using the spiral groove 18 formed in the board holder 15, a pedestal with unevenness may be set at the bottom of the board holder 15 to allow the board holder 15 to move up and down. moreover,
In the embodiment shown in FIG. 1, the wafer side, that is, the boat pedestal 15, is driven to rotate and is also moved up and down at the same time, but as shown in FIG. It is also possible to perform only in-plane rotation as shown by the arrow d as in the conventional case, and to move the gas introduction nozzle 13 up and down as shown by the arrow e. In this case, the nozzle 13 for introducing gas
is wafer 17.17. ...Moving perpendicularly across the surface is effective. Note that it is also possible to move the boat pedestal 15 and the gas introduction nozzle 13 at the same time.

次に、前記第1図に示した気相成長装置を用いてシリコ
ン結晶のエピタキシャル成長を行ない、ウェハの面内回
転のみを行なう従来の気相成長装置との比較を行なった
。なお、ウェハ17.17.・・・は石英ボート16に
LOma+間隔で25枚配置し、ソースガスに5iH2
Cj12、キャリアガスにH2を用い、温度1000℃
、真空度lot o r rで30分間エピタキシャル
成長を行なった。その結果、第3図(a)、(b)に示
すような膜厚分布が得られた。
Next, a silicon crystal was epitaxially grown using the vapor phase growth apparatus shown in FIG. 1, and a comparison was made with a conventional vapor phase growth apparatus that only performs in-plane rotation of the wafer. In addition, wafer 17.17. ... is arranged in quartz boat 16 at LOma+ spacing, and 5iH2 is used as the source gas.
Cj12, using H2 as carrier gas, temperature 1000°C
, epitaxial growth was performed for 30 minutes at a vacuum level of lot o r r. As a result, film thickness distributions as shown in FIGS. 3(a) and 3(b) were obtained.

同図(a)は従来の気相成長装置を用いた場合であり、
ウェハ面内におけるシリコン結晶の膜厚のバラツキは6
%程度であった。また、ウェハ間におけるシリコン結晶
の膜厚のバラツキは12%程度であった。一方、同図(
b)は本発明による気相成長装置を用いた場合であり、
ウェハ面内及びウェハ間の膜厚のバラツキは共に6%程
度であった。
Figure (a) shows the case using a conventional vapor phase growth apparatus.
The variation in silicon crystal film thickness within the wafer plane is 6.
It was about %. Further, the variation in the thickness of the silicon crystal between wafers was about 12%. On the other hand, the same figure (
b) is the case when the vapor phase growth apparatus according to the present invention is used,
The film thickness variations both within the wafer surface and between wafers were about 6%.

このように、本発明の気相成長装置においては、面内均
−性、ウェハ間均−性共に良好なシリコン結晶を形成で
き、かつ、1回の気相成長工程でウェハを多量に処理す
ることもできる。
As described above, the vapor phase growth apparatus of the present invention can form silicon crystals with good in-plane uniformity and wafer-to-wafer uniformity, and can process a large number of wafers in one vapor phase growth process. You can also do that.

さらに、前記第2図に示した実施例についてもその従来
例と比較してシリコン結晶のエピタキシャル成長を行な
った。ウェハ17.17.・・・は石英ボート16に1
0mm間隔で25枚配置し、ソースガスに5IH2Ci
I2、キャリアガスにHC,17及びH2を用い、温度
900℃、真空度20torrで30分間、ガス導入用
のノズル13をloma+程度上下に複数回動かしてエ
ピタキシャル成長を行なった。なお、ガス導入用のノズ
ル13には、実施例では10mm間隔で直径1mmの噴
出孔を、従来例では10a+m間隔(以下「従来例1」
という。)又は2■間隔(以下「従来例2」という。)
で直径1mmの噴出孔をそれぞれ設けた。その結果、実
施例並びに従来例1及び2のウェハ面内の膜厚のバラツ
キはすべて5%程度であった。また、ウェハ間の膜厚の
バラツキは従来例1では20%程度であったが、実施例
及び従来例2では7%程度であった。しかしながら、従
来例2においては、実施例に対して10倍の流量の反応
ガスを用いる必要があった。
Further, in the embodiment shown in FIG. 2, silicon crystal was epitaxially grown in comparison with the conventional example. Wafer 17.17. ... is 1 in 16 quartz boats
Arrange 25 sheets at 0 mm intervals, and use 5IH2Ci as the source gas.
Epitaxial growth was performed using I2 and HC, 17, and H2 as carrier gases at a temperature of 900° C. and a degree of vacuum of 20 torr for 30 minutes by moving the gas introduction nozzle 13 up and down by loma+ several times. Note that the gas introduction nozzle 13 has ejection holes with a diameter of 1 mm at intervals of 10 mm in the embodiment, and in the conventional example, the ejection holes are arranged at intervals of 10 a + m (hereinafter referred to as "conventional example 1").
That's what it means. ) or 2 ■ intervals (hereinafter referred to as "Conventional Example 2")
A nozzle hole with a diameter of 1 mm was provided in each case. As a result, the variations in film thickness within the wafer surface in the example and conventional examples 1 and 2 were all about 5%. Furthermore, the variation in film thickness between wafers was about 20% in Conventional Example 1, but was about 7% in Example and Conventional Example 2. However, in Conventional Example 2, it was necessary to use a reaction gas with a flow rate ten times that of the example.

すなわち、本発明の気相成長装置によれば少ない反応ガ
ス流量で面内均一性及びウェハ内均−性ともに良好な気
相成長を行なうことができる。
That is, according to the vapor phase growth apparatus of the present invention, vapor phase growth with good in-plane uniformity and in-wafer uniformity can be performed with a small flow rate of reactant gas.

これにより、反応ガスの消費量だけでなく反応ガスの供
給システム及び排ガス処理システムの簡略化が可能とな
り、約25%のプロセスコストの低減が可能となった。
This has made it possible to simplify not only the amount of reaction gas consumed but also the reaction gas supply system and exhaust gas treatment system, making it possible to reduce the process cost by about 25%.

なお、本発明の気相成長装置を用いることにより、選択
気相成長においても前述の実施例と同様の効果が得られ
ることは言うまでもない。
It goes without saying that by using the vapor phase growth apparatus of the present invention, the same effects as in the above-mentioned embodiments can be obtained also in selective vapor phase growth.

[発明の効果] 以上、説明したように本発明の気相成長装置によれば次
のような効果を奏する。
[Effects of the Invention] As described above, the vapor phase growth apparatus of the present invention provides the following effects.

気相成長時にウェハを面内回転させるとともに、前記ウ
ェハ又はガス導入用のノズルを」二下に複数回運動させ
ることにより、面内均一性及びウェハ間均−性が共に優
れ、かつ、ウェハを多量に処理できるスルーブツトの高
い気相成長装置を提供することができる。
By rotating the wafer in the plane and moving the wafer or the gas introduction nozzle downward several times during vapor phase growth, both the in-plane uniformity and the wafer-to-wafer uniformity are excellent, and the wafer is It is possible to provide a high throughput vapor phase growth apparatus that can process a large amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる気相成長装置につい
て一部外観を示す断面図、第2図は本発明の他の実施例
に係わる気相成長装置について一部外観を示す断面図、
第3図は本発明及び従来の気相成長装置によるシリコン
結晶の膜厚分布を示す図、第4図乃至第7図はそれぞれ
従来の気相成長装置を示す図である。 11・・・石英ベルジャ、12・・・加熱用ヒータ、1
3゜14・・・ノズル、15・・・ボート受台、I6・
・・石英ボート、17・・・ウェハ、18・・・溝、1
9・・・磁気シール、20・・・減圧ポンプ。 出願人代理人 弁理士 鈴江武彦 第2図 第4 図 第 図
FIG. 1 is a cross-sectional view showing a partial appearance of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a partial appearance of a vapor phase growth apparatus according to another embodiment of the present invention. ,
FIG. 3 is a diagram showing the film thickness distribution of silicon crystal by the present invention and the conventional vapor phase growth apparatus, and FIGS. 4 to 7 are diagrams each showing the conventional vapor phase growth apparatus. 11...Quartz bell jar, 12...Heating heater, 1
3゜14...Nozzle, 15...Boat cradle, I6...
...Quartz boat, 17...Wafer, 18...Groove, 1
9...Magnetic seal, 20...Reducing pressure pump. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 4 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)一定方向にウェハを複数枚収納する収納具と、こ
の収納具に収納されたウェハの表面に平行するように噴
出孔から前記ウェハへ反応ガスを吹き付けるノズルと、
前記ウェハの収納された方向と同方向に前記収納具を動
かす運動手段とを具備する気相成長装置。
(1) A storage device that stores a plurality of wafers in a certain direction, and a nozzle that sprays a reactive gas from an ejection hole onto the wafers in parallel to the surface of the wafers stored in the storage device;
A vapor phase growth apparatus comprising: a movement means for moving the storage tool in the same direction as the direction in which the wafer is stored.
(2)一定方向にウェハを複数枚収納する収納具と、こ
の収納具に収納されたウェハの表面に平行するように噴
出孔から前記ウェハへ反応ガスを吹き付けるノズルと、
前記ウェハの収納された方向と同方向に前記ノズルを動
かす運動手段とを具備する気相成長装置。
(2) a storage device that stores a plurality of wafers in a certain direction; a nozzle that sprays a reactive gas from a jet hole onto the wafers in parallel to the surface of the wafers stored in the storage device;
A vapor phase growth apparatus comprising a moving means for moving the nozzle in the same direction as the direction in which the wafer is stored.
(3)前記収納具に収納されたウェハが面内回転するよ
うな手段を具備する請求項1又は2記載の気相成長装置
(3) The vapor phase growth apparatus according to claim 1 or 2, further comprising means for in-plane rotation of the wafer stored in the storage device.
(4)気相成長時の反応炉内の圧力を0.01〜300
torrの範囲にする手段を具備する請求項1、2又は
3記載の気相成長装置。
(4) The pressure in the reactor during vapor phase growth is 0.01 to 300.
The vapor phase growth apparatus according to claim 1, 2 or 3, further comprising means for adjusting the torr range.
JP30578888A 1988-12-02 1988-12-02 Vapor growth apparatus Pending JPH02152224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30578888A JPH02152224A (en) 1988-12-02 1988-12-02 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30578888A JPH02152224A (en) 1988-12-02 1988-12-02 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH02152224A true JPH02152224A (en) 1990-06-12

Family

ID=17949361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30578888A Pending JPH02152224A (en) 1988-12-02 1988-12-02 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH02152224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533442A (en) * 2011-11-17 2014-12-11 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus including a plurality of exhaust ports and method thereof
JPWO2021033461A1 (en) * 2019-08-20 2021-02-25

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588323A (en) * 1978-12-27 1980-07-04 Hitachi Ltd Manufacture of semiconductor device
JPS61212014A (en) * 1985-03-18 1986-09-20 Tokyo Erekutoron Kk Semiconductor wafer processing device using chemical vapor deposition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588323A (en) * 1978-12-27 1980-07-04 Hitachi Ltd Manufacture of semiconductor device
JPS61212014A (en) * 1985-03-18 1986-09-20 Tokyo Erekutoron Kk Semiconductor wafer processing device using chemical vapor deposition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533442A (en) * 2011-11-17 2014-12-11 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus including a plurality of exhaust ports and method thereof
JPWO2021033461A1 (en) * 2019-08-20 2021-02-25
WO2021033461A1 (en) * 2019-08-20 2021-02-25 株式会社Kokusai Electric Substrate treatment device, production method for semiconductor device, program, and recording medium

Similar Documents

Publication Publication Date Title
KR950012910B1 (en) Vapor phase growth apparatus
JP3265042B2 (en) Film formation method
KR100215376B1 (en) Method for depositing silicon oxide films of reduced surface sensitivity
US6506691B2 (en) High rate silicon nitride deposition method at low pressures
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US7452424B2 (en) Vaporizer
US20010047764A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
US20160064190A1 (en) Substrate processing apparatus
KR100574569B1 (en) Methode for depositing atomic layer and ALD system having separate jet orifice for spouting purge-gas
KR20080035735A (en) Equipment for plasma enhanced chemical vapor deposition
JPH02152224A (en) Vapor growth apparatus
JPH01305524A (en) Plasma cvd device
JPS62263629A (en) Vapor growth device
JPH05251359A (en) Vapor silicon epitaxial growth device
KR102461199B1 (en) Substrate processing apparatus
WO1999036588A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JPH01253229A (en) Vapor growth device
JPS6316617A (en) Vapor growth equipment
JPH04154117A (en) Low pressure cvd system
CN113025996B (en) Film forming method
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JPS63300512A (en) Chemical vapor deposition apparatus
JPH05222537A (en) Surface treatment device
WO2000016387A1 (en) High rate silicon nitride deposition method at low pressures
CN116083877A (en) Furnace tube and method for forming film