JPS5821527A - Fourier converting type infrared spectrophotometer - Google Patents

Fourier converting type infrared spectrophotometer

Info

Publication number
JPS5821527A
JPS5821527A JP12102181A JP12102181A JPS5821527A JP S5821527 A JPS5821527 A JP S5821527A JP 12102181 A JP12102181 A JP 12102181A JP 12102181 A JP12102181 A JP 12102181A JP S5821527 A JPS5821527 A JP S5821527A
Authority
JP
Japan
Prior art keywords
mirror
interferometer
white light
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12102181A
Other languages
Japanese (ja)
Other versions
JPH0327854B2 (en
Inventor
Yuji Matsui
松井 有二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP12102181A priority Critical patent/JPS5821527A/en
Publication of JPS5821527A publication Critical patent/JPS5821527A/en
Publication of JPH0327854B2 publication Critical patent/JPH0327854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To facilitate adjustment through a simple structure, by detecting a position of a moving mirror of an interference meter and center position of the moving mirror by the use of a laser light flux and a white light flux. CONSTITUTION:Light from a white light source S3 produces a parallel light flux omega by a lens, the light flux omega and a light flux emitted from a laser source S2 are parallel to each other, and are adjusted so that they are brought to a parallel to a measuring infrared light flux entering a translucent mirror BS from a collomater CM. 3 types of light fluxes enter the translucent mirror BS, a part of them reflect, a part of them transmit, they independently interfer, and are radiated from an interference meter. Laser rays emitted from the interference meter are reflected in a direction of a samle chamber SC without a change in the direction thereof. In order to detect a center position of a moving mirror Mm, a position, where an output of a photo detector D2 is maximized, is detected by lighting a white light source S3 and by moving mirror Mm. The position of the moving mirror Mm is detected by detecting laser rays by a photo detector D3.

Description

【発明の詳細な説明】 本発明はフーリエ変換型赤外分光光度計に関する。フー
リエ変換型赤外分光光度計では移動鏡の中心位置の検出
及び移動鏡の位置を示す信号を得るのに光学的方法を用
いているが、構造的に複雑であシ、調整も面倒である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fourier transform infrared spectrophotometer. Fourier transform infrared spectrophotometers use optical methods to detect the center position of the moving mirror and obtain signals indicating the position of the moving mirror, but this method is structurally complex and difficult to adjust. .

本発明はフーリエ変換型赤外分光光度計における上述し
た構造上の複雑さを解消し、調整を容易なものとするこ
とを目的としている。本発明の目的を具体的に説明する
ために従来例について説明する。第1図に従来のフーリ
エ変換型分光光度計の構成を示す。Lは光源、CMはコ
リメータ鏡で光源りから出た光を平行光束にして同光束
に対し45 傾けて配置した半透明鏡BSに入射させる
8Mfは固定鏡、Mmは移動鏡でMf、Mm及び半透明
鏡BSによってマイケルン/の干渉計が構成されている
。SCは試料室で、上述マイケルソン干渉計から出た光
束を対照光束Rと試料光束Sとに分割し、夫々の光束の
光路内に対照セル及び試料セルを置き、透過光を光検出
器p1で受光し測光する。半透明鏡BSの中心点から各
鏡Mf、Mmまでの光路長1.1’が等しいときはマイ
ケルソン干渉計の出射光はすべての波長の光が何れも強
め合い出射光の強度は最大となる。このときの移動鏡M
mの位置を中心点とする。移動鏡を中心点から移動させ
ると干渉計の出射光は弱まシ、次に再び干渉によって強
められるまでの移動鏡の移動距離は光の半波長であシ、
従って波長によって異っておシ、移動鏡を移動させたと
きの出射光の強度の変化は周波数が連続的に異る無数の
余弦波を原点を一致させて重ねた波形とな多光源のスペ
クトルをフーリエ変換した波形となっている。このよう
な干渉計の出射光を試料室に導いて試料を透過させると
光源のスペクトルと試料の吸収スペクトルを重ねたもの
のフーリエ変換波形が光検出器D1の出力として得られ
るから、これを再びフーリエ変換することによって試料
の吸収スペクトルを求めることができる。
The present invention aims to eliminate the above-mentioned structural complexity in a Fourier transform infrared spectrophotometer and to facilitate adjustment. In order to concretely explain the purpose of the present invention, a conventional example will be described. FIG. 1 shows the configuration of a conventional Fourier transform spectrophotometer. L is a light source, CM is a collimator mirror that converts the light emitted from the light source into a parallel beam, and inputs it into a semi-transparent mirror BS placed at an angle of 45 degrees.8Mf is a fixed mirror, and Mm is a movable mirror. The semi-transparent mirror BS constitutes a Michaelian interferometer. SC is a sample chamber in which the light flux emitted from the above-mentioned Michelson interferometer is divided into a reference light flux R and a sample light flux S, a control cell and a sample cell are placed in the optical path of each light flux, and the transmitted light is transmitted to a photodetector p1. to receive and measure light. When the optical path lengths from the center point of the semi-transparent mirror BS to the mirrors Mf and Mm are equal (1.1'), all wavelengths of light from the Michelson interferometer are intensified, and the intensity of the output light is maximum. Become. Moving mirror M at this time
Let the position of m be the center point. When the movable mirror is moved from the center point, the light emitted from the interferometer weakens, and the distance the movable mirror moves until it is strengthened again by interference is half the wavelength of the light.
Therefore, the intensity of the emitted light varies depending on the wavelength, and the change in the intensity of the emitted light when the movable mirror is moved is a waveform in which countless cosine waves with continuously different frequencies are superimposed with their origins coincident.The spectrum of a multi-light source. The waveform is obtained by Fourier transform. When the emitted light from such an interferometer is guided into the sample chamber and transmitted through the sample, a Fourier transformed waveform obtained by superimposing the spectrum of the light source and the absorption spectrum of the sample is obtained as the output of the photodetector D1. By converting, the absorption spectrum of the sample can be determined.

上述したような構成で移動鏡Mmの中心位置を検出する
のに従来は、移動鏡Mmの裏面を表面と平行な鏡Mm’
とし、半透明鏡BSI及び固定鏡Mflと共に第2のマ
イケルソン干渉計を構成し、図のl、 j“が等しい移
動鏡Mmの中心位置において、第1図Bに示す移動鏡M
m’と半透明鏡BSIとの光路長rと固定鏡MflとB
SIとの光路長rl&が等しくなる、換言すれば移動鏡
Mm’も中心点に位置するようにしておき、この第2の
マイケルソン干渉計に白色光を入射させ、出射光を光検
出器D2で測光して測光記録を採り、最大ピークを示す
移動鏡Mmの位置を検出するようにしてい点にあるとき
移動鏡Mm’も中心点にあるように第2のマイケルソン
干渉計を調整する必要があり、この調整はかなシ困難な
ものであシ、装置の価格上昇を来している。
Conventionally, in order to detect the center position of the movable mirror Mm with the above-mentioned configuration, the back surface of the movable mirror Mm is connected to a mirror Mm' parallel to the front surface.
A second Michelson interferometer is constructed together with the semi-transparent mirror BSI and the fixed mirror Mfl, and at the center position of the movable mirror Mm where l and j" in the figure are equal, the movable mirror M shown in FIG.
m', the optical path length r of the semi-transparent mirror BSI, the fixed mirror Mfl and B
The optical path length rl& with SI is made equal, in other words, the movable mirror Mm' is also positioned at the center point, white light is made incident on this second Michelson interferometer, and the emitted light is sent to the photodetector D2. The second Michelson interferometer must be adjusted so that when the position of the moving mirror Mm that shows the maximum peak is detected, the moving mirror Mm' is also at the center point. However, this adjustment is difficult and has resulted in an increase in the price of the equipment.

また移動鏡Mmの移動量を知るため移動鏡が一定距離移
動する毎に信号を出すようにしている力i、このために
従来は移動鏡Mm’と第3の半透明鏡BS2と固定鏡M
f2とによって第3のマイケルソン干渉計を構成し、レ
ーザー光を入射させて、この干渉計の出射光を光検出器
D3で測光し、移動鏡Mmの一定距離移動毎に信号を出
すようにしている。このような第3のマイケルソン干渉
計も装置構造を複雑にするものである。
In addition, in order to know the amount of movement of the movable mirror Mm, a signal is output every time the movable mirror moves a certain distance.
f2 constitutes a third Michelson interferometer, a laser beam is input, the light emitted from this interferometer is measured by a photodetector D3, and a signal is output every time the movable mirror Mm moves a certain distance. ing. Such a third Michelson interferometer also complicates the device structure.

更に、赤外分光の場合半透明鏡BSは赤外線に対して半
透明となるようにKBr等の赤外線透過材料にGeを蒸
着したものを用いているが、この半透明鏡は可視光を殆
んど通さないので、半透明鏡BSよシ後にある光学系の
調整が手探り状態となり調整作業が困難である。
Furthermore, in the case of infrared spectroscopy, the semi-transparent mirror BS is made of an infrared-transmissive material such as KBr deposited with Ge to make it semi-transparent to infrared rays, but this semi-transparent mirror transmits almost no visible light. Since it does not pass through the translucent mirror BS, it is difficult to adjust the optical system located behind the semitransparent mirror BS.

本発明は上述した3つの問題点を解消しようとするもの
で、上述した第礼第3の干渉計をなくし、主干渉計に測
定用の光の他、移動鏡の中心位置検出のだめの白色光及
び移動鏡の位置の信号を得るためのレーザー光をも入射
させることができるようにしたフーリエ変換型赤外分光
光度計を提供する。以下実施例によって本発明を説明す
る。
The present invention aims to solve the above-mentioned three problems, and eliminates the third interferometer mentioned above, and uses white light to detect the center position of the movable mirror in addition to the measurement light in the main interferometer. The present invention also provides a Fourier transform infrared spectrophotometer that can also input a laser beam for obtaining a signal of the position of a moving mirror. The present invention will be explained below with reference to Examples.

第2図は本発明の一実施例を示す。BSは半透明鏡、M
fは固定鏡、Mmは移動鏡で、これら三者によシ干渉計
が構成されている。Mdはとの干渉計の出射光を試料室
SGに導く鏡である。Slは測定用の赤外線光源でコリ
メータ鏡CMKよシ反射されて平行光束となシ半透明鏡
BSに入射せしめられる。S2はレーザー光源、83は
白色光光源で、E12.83は図の紙面に対し上下に配
置されており、白色光光源S3の光はレンズによシ平行
光束Wとなる。この光束W及びレーザー光源siから発
射される光束は互に平行であシ、かつコリメータ鏡CM
から半透明鏡BBに入射する測定用赤外光光束と平行に
なるように調整しである。
FIG. 2 shows an embodiment of the invention. BS is a semi-transparent mirror, M
f is a fixed mirror, Mm is a movable mirror, and these three components constitute an interferometer. Md is a mirror that guides the emitted light from the interferometer to the sample chamber SG. Sl is an infrared light source for measurement, and is reflected off the collimator mirror CMK to form a parallel beam of light, which is made incident on the semi-transparent mirror BS. S2 is a laser light source, 83 is a white light source, and E12.83 are arranged above and below the plane of the drawing, and the light from the white light source S3 becomes a parallel light beam W through the lens. This luminous flux W and the luminous flux emitted from the laser light source si are parallel to each other, and the collimator mirror CM
It is adjusted so that it is parallel to the measuring infrared light flux that enters the semi-transparent mirror BB.

レーザー光[82,から発射された光束は第3図に示す
ようにコリメータ鏡CMの中心に設けた透孔h1を通過
して半透明鏡B8の中央部に入射せしめられる。白色光
光束Wは第3図に示すようにコを通り、コリメータ鏡C
Mよりも図の紙面方向の高さが高く作っである半透明鏡
BSの上縁部付近に入射する。半透明鏡BSのこの部分
は白色光に対し半透明であるように作っである。上述し
た構成によって3種の光束が互に平行に半透明鏡BSに
入射し、一部反射一部透過してて夫々独立に干渉し干渉
計から出射する。これらの出射光のうち白色光はコリメ
ータ鏡CMと同様半透明鏡BSや固定鏡Mf、移動鏡M
mよりも低く作られている鏡Mdの上を越えて白色光用
光検出器D2に入射する。同様干渉計から出射するレー
ザー光の光束は鏡Mdの中央の透孔h2を通過して光検
出器D3に入射せしめられる。測定用赤外光は鏡M(l
で反射され試料室SCを経て光検出器D1に入射せしめ
られる。鏡Mdは鏡面を前後させないで鏡面と同一平面
内で鏡面方向にスライドさせることができ、透孔h2を
レーザー光束から外せるようになっている。透孔h2を
レーザー光束から外すと干渉計を出射したレーザー光は
その方向を変える上述した構成で移動鏡Mmの中心位置
を検出するには白色光光源S\を点灯し移動鏡を動かし
て光検出器D2の出力が最大になる位置を検出すればよ
い。半透明鏡BS以後測定用光検出器に至る光学系の光
学素子の位置調整を行う場合は、鏡M路を通って光検出
器D1に至シ、レーザーにHe−Neレーザーを用いる
とレーザー光が可視であるから、光学素子の位置調整が
大へんやシ易くなる。測定時に移動鏡Mmの位置の信号
を得るときは鏡Mdの中央の透孔h2がレーザー光線の
光路内に来るように鏡Mdをスライドさせ、干渉計から
出射したレーザー光を光検出器D3に入射させ、レーザ
ー光の干渉計における干渉によってD3の出力の周期的
な変化によって移動鏡の移動量に対する目盛信号が得ら
れる。
As shown in FIG. 3, the luminous flux emitted from the laser beam [82, passes through the through hole h1 provided at the center of the collimator mirror CM and is made to enter the center of the semi-transparent mirror B8. As shown in Fig. 3, the white light flux W passes through the collimator mirror C.
The light is incident near the upper edge of the semitransparent mirror BS, which is made higher than M in the plane of the drawing. This part of the semi-transparent mirror BS is made to be semi-transparent to white light. With the above-described configuration, three kinds of light beams are incident on the semi-transparent mirror BS in parallel with each other, are partially reflected and partially transmitted, interfere independently with each other, and exit from the interferometer. Among these emitted lights, white light is transmitted through semi-transparent mirror BS, fixed mirror Mf, and movable mirror M as well as collimator mirror CM.
The light passes over the mirror Md, which is made lower than m, and enters the white light photodetector D2. Similarly, the beam of laser light emitted from the interferometer passes through the through hole h2 at the center of the mirror Md and is made to enter the photodetector D3. The infrared light for measurement is mirror M(l
The light is reflected by the sample chamber SC and is incident on the photodetector D1. The mirror Md can be slid in the mirror direction within the same plane as the mirror surface without moving the mirror surface back and forth, and the through hole h2 can be removed from the laser beam. When the through hole h2 is removed from the laser beam, the direction of the laser beam emitted from the interferometer changes.In order to detect the center position of the movable mirror Mm with the above-described configuration, the white light source S\ is turned on and the movable mirror is moved. It is sufficient to detect the position where the output of the detector D2 is maximum. When adjusting the position of the optical elements of the optical system from the semi-transparent mirror BS to the measurement photodetector, the laser beam is transmitted through the mirror M path to the photodetector D1. is visible, making it much easier to adjust the position of the optical element. To obtain a signal of the position of the movable mirror Mm during measurement, slide the mirror Md so that the through hole h2 at the center of the mirror Md is within the optical path of the laser beam, and the laser beam emitted from the interferometer is incident on the photodetector D3. Then, a scale signal corresponding to the amount of movement of the movable mirror is obtained by periodic changes in the output of D3 due to the interference of laser light in the interferometer.

本発明フーリエ変換赤外分光光度計は上述したような構
成で第2#第3の干渉計がないから構造的にも調整の面
でも大へん簡単になシ、干渉計の半透明鏡以後試料室を
出るまでの光学系の調整に可視光が利用できるので、こ
の調整も容易になる。
The Fourier transform infrared spectrophotometer of the present invention has the above-mentioned configuration and does not have the second and third interferometers, so it is very simple in terms of structure and adjustment. Visible light can be used to adjust the optical system before leaving the room, making this adjustment easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来例の平面図、第1図Bは同要部拡大図、
第2図は本発明の一実施例装置の平面図、第3図は上記
実施例におけるコリメータ鏡の斜視図である。 BS・・・半透明鏡、Mf・・・固定鏡、Mm・・・移
動鏡、SC・・・試料室、Sl・・・測定用赤外線光源
、S2・・・白色光光源、S3・・・レーザー光源、D
I、  D2゜D3・・・光検出器。
Figure 1A is a plan view of the conventional example, Figure 1B is an enlarged view of the main parts,
FIG. 2 is a plan view of an apparatus according to an embodiment of the present invention, and FIG. 3 is a perspective view of a collimator mirror in the above embodiment. BS...Semi-transparent mirror, Mf...Fixed mirror, Mm...Moving mirror, SC...Sample chamber, Sl...Infrared light source for measurement, S2...White light source, S3... Laser light source, D
I, D2゜D3...photodetector.

Claims (1)

【特許請求の範囲】[Claims] 同一の干渉計に測定用赤外線光束と平行にレーザー光束
と白色光光束とを入射させるようにし、かつレーザー光
束は測定用光束の中心部に位置し、白色光光束は測定用
光束の外縁部に位置するようにし、上記干渉計の出射光
の光路内に鏡面と平行にスライド可能に鏡を挿入して干
渉計出射光を試料室に向けて反射させるようにすると共
に、同鏡の中央に透光部を設け、測定時にはレーザー光
束が上記透光部を透過して同鏡の背後に設けられたレー
ザー光束用光検出器に入射するようにし、干渉計以後の
光学系を調整づるため同鏡をスライドさせたもう一つの
位置ではレーザー光束が同鏡により反射されて測定用光
束と平行して試料室に入射せしめられるようにし、白色
光光束は上記鏡の位置に関係雇°<同鏡の外縁を通って
直進し白色光光束用光検出器に入射するようにして、レ
ーザー光束用光検出器によって干渉計の移動鏡の位置の
信号を得、白色光光束用光検出器の出力によって上記移
動鏡の中心位置を検出する信号を得るようにしたことを
特徴とするフーリエ変換型赤外分光光度計。
The laser beam and the white light beam are made to enter the same interferometer in parallel with the measurement infrared beam, and the laser beam is located at the center of the measurement beam, and the white light beam is located at the outer edge of the measurement beam. A mirror is slidably inserted parallel to the mirror surface into the optical path of the light emitted from the interferometer to reflect the light emitted from the interferometer toward the sample chamber. A light part is provided so that during measurement, the laser beam passes through the transparent part and enters a photodetector for the laser beam installed behind the mirror, and the same mirror is used to adjust the optical system after the interferometer. At the other position where the mirror is slid, the laser beam is reflected by the same mirror and enters the sample chamber in parallel with the measurement beam, and the white light beam is positioned relative to the position of the mirror. The laser beam passes straight through the outer edge and enters the white light beam photodetector, and the laser beam photodetector obtains a signal indicating the position of the movable mirror of the interferometer.The white light beam photodetector outputs the above signal. A Fourier transform infrared spectrophotometer characterized by obtaining a signal for detecting the center position of a movable mirror.
JP12102181A 1981-07-31 1981-07-31 Fourier converting type infrared spectrophotometer Granted JPS5821527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102181A JPS5821527A (en) 1981-07-31 1981-07-31 Fourier converting type infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102181A JPS5821527A (en) 1981-07-31 1981-07-31 Fourier converting type infrared spectrophotometer

Publications (2)

Publication Number Publication Date
JPS5821527A true JPS5821527A (en) 1983-02-08
JPH0327854B2 JPH0327854B2 (en) 1991-04-17

Family

ID=14800840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102181A Granted JPS5821527A (en) 1981-07-31 1981-07-31 Fourier converting type infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPS5821527A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100721A (en) * 1981-12-11 1983-06-15 Kiyomi Sakai Fourier conversion type infrared spectrophotometer
JPS59164926A (en) * 1983-03-04 1984-09-18 ニコレット・インストルメント・コ−ポレ−ション Interference spectrometer
JPS6059126U (en) * 1983-09-29 1985-04-24 日本分光工業株式会社 Fourier transform infrared spectrophotometer
JPS61500509A (en) * 1983-11-28 1986-03-20 マイダク・コ−ポレ−ション Apparatus and method for photoluminescence analysis
JPS6161432U (en) * 1984-09-28 1986-04-25
JPH02102425A (en) * 1988-10-11 1990-04-16 Advantest Corp Optical path difference zero point detecting device and optical interference signal averaging processor using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100721A (en) * 1981-12-11 1983-06-15 Kiyomi Sakai Fourier conversion type infrared spectrophotometer
JPH037051B2 (en) * 1981-12-11 1991-01-31 Kyomi Sakai
JPS59164926A (en) * 1983-03-04 1984-09-18 ニコレット・インストルメント・コ−ポレ−ション Interference spectrometer
JPS6059126U (en) * 1983-09-29 1985-04-24 日本分光工業株式会社 Fourier transform infrared spectrophotometer
JPS61500509A (en) * 1983-11-28 1986-03-20 マイダク・コ−ポレ−ション Apparatus and method for photoluminescence analysis
JPS6161432U (en) * 1984-09-28 1986-04-25
JPH02102425A (en) * 1988-10-11 1990-04-16 Advantest Corp Optical path difference zero point detecting device and optical interference signal averaging processor using same

Also Published As

Publication number Publication date
JPH0327854B2 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
US4684255A (en) Interferometric optical path difference scanners and FT spectrophotometers incorporating them
GB2189623A (en) Remote reading spectrophotometer
JPS628729B2 (en)
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
KR20000016177A (en) Interferometer for measuring thickness variations of semiconductor wafers
GB2077421A (en) Displacement sensing
US4740082A (en) Spectrophotometer
US4380394A (en) Fiber optic interferometer
US4747688A (en) Fiber optic coherence meter
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
US4345838A (en) Apparatus for spectrometer alignment
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPS58727A (en) Fourier transform spectrum device
JPH10104084A (en) Multicolor thermometer
SU813204A1 (en) Device for measuring absolute reflection factor
EP0135761B1 (en) Spectrophotometer
SU823989A1 (en) Device for measuring absolute reflection and transmission factors
JPH02167411A (en) Method for measuring distance between parallel planes
SU575917A1 (en) Interference method of measuring phase distribution across laser bundle section
JPS63218828A (en) Colorimetric apparatus
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection
JP3385670B2 (en) Infrared spectrophotometer
JP2642767B2 (en) A method for measuring the spectral responsivity of infrared detectors using white interference light
JPS626482Y2 (en)