JPH02150739A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH02150739A
JPH02150739A JP30414288A JP30414288A JPH02150739A JP H02150739 A JPH02150739 A JP H02150739A JP 30414288 A JP30414288 A JP 30414288A JP 30414288 A JP30414288 A JP 30414288A JP H02150739 A JPH02150739 A JP H02150739A
Authority
JP
Japan
Prior art keywords
mirror
light
binocular
measured
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30414288A
Other languages
Japanese (ja)
Inventor
Takeo Murakoshi
村越 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30414288A priority Critical patent/JPH02150739A/en
Publication of JPH02150739A publication Critical patent/JPH02150739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform accurate measurement with a spectrophotometer over all wavelength bands by performing transmissivity measurement by using plural mirrors so that the number of optical element arranged sheets at the time of base line correction can become the same as that at the time of measuring an object to be measured. CONSTITUTION:The optical system of this spectrophotometer is provided with a light source 1, spectroscope unit 2 which separates white light into each monochromatic light, toroidal mirror 3 which leads reference light emitted from the unit 2 and sample light to a sample for irradiating the sample with the light, and plane mirror 4. In addition, a holder section 6 for measuring an object to be measured with an optical path difference and the 1st, 2nd, 3rd, and 4th mirrors 7-10 are also provided. At the time of base line correction, the mirror 8 is aligned to the zero point of a scale board 21, with a binocular 25 being removed. Then the binocular 25 which is the object to be measured is set and the position of the mirror 8 is adjusted so that the incident port 22 of the binocular 25 can be irradiated with light without changing positions of the mirrors 7, 9, and 10. When transmissivity of the binocular 25 is measured in such state, reflection losses of each mirror 7-10 can be canceled and only the transmissivity of the binocular 25 can be measured accurately, since the mirrors 7-10 are included as they are in the measuring optical instrument of the binocular 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、双眼鏡ビデオカメラ等のように入射光と出射
光に光路差のある被検体の透過率測定に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to transmittance measurement of a subject having an optical path difference between incident light and output light, such as a binocular video camera.

〔従来の技術〕[Conventional technology]

この種の装置は、第1図に示すようにレーザ光源30な
どを用い特定波長での相対透過率、光路差分だけ検知器
31の位置を、その都度移動する方法さらに光ファイバ
ーによる方法がある。
As shown in FIG. 1, this type of apparatus includes a method of using a laser light source 30 or the like to move the position of the detector 31 by the relative transmittance at a specific wavelength and an optical path difference each time, and a method of using an optical fiber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記技術は、レーザ光のため全域の連続透過率が測定で
きないこと、検知器31を移動す、る方式では、検知器
31の大きさにより移動距離Qの制限や、検知器31の
信号コードを長くするためノイズの発生、さらに検知器
移動による受光面の再現不良など、安定面からの欠点が
あった。
The above technology has the disadvantage that continuous transmittance over the entire area cannot be measured because of the laser beam, and in the method of moving the detector 31, the moving distance Q is limited depending on the size of the detector 31, and the signal code of the detector 31 is limited. There were drawbacks from a stability standpoint, such as the generation of noise due to the length and poor reproduction of the light-receiving surface due to the movement of the detector.

本発明の目的は、任意の光路差を有する被検体の透過率
をベースライン補正する時と同一光学素子を用い1条件
を同一にし、透過率を測定できるようにしたことにある
An object of the present invention is to make it possible to measure the transmittance using the same optical element and under the same conditions as when baseline correcting the transmittance of an object having an arbitrary optical path difference.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、第2図に示す如く複数枚のミラー7〜8を
用いΩ形光学系を組み、ベースライン補正を行なう。被
検体13の測定のときは、第3図のように被検体13の
入射側のミラー8を移動し。
For the above purpose, as shown in FIG. 2, a plurality of mirrors 7 to 8 are used to construct an Ω-shaped optical system to perform baseline correction. When measuring the object 13, the mirror 8 on the incident side of the object 13 is moved as shown in FIG.

被検体13に入射光を入れる。このときは被検体の出射
側はベースライン補正時のミラー9の位置に合わせる。
Incident light enters the subject 13. At this time, the exit side of the subject is aligned with the position of the mirror 9 during baseline correction.

逆の方法即ち第4図のように被検体13の出射側のミラ
ー9を移動して出射光に合せる。このときは被検体の入
射側はベースライン補正時のミラー8の位置に合せる方
法でもよい。
In the reverse method, as shown in FIG. 4, the mirror 9 on the output side of the subject 13 is moved to match the output light. In this case, the incident side of the subject may be aligned with the position of the mirror 8 during baseline correction.

このようにして被検体測定の光学系を組ことによって光
路差を有する被検体の透過率を正確に測定することがで
きる。
By configuring the optical system for measuring the object in this way, it is possible to accurately measure the transmittance of the object having an optical path difference.

〔作用〕[Effect]

移動可能にした複数ミラーを被検体の光路差に応じて任
意の位置に移動できるので被検体の光路差がどのよう大
きくても被検体の透過率を測定できる。
Since the movable mirrors can be moved to arbitrary positions according to the optical path difference of the object, the transmittance of the object can be measured no matter how large the optical path difference of the object is.

〔実施例〕〔Example〕

以下、本発明の一実施例を第5図〜第7図により説明す
る。第5図は本発明を実施した装置の光学系統図を示し
たもので1は光源、2は白色光を単色光に分光する分光
器を示す、3は分光器より出射した対照光と試料光を試
料に照射するために導くトロイダルミラー、4は平面ミ
ラーを示す、6は本発明の光路差を有する被検体を測定
するホールダ部で7は第1ミラー、8は第2ミラー9は
第3ミラー10は第4ミラーで第1ミラー7は移動でき
る。なお、第5図はベースライン補正時の光学系を示す
。11は積分球、12は、Wi化アルミニュムを圧縮成
形した白板で光を散乱する。26は検知器で積分球11
の一部に取り付けて積分球11内で複反対した光を電気
信号に変換する。
An embodiment of the present invention will be described below with reference to FIGS. 5 to 7. Fig. 5 shows an optical system diagram of the device implementing the present invention, in which 1 shows the light source, 2 shows the spectrometer that separates white light into monochromatic light, and 3 shows the control light and sample light emitted from the spectrometer. 4 is a plane mirror, 6 is a holder part for measuring a subject having an optical path difference according to the present invention, 7 is a first mirror, 8 is a second mirror, 9 is a third mirror, and 4 is a plane mirror. The mirror 10 is the fourth mirror, and the first mirror 7 is movable. Note that FIG. 5 shows the optical system during baseline correction. Reference numeral 11 is an integrating sphere, and 12 is a white plate compression-molded from Wi aluminum for scattering light. 26 is a detector and integrating sphere 11
It is attached to a part of the integrating sphere 11 and converts the light that is reversed within the integrating sphere 11 into an electrical signal.

第6図は双II!鏡の透過率測定装置に応用した例で第
5図と同じ部品は同一記号を用いている。
Figure 6 is Sou II! This is an example of application to a mirror transmittance measuring device, and the same parts as in FIG. 5 are given the same symbols.

14.16はミラー8が取り付いているミラーホールダ
15を移動するガイドでガイド16にはその移動量が触
るように目盛21が付いている。
Reference numerals 14 and 16 are guides for moving the mirror holder 15 to which the mirror 8 is attached, and the guide 16 has a scale 21 so that the amount of movement can be measured.

17はミラーをホールドするミラーホールダ、18はミ
ラー9をホールドするミラーホールダで本実施例では固
定ミラーホールダとして使用しているが、ミラーホーシ
ダ15同様に移動も可能である。
A mirror holder 17 holds a mirror, and a mirror holder 18 holds a mirror 9. Although these mirror holders are used as fixed mirror holders in this embodiment, they can also be moved like the mirror holder 15.

19はミラーホールダでミラー1oを取付けている。19 is a mirror holder to which mirror 1o is attached.

20は集光レンズでミラー10の光を集光し積分球11
の白板12に照射させる。
20 is a condensing lens that condenses the light from the mirror 10 to an integrating sphere 11
The white board 12 is irradiated with light.

この様な構成なので光路差を有する双眼鏡は、次の手順
で測定できる。
With such a configuration, binoculars having an optical path difference can be measured using the following procedure.

ベースライン補正時はミラー8を目盛板21の0点に合
せ、第5図の光学系の状態で補正する。
At the time of baseline correction, the mirror 8 is set to the 0 point on the scale plate 21, and the correction is performed in the state of the optical system shown in FIG.

このとき被検体である双眼鏡25は取外しておく。At this time, the binoculars 25 that are the object to be examined are removed.

次にミラー7.9.10の位置を変えないで双rfA鏡
を取付ミラー8の位置を被検体である双IIl鏡25の
入射口22に光が照射するようにミラー8の位置を調整
する。
Next, attach the twin rfA mirrors without changing the positions of mirrors 7, 9, and 10, and adjust the position of mirror 8 so that the light irradiates the entrance port 22 of the twin II mirror 25, which is the object to be inspected. .

この状態で透過率を測定するとベースライン補正時のミ
ラー7.8,9.10は被検体である双眼鏡25の測定
光路にそのまま入っているので各ミラーによる反射損失
はキャンセルし双眼鏡のみの透過率を正確に安定性よく
測定できる。
When measuring the transmittance in this state, the mirrors 7.8 and 9.10 during baseline correction are directly in the measurement optical path of the binoculars 25, which is the subject, so the reflection loss due to each mirror is canceled and the transmittance of only the binoculars is can be measured accurately and with good stability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば入射と出射に光路差を有する被検体の透
過率を分光器の有する全波長域で安定性良く正確に測定
できる効果がある。
According to the present invention, there is an effect that the transmittance of a subject having an optical path difference between the incident and the output can be measured stably and accurately in the entire wavelength range of the spectrometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置を示す図、第2図は本発明の基本光
学系でベースライン補正時の系統図、第3図は光路差を
有する被検体の測定光学系統図、第4図は別の光路差を
有する被検体の測定光学系統図、第5図は本発明の一実
施例の光学系統図、第6図は本発明の一実施例の平面図
、第7図は第6図のミラー移動部の断面図である。 7.8,9.10・・・ミラー、11・・・積分球、1
3・・・被検体、14.16・・・ガイド、21・・・
目盛、25・・・双眼鏡、26・・・検出器。 第 因 第 図 第4図
Fig. 1 is a diagram showing a conventional device, Fig. 2 is a system diagram of the basic optical system of the present invention during baseline correction, Fig. 3 is a measurement optical system diagram for a subject with an optical path difference, and Fig. 4 is a system diagram of the basic optical system of the present invention during baseline correction. 5 is an optical system diagram of an embodiment of the present invention; FIG. 6 is a plan view of an embodiment of the present invention; FIG. FIG. 7.8,9.10...mirror, 11...integrating sphere, 1
3... Subject, 14.16... Guide, 21...
Scale, 25... Binoculars, 26... Detector. Cause diagram Figure 4

Claims (1)

【特許請求の範囲】 1、光路差を有する被検体に分光した可変可能な単色光
を照射し透過率を測定する装置において複数のミラーを
用いベースライン補正時と被検体測定時の光学素子の配
列枚数を同数になるようにして透過率測定ができること
を特徴とする分光々度計。 2、特許請求の範囲第1項において、被検体の光路差に
応じ、配列ミラーの位置を任意に可変できるようにした
ことを特徴とする分光々度計。
[Claims] 1. In a device that measures transmittance by irradiating a subject with an optical path difference with a variable monochromatic light spectrum, a plurality of mirrors are used to adjust the optical elements during baseline correction and measurement of the subject. A spectrophotometer characterized by being able to measure transmittance by arranging the same number of panels. 2. The spectrophotometer according to claim 1, characterized in that the position of the array mirror can be arbitrarily varied according to the optical path difference of the subject.
JP30414288A 1988-12-02 1988-12-02 Spectrophotometer Pending JPH02150739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30414288A JPH02150739A (en) 1988-12-02 1988-12-02 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30414288A JPH02150739A (en) 1988-12-02 1988-12-02 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH02150739A true JPH02150739A (en) 1990-06-11

Family

ID=17929551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30414288A Pending JPH02150739A (en) 1988-12-02 1988-12-02 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH02150739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345129A (en) * 2013-07-04 2013-10-09 中国科学院光电技术研究所 Method for measuring transmittance of full illumination system and components in photoetching machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345129A (en) * 2013-07-04 2013-10-09 中国科学院光电技术研究所 Method for measuring transmittance of full illumination system and components in photoetching machine
CN103345129B (en) * 2013-07-04 2015-04-22 中国科学院光电技术研究所 Method for measuring transmittance of full illumination system and components in photoetching machine

Similar Documents

Publication Publication Date Title
US4076421A (en) Spectrophotometer with parallel sensing
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
JP5092104B2 (en) Spectrometer and spectroscopic method
US3927944A (en) Spectrophotometer
US7495762B2 (en) High-density channels detecting device
JP2002031510A (en) Optical measuring device with elliptic polarimeter
JPS628729B2 (en)
US7193707B2 (en) Small sized wide wave-range spectroscope
US7869034B2 (en) Multi-angle and multi-channel inspecting device
JPH04242145A (en) Infrared-ray microspectroscopic measuring apparatus
KR100393522B1 (en) Device and method for measuring film thickness, making use of improved fast fourier transformation
JPS634650B2 (en)
CN210603594U (en) Spectrum appearance
JPS6038644B2 (en) spectrophotometer
JPS62266439A (en) Spectral temporary optical analyzer
US3794426A (en) Holographic spectrometer
CN104316629A (en) Liquid phase multi-channel detector device
JPH02150739A (en) Spectrophotometer
NL7905871A (en) Spectrophotometer with two separate light paths - has flat and concave mirrors on either side of diffraction grating
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JPH03148043A (en) Spectroscopic measuring apparatus using infrared-ray microscope method
Oranje A selective solar irradiance spectrometer
JP3519605B2 (en) Ellipsometry equipment
JPS626482Y2 (en)
SU1317338A1 (en) Device for measuring spectrum transmission factors of optical elements and systems