JP3385670B2 - Infrared spectrophotometer - Google Patents
Infrared spectrophotometerInfo
- Publication number
- JP3385670B2 JP3385670B2 JP25515093A JP25515093A JP3385670B2 JP 3385670 B2 JP3385670 B2 JP 3385670B2 JP 25515093 A JP25515093 A JP 25515093A JP 25515093 A JP25515093 A JP 25515093A JP 3385670 B2 JP3385670 B2 JP 3385670B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- optical fiber
- light
- infrared spectrophotometer
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は試料の赤外分光分析を行
なう赤外分光光度計に関し、特に赤外光源、分光手段及
び赤外検出器を備えた赤外分光光度計本体と、赤外分光
光度計本体からの赤外測定光をこの赤外分光光度計本体
の外部にある試料へ照射し、その試料からの反射光又は
透過光を赤外分光光度計本体へ導く光ファイバプローブ
とを備えた赤外分光光度計に関するものである。
【0002】
【従来の技術】生産ラインやプラント内で赤外分光光度
計を使用しようとすると、振動や高湿、設置スペースな
どの関係から精密光学機器である赤外分光光度計本体を
生産ラインやプラントなどの現場に設置できない場合が
ある。そのような測定では、赤外分光光度計本体を測定
場所から離れた位置に設置したりシールドケースに入れ
るなどし、測定場所の試料には赤外分光光度計本体から
光ファイバプローブで測定光を導いて試料に照射し、試
料からの反射光や透過光を再び赤外光ファイバプローブ
で赤外分光光度計本体に導いて測定を行なうようにして
いる。光ファイバプローブは赤外線用光ファイバーのみ
を含んでおり、通常、赤外線以外の光は透過しない仕様
になっている。
【0003】
【発明が解決しようとする課題】光ファイバプローブを
経て試料から戻ってきた光をミラーなどの光学素子を用
いて検出器へ導くような構成にした場合、光学系を調整
するための光路追跡が不可欠である。しかし、光ファイ
バプローブを設けた赤外分光光度計ではその光ファイバ
プローブが赤外線のみを通すようになっているので、光
ファイバプローブを透過した後の光路を追跡するには光
路を特定するための特別な光学装置を用いる必要があ
る。本発明は光ファイバプローブを備えた赤外分光光度
計において光学系の調整を容易にすることを目的とする
ものである。
【0004】
【課題を解決するための手段】本発明は、赤外光源、分
光手段及び赤外検出器を備えた赤外分光光度計本体と、
赤外分光光度計本体からの赤外測定光を赤外分光光度計
本体の外部にある試料へ照射し、その試料からの反射光
又は透過光を赤外分光光度計本体へ導く光ファイバプロ
ーブとを備えた赤外分光光度計において、赤外分光光度
計本体内には可視光源及びその可視光源からの光を光フ
ァイバプローブへ導く光学系を備え、光ファイバプロー
ブは赤外線を透過させる光ファイバーと可視光を透過さ
せる光ファイバとを束ねたものとした。
【0005】
【作用】本発明で用いられる光ファイバプローブでは赤
外線を通す光ファイバーの他に可視光を透過する光ファ
イバーも一緒に束ねられているので、可視光により光フ
ァイバプローブを透過した後の光学系の光軸調整を行な
うことができる。
【0006】
【実施例】図1は一実施例を表わす。干渉計室2内には
ビームスプリッタ4、固定鏡6及び移動鏡8からなるマ
イケルソン型干渉計と、赤外光源10が設けられてお
り、赤外光源10からの赤外光10aが集光鏡12,1
3を経て干渉計に導入される。赤外光10aは赤外分光
データを収集するためのものである。一方、そのマイケ
ルソン型干渉計でデータ収集の起動や移動鏡8の摺動速
度を安定化するために用いられるコントロール干渉計も
同時に構成するために、可視光源として例えばHe−N
e(ヘリウム−ネオン)レーザ14が干渉計室2の外部
に設けられ、レーザ14からの可視光(レーザ光)14
aがミラー15によってこの干渉計に導入されている。
赤外光10aと可視光14aがビームスプリッタ4に入
射して分割され、固定鏡6と移動鏡8でそれぞれ反射し
た光がビームスプリッタ4に戻って会合する。
【0007】赤外干渉光と可視干渉光は同じ光軸上を進
み、反射鏡16によって光ファイバプローブ室18へ導
かれる。ビームスプリッタ4と反射鏡16の間の光軸上
には可視干渉光の一部を取りだし、可視用の検出系に導
いて検出し、赤外光によるデータ収集の起動や移動鏡の
摺動速度安定化に用いるための可視検出系が設けられて
いるが、可視光の検出系の図示は省略されている。
【0008】光ファイバプローブ室18には光ファイバ
プローブ20の光ファイバ束20aと20bの基端部が
接続されており、ミラー16で導かれた赤外光と可視光
が平面鏡22,24を経て楕円面鏡26で1点に集光さ
れて光ファイバ束20aに導かれる。一方、光ファイバ
束20bを戻ってきた赤外光と可視光は楕円面鏡28に
より集光され、平面鏡30,32を経て赤外検出部33
へ導かれる。赤外検出部33には集光鏡34と、集光鏡
34で集められた赤外光を検出する赤外検出器36が配
置されている。
【0009】光ファイバプローブ20の先端部には赤外
分光光度計本体の外部にある試料40に赤外光と可視光
を照射し、試料40からの透過光や散乱光を受光するた
めに、光ファイバ束20aの出射端42からの光を試料
40へ導く楕円面鏡44と、試料40を透過又は散乱し
てきた光を集光して光ファイバ束20bの入射端48へ
導く楕円面鏡46が配置されている。試料40はシート
状試料など、通常の赤外分光光度計の試料室には設置で
きない形状の試料や、生産ラインやプラントでの試料な
どである。赤外検出部33の赤外検出器36による検出
信号は増幅器50で増幅されてデータ処理部52へ取り
込まれる。データ処理部52は測定結果の計算や表示を
行なう。
【0010】光ファイバプローブ20の光ファイバ束2
0a,20bの一例を図2に示す。軸心部に赤外用の太
径の第1の光ファイバ54が1本配置され、その周囲に
赤外用の細径の第2の光ファイバ56の複数本と可視光
用の細径の光ファイバ58の複数本が配置され、外皮6
0により被覆されている。赤外用の光ファイバ54と5
6は互いに低損失波長域の異なる光ファイバであり、全
体として透過波長範囲を広げるためにこのように複数種
類の赤外用光ファイバを組み合わせて束ねている。測定
が可能な低損失波長域は光ファイバ材料によって定まっ
ており、例えば代表的組成がAs+SであるAs−S系
カルコゲン化物ガラスの低損失波長域は0.92〜6.
6μmにあり、代表的組成がAs+Ge+SeであるA
S−Ge−Se系カルコゲン化物ガラスの低損失波長域
は1.3〜9.5μmにあり、フッ化物ガラスの低損失
波長域は0.4〜4.3μmにある。これらの2種類又
は3種類以上の光ファイバを束ねて1つの光ファイバ束
とした場合には、0.4〜10μmにわたる広い波長域
で測定を行なうことができるようになる。
【0011】可視光用の光ファイバ58としては例えば
石英ファイバが用いられる。赤外用光ファイバと可視光
用光ファイバの束ね方は図2に示されるものに限らず、
多数の光ファイバ素線を種類ごとの片寄りがないように
均質に分散させて束ねてもよい。
【0012】
【発明の効果】本発明では光ファイバプローブの光ファ
イバ束には赤外用の光ファイバの他に可視光用の光ファ
イバも含めて束ね、光源にも赤外光源と可視光源とを備
えて測定光束に赤外光と可視光をともに存在させたの
で、目視によって光学系を調整することが容易になる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared spectrophotometer for performing infrared spectroscopic analysis of a sample, and more particularly to an infrared spectrophotometer provided with an infrared light source, a spectroscopic means, and an infrared detector. The infrared spectrophotometer main body and the infrared measurement light from the infrared spectrophotometer main body are irradiated to a sample outside the infrared spectrophotometer main body, and the reflected light or transmitted light from the sample is subjected to infrared spectroscopy. The present invention relates to an infrared spectrophotometer including an optical fiber probe leading to a photometer main body. 2. Description of the Related Art When an infrared spectrophotometer is used in a production line or a plant, an infrared spectrophotometer, which is a precision optical instrument, is mounted on a production line due to vibration, high humidity, and installation space. May not be able to be installed at the site such as a plant or a plant. In such a measurement, the infrared spectrophotometer body is placed at a position distant from the measurement location or placed in a shield case, and the measurement light is applied to the sample at the measurement location from the infrared spectrophotometer body using an optical fiber probe. The sample is guided to irradiate the sample, and the reflected light and transmitted light from the sample are guided again to the infrared spectrophotometer main body by the infrared fiber probe to perform the measurement. The optical fiber probe includes only an optical fiber for infrared rays, and is normally designed so that light other than infrared rays is not transmitted. [0003] In a configuration in which light returned from a sample via an optical fiber probe is guided to a detector using an optical element such as a mirror, an optical system for adjusting the optical system is used. Optical path tracking is essential. However, in an infrared spectrophotometer equipped with an optical fiber probe, the optical fiber probe only allows infrared light to pass therethrough, so tracking the optical path after passing through the optical fiber probe requires identifying the optical path. Special optics must be used. An object of the present invention is to facilitate adjustment of an optical system in an infrared spectrophotometer provided with an optical fiber probe. [0004] The present invention provides an infrared spectrophotometer main body provided with an infrared light source, a spectroscopic means, and an infrared detector.
An optical fiber probe for irradiating an infrared measurement light from the infrared spectrophotometer main body to a sample outside the infrared spectrophotometer main body and guiding reflected light or transmitted light from the sample to the infrared spectrophotometer main body; In the infrared spectrophotometer equipped with the infrared spectrophotometer, a main body of the infrared spectrophotometer is provided with a visible light source and an optical system for guiding light from the visible light source to an optical fiber probe. An optical fiber that transmits light was bundled. Since the optical fiber probe used in the present invention is bundled together with an optical fiber transmitting visible light in addition to an optical fiber transmitting infrared light, the optical system after transmitting the optical fiber probe with visible light is used. Can be adjusted. FIG. 1 shows an embodiment. A Michelson-type interferometer including a beam splitter 4, a fixed mirror 6, and a movable mirror 8 and an infrared light source 10 are provided in the interferometer room 2, and infrared light 10a from the infrared light source 10 is collected. Mirror 12,1
3 and introduced into the interferometer. The infrared light 10a is for collecting infrared spectral data. On the other hand, a control interferometer used for starting data collection and stabilizing the sliding speed of the movable mirror 8 by the Michelson interferometer is also configured at the same time.
An e (helium-neon) laser 14 is provided outside the interferometer chamber 2 and emits visible light (laser light) 14 from the laser 14.
a is introduced into this interferometer by a mirror 15.
The infrared light 10a and the visible light 14a are incident on the beam splitter 4 and split, and the lights reflected by the fixed mirror 6 and the movable mirror 8, respectively, return to the beam splitter 4 and associate. [0007] The infrared interference light and the visible interference light travel on the same optical axis, and are guided to the optical fiber probe chamber 18 by the reflecting mirror 16. A part of the visible interference light is taken out on the optical axis between the beam splitter 4 and the reflecting mirror 16 and guided to a detection system for visible light to detect and start data collection by infrared light and the sliding speed of the moving mirror. A visible light detection system for stabilization is provided, but the visible light detection system is not shown. The base ends of the optical fiber bundles 20a and 20b of the optical fiber probe 20 are connected to the optical fiber probe chamber 18, and the infrared light and the visible light guided by the mirror 16 pass through the plane mirrors 22 and 24. The light is converged to one point by the elliptical mirror 26 and guided to the optical fiber bundle 20a. On the other hand, the infrared light and the visible light returning from the optical fiber bundle 20b are condensed by the ellipsoidal mirror 28, and pass through the plane mirrors 30 and 32 to the infrared detector 33.
Led to. The infrared detector 33 includes a condenser mirror 34 and an infrared detector 36 that detects infrared light collected by the condenser mirror 34. The distal end of the optical fiber probe 20 irradiates a sample 40 outside the infrared spectrophotometer main body with infrared light and visible light to receive transmitted light and scattered light from the sample 40. An elliptical mirror 44 for guiding light from the output end 42 of the optical fiber bundle 20a to the sample 40, and an elliptical mirror 46 for condensing light transmitted or scattered through the sample 40 and guiding the light to the incident end 48 of the optical fiber bundle 20b. Is arranged. The sample 40 is a sample having a shape that cannot be installed in a sample chamber of an ordinary infrared spectrophotometer, such as a sheet sample, or a sample in a production line or a plant. The signal detected by the infrared detector 36 of the infrared detector 33 is amplified by the amplifier 50 and taken into the data processor 52. The data processing unit 52 calculates and displays the measurement results. The optical fiber bundle 2 of the optical fiber probe 20
FIG. 2 shows an example of 0a and 20b. One large-diameter infrared first optical fiber 54 is disposed at the axis, and a plurality of small-diameter second optical fibers 56 for infrared light and a small-diameter optical fiber for visible light are arranged around the first optical fiber 54. 58 are arranged and the outer skin 6
0. Optical fibers 54 and 5 for infrared
Numerals 6 denote optical fibers having different low-loss wavelength ranges, and a plurality of types of infrared optical fibers are combined and bundled as described above in order to broaden the transmission wavelength range as a whole. The low-loss wavelength range that can be measured is determined by the optical fiber material. For example, the low-loss wavelength range of an As-S-based chalcogenide glass having a typical composition of As + S is 0.92-6.
A with a typical composition of As + Ge + Se at 6 μm
The low-loss wavelength range of the S-Ge-Se-based chalcogenide glass is 1.3 to 9.5 μm, and the low-loss wavelength range of the fluoride glass is 0.4 to 4.3 μm. When two or three or more types of optical fibers are bundled to form one optical fiber bundle, measurement can be performed in a wide wavelength range of 0.4 to 10 μm. As the optical fiber 58 for visible light, for example, a quartz fiber is used. How to bundle the optical fiber for infrared light and the optical fiber for visible light is not limited to the one shown in FIG.
A large number of optical fiber wires may be uniformly dispersed and bundled so that there is no deviation for each type. According to the present invention, an optical fiber bundle of an optical fiber probe is bundled with an optical fiber for visible light in addition to an optical fiber for infrared light, and the light source includes an infrared light source and a visible light source. Since both infrared light and visible light are present in the measurement light beam, it is easy to adjust the optical system visually.
【図面の簡単な説明】
【図1】一実施例を示す平面図である。
【図2】光ファイバプローブのファイバ束の一例を示す
断面図である。
【符号の説明】
2 干渉計室
4 ビームスプリッタ
6 固定鏡
8 移動鏡
10 赤外光源
14 He−Neレーザ
18 光ファイバプローブ室
20 光ファイバプローブ
20a,20b 光ファイバ束
54,56 赤外用光ファイバ
58 可視光用光ファイバBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing one embodiment. FIG. 2 is a sectional view showing an example of a fiber bundle of the optical fiber probe. [Description of Signs] 2 Interferometer room 4 Beam splitter 6 Fixed mirror 8 Moving mirror 10 Infrared light source 14 He-Ne laser 18 Optical fiber probe room 20 Optical fiber probes 20a, 20b Optical fiber bundle 54, 56 Infrared optical fiber 58 Optical fiber for visible light
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/62 G01J 3/00 - 3/52 ──────────────────────────────────────────────────の Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/62 G01J 3/00-3/52
Claims (1)
えた赤外分光光度計本体と、赤外分光光度計本体からの
赤外測定光を赤外分光光度計本体の外部にある試料へ照
射し、その試料からの反射光又は透過光を赤外分光光度
計本体へ導く光ファイバプローブとを備えた赤外分光光
度計において、 赤外分光光度計本体内には可視光源及びその可視光源か
らの光を前記光ファイバプローブへ導く光学系を備え、 前記光ファイバプローブは赤外線を透過させる光ファイ
バーと可視光を透過させる光ファイバとが束ねられたも
のであることを特徴とする赤外分光光度計。(57) [Claims] [Claim 1] An infrared spectrophotometer main body equipped with an infrared light source, a spectroscopic means, and an infrared detector, and an infrared measurement light from the infrared spectrophotometer main body is red. An infrared spectrophotometer equipped with an optical fiber probe that irradiates a sample outside the external spectrophotometer main body and guides reflected light or transmitted light from the sample to the infrared spectrophotometer main body. The meter body includes a visible light source and an optical system for guiding light from the visible light source to the optical fiber probe, wherein the optical fiber probe is a bundle of an optical fiber that transmits infrared light and an optical fiber that transmits visible light. An infrared spectrophotometer characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25515093A JP3385670B2 (en) | 1993-09-17 | 1993-09-17 | Infrared spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25515093A JP3385670B2 (en) | 1993-09-17 | 1993-09-17 | Infrared spectrophotometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0783826A JPH0783826A (en) | 1995-03-31 |
JP3385670B2 true JP3385670B2 (en) | 2003-03-10 |
Family
ID=17274776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25515093A Expired - Fee Related JP3385670B2 (en) | 1993-09-17 | 1993-09-17 | Infrared spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385670B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19918956A1 (en) * | 1999-04-27 | 2000-11-02 | Studiengesellschaft Kohle Mbh | Process for the automated investigation of catalytic and spectroscopic properties of the components of combinatorial libraries |
-
1993
- 1993-09-17 JP JP25515093A patent/JP3385670B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0783826A (en) | 1995-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5767976A (en) | Laser diode gas sensor | |
EP1063512B1 (en) | Method and apparatus for particle assessment using multiple scanning beam reflectance | |
DK2798321T3 (en) | SPECTROSCOPIC INSTRUMENT AND PROCEDURE FOR SPECTRAL ANALYSIS | |
US4061427A (en) | Laser extensometer | |
JPS6049847B2 (en) | Method and spectrometer for measuring light intensity | |
JP2001141563A (en) | Spectrometry, its device, temperature measuring device, and film pressure measurement device | |
CN107782697B (en) | Method and device for measuring refractive index of broadband confocal infrared lens element | |
US20140347659A1 (en) | Stationary Waveguide Spectrum Analyser | |
US5406377A (en) | Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer | |
JP3385670B2 (en) | Infrared spectrophotometer | |
JPS6186621A (en) | Method and apparatus for simultaneously measuring emissivity and temperature | |
JP2003075764A (en) | Apparatus for determining light power level, microscope, and method for microscopy | |
NL7905871A (en) | Spectrophotometer with two separate light paths - has flat and concave mirrors on either side of diffraction grating | |
JPS5821527A (en) | Fourier converting type infrared spectrophotometer | |
JPH0718797B2 (en) | Local stress distribution measuring device | |
JPH0510872A (en) | Micro infrared rays atr measuring device | |
JPH10104084A (en) | Multicolor thermometer | |
JP2627600B2 (en) | Laser beam propagation characteristics measurement device | |
JPH05302825A (en) | Alignment method and its device | |
RU2178875C2 (en) | Multi-function absorption spectrometer | |
CN118090663A (en) | Near infrared spectrum and Raman spectrum synchronous measuring device | |
JP2001242012A (en) | Interferometer and spectrum analyzer | |
JPS626482Y2 (en) | ||
SU821912A1 (en) | Contact-free method of determining optical length between two semitransparant parallel surfaces | |
CN117805082A (en) | Intensity calibration of multichannel raman systems using standard reference materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |