JPH02150020A - Semiconductor element and manufacture thereof - Google Patents

Semiconductor element and manufacture thereof

Info

Publication number
JPH02150020A
JPH02150020A JP30496188A JP30496188A JPH02150020A JP H02150020 A JPH02150020 A JP H02150020A JP 30496188 A JP30496188 A JP 30496188A JP 30496188 A JP30496188 A JP 30496188A JP H02150020 A JPH02150020 A JP H02150020A
Authority
JP
Japan
Prior art keywords
silicon substrate
layer
gaas crystal
semiconductor element
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30496188A
Other languages
Japanese (ja)
Other versions
JP2786457B2 (en
Inventor
Yoshifumi Bito
尾藤 喜文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63304961A priority Critical patent/JP2786457B2/en
Publication of JPH02150020A publication Critical patent/JPH02150020A/en
Application granted granted Critical
Publication of JP2786457B2 publication Critical patent/JP2786457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit an adverse phenomenon such as the warpage of a silicon substrate due to thermal stress as much as possible by limiting the sum of the length of two adjacent edges to a specific value in the size of a III-V compound semiconductor. CONSTITUTION:In a semiconductor element 31, a coating layer 33, in which a large number of through-holes 32 are formed partially onto a rectangular plate-shaped silicon substrate 3 and which is composed of silicon nitride SiNx, is shaped. Length L1 in the left and the right direction and length L2 in the vertical direction of the through-hole 32 are equalized respectively, and brought to L1=L2=70mum. GaAs crystal layers 26 are shaped onto the silicon substrate 3 facing the through-holes 32. The size of the GaAs crystal layer 26 formed in this manner is regulated so that the sum of the length of two adjacent edges in a plan view is brought to approximately 150mum or more. Thermal stress based on the difference of thermal expansion coefficients among said GaAs crystal layers 26 and the silicon substrate 3 is brought to magnitude regulated by each occupying area of the GaAs crystal layers 26, and an adverse effect on the silicon substrate 3 is inhibited as much as possible, thus preventing the warpage of the silicon substrate 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリコン基板上に■−■族化合物半導体層を
形成して成るヘテロ構造の半導体素子およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heterostructure semiconductor element formed by forming a ■-■ group compound semiconductor layer on a silicon substrate, and a method for manufacturing the same.

従来の技術 シリコン基板上にG Ei A SやA l! y G
 a +−y ASなどの■−■族化き物事導体や混晶
半導体をエピタキシャル成長させたヘテロ構造の半導体
素子は高速PET(電界効果トランジスタ)素子や発光
素子および受光素子として広く用いられている。
Conventional technology G Ei A S and A l! on a silicon substrate. y G
Heterostructure semiconductor devices in which a ■-■ group chemical conductor such as a + -y AS or a mixed crystal semiconductor are epitaxially grown are widely used as high-speed PET (field effect transistor) devices, light-emitting devices, and light-receiving devices.

このようなヘテロ構造半導体素子を形成するにあたって
、従来では、シリコン基板上にまずアモルファス状態の
GaAs層を形成し、その後、加熱することによってG
 a A s結晶層を形成する技術が用いられている。
Conventionally, in forming such a heterostructure semiconductor device, an amorphous GaAs layer is first formed on a silicon substrate, and then G is converted by heating.
A technique is used to form an a As crystal layer.

このような第1の従来技術では、両者の格子定数の相違
に基づき、両者の界面で転位が発生してしまうことにな
る。また、両者の熱膨張率の相違によって、シリコン基
板に反りを生じてしまう、したがって第2の従来技術と
して、シリコン基板と化き物事導体層との界面に歪超格
子層を導入する技術が提案されているが、このような歪
超格子層を導入すると、シリコン基板上の七会物半導体
層が厚くなってしまい、クラックを生じてしまう場きが
多い。
In such a first conventional technique, dislocations occur at the interface between the two due to the difference in lattice constant between the two. Additionally, the silicon substrate warps due to the difference in thermal expansion coefficient between the two.Therefore, a second conventional technique has been proposed that introduces a strained superlattice layer at the interface between the silicon substrate and the monster conductor layer. However, when such a strained superlattice layer is introduced, the heptane semiconductor layer on the silicon substrate becomes thicker, which often causes cracks.

また化作物半導体層が形成されたシリコン基板の裏面に
、シリコンよりも熱膨張係数の低い被膜を形成する第3
の従来例が考えられるが、このような第3の従来例では
、シリコン基板と化き物事導体層との熱膨張率の相違に
基づくシリコン基板の反りは解消されるけれども、両者
の熱膨張係数の相違を解消するものではなく、これらの
界面に熱応力が発生してしまい、転位が発生してしまう
ことになる。このような転位の増大はエッチピッチ密度
(EPD)の値をむやみに増大してしまう。
In addition, a third coating is formed on the back surface of the silicon substrate on which the chemical semiconductor layer is formed, and the coefficient of thermal expansion is lower than that of silicon.
However, in such a third conventional example, although the warping of the silicon substrate due to the difference in thermal expansion coefficient between the silicon substrate and the monster conductor layer is eliminated, the thermal expansion coefficient of both This does not eliminate the difference between the two, but thermal stress is generated at these interfaces, resulting in the generation of dislocations. Such an increase in dislocations unnecessarily increases the value of etch pitch density (EPD).

発明が解決しようとする課題 本発明の目的は、上述の技術的課題を解消し、熱膨張係
数の相違によってシリコン基板が反るなどの現象を可及
的に抑制するとともに、前記EPDが格段に改善された
半導体素子およびその製造方法を提供することである。
Problems to be Solved by the Invention An object of the present invention is to solve the above-mentioned technical problems, to suppress as much as possible phenomena such as warping of silicon substrates due to differences in thermal expansion coefficients, and to significantly improve the EPD. An object of the present invention is to provide an improved semiconductor device and a method for manufacturing the same.

課題を解決するための手段 本発明は、シリコン基板と、 シリコン基板上に形成され、隣接する2つの縁辺の長さ
の和が約150μrn以下の大きさの矩形状の透孔を有
する電気絶縁性材料から成る被覆層と、 前記透孔に臨むシリコン基板上に形成された■−V族化
6物半導体層とを含むことを特徴とする半導体素子であ
る。
Means for Solving the Problems The present invention comprises a silicon substrate, and an electrically insulating material formed on the silicon substrate and having a rectangular through hole having a size in which the sum of the lengths of two adjacent edges is about 150 μrn or less. A semiconductor element comprising: a covering layer made of a material; and a -V group hexagonal semiconductor layer formed on a silicon substrate facing the through hole.

さらに本発明は、シリコン基板上に隣接する2つの縁辺
の長さの和が約150μrΩ以下の大きさの矩形状の透
孔を有する電気絶縁性材料から成る被覆層を形成し、 前記透孔に臨むシリコン基板上に■−V族化合物半導体
層をエピタキシャル成長させたことを特徴とする半導体
素子の製造方法である。
Further, the present invention provides a method of forming a coating layer made of an electrically insulating material on a silicon substrate, and having a rectangular through hole having a size in which the sum of the lengths of two adjacent edges is about 150 μrΩ or less, and forming the covering layer in the through hole. This is a method for manufacturing a semiconductor device characterized by epitaxially growing a -V group compound semiconductor layer on a facing silicon substrate.

作  用 本発明に従う半導体素子を製造するに当たって、シリコ
ン基板上に隣接する2つの縁辺の長さの和が約150μ
m以下の大きさの矩形状の透孔を有する電気絶縁性材料
からなる被覆層を形成する。
Function: In manufacturing the semiconductor device according to the present invention, the sum of the lengths of two adjacent edges on the silicon substrate is approximately 150 μm.
A covering layer made of an electrically insulating material is formed having rectangular through holes with a size of m or less.

この透孔に臨むシリコン基板上に、■−■族化会物半導
体をエピタキシャル成長させる。
A ■-■ group compound semiconductor is epitaxially grown on the silicon substrate facing this through hole.

このようにして製造された半導体素子は上記■V族化合
物半導体の大きさが前述したように隣接する2つの縁辺
の長さの和が約150μm71以下に制限される。これ
によりシリコンと■−■族化き物事導体とで熱膨張係数
が異なる場合でも、各透孔毎の化き物事導体とシリコン
基板との間の応力の大きさおよび該応力の作用する範囲
は可及的に小さく制限される。これにより熱応力によっ
てシリコン基板が反るなどの現象が可及的に抑制される
とともに、このような熱応力の発生を抑制することによ
り、熱応力に伴う転位も抑制され、半導体素子の結晶性
(EPD)は格段に改善される。
In the semiconductor device thus manufactured, the size of the Group V compound semiconductor is limited to a sum of the lengths of two adjacent edges of approximately 150 μm or less, as described above. As a result, even if the thermal expansion coefficients of silicon and the ■-■ group monster conductor are different, the magnitude of the stress between the monster conductor and the silicon substrate for each through hole and the range in which this stress acts can be determined. limited to as small as possible. This suppresses phenomena such as warping of the silicon substrate due to thermal stress as much as possible, and by suppressing the occurrence of such thermal stress, dislocations associated with thermal stress are also suppressed, improving the crystallinity of semiconductor devices. (EPD) is significantly improved.

実施例 第1図は本発明の一実施例の半導体素子31の断面図で
あり、第2図は半導体素子31の平面図である。これら
の図面を参照して、本実施例の半導体素子31は矩形板
状のシリコン基板3上に局所的に透孔32が多数形成さ
れた、たとえば窒化シリコンSiNxから成る被覆層3
3が形成される。前記透孔32の第2図左右方向の長さ
Llおよび上下方向の長さL2は、たとえばそれぞれ等
しく、 L1=L2=70μrn              
                 −(1)に選ばれ
る。この透孔32に臨むシリコン基板3上にはG a 
A s結晶層26が形成される。このような半導体素子
31は、個々のGεiAs結晶N26を発光ダイオード
(LED)の一部として形成することにより、発光ダイ
オードアレイを構成することができる。
Embodiment FIG. 1 is a sectional view of a semiconductor element 31 according to an embodiment of the present invention, and FIG. 2 is a plan view of the semiconductor element 31. Referring to these drawings, a semiconductor element 31 of this embodiment has a covering layer 3 made of silicon nitride SiNx, for example, in which a large number of through holes 32 are locally formed on a rectangular plate-shaped silicon substrate 3.
3 is formed. The length Ll of the through hole 32 in the horizontal direction in FIG. 2 and the length L2 in the vertical direction are, for example, equal to each other, L1=L2=70 μrn
- (1) is selected. On the silicon substrate 3 facing this through hole 32, Ga
An As crystal layer 26 is formed. Such a semiconductor element 31 can constitute a light emitting diode array by forming each GεiAs crystal N26 as a part of a light emitting diode (LED).

第3図はこの半導体素子31の製造工程を説明する断面
図である0本実施例の半導体素子31は、後述するよう
な構成を有するたとえば有機金属熱分解気相成長法(M
OCVD法)に基づく製造装置によってエピタキシャル
成長層が製造される。
FIG. 3 is a cross-sectional view illustrating the manufacturing process of this semiconductor element 31.
The epitaxial growth layer is manufactured using a manufacturing apparatus based on the OCVD method.

このようなエピタキシャル成長層の製造に先立って、シ
リコン基板3上にシリコンナイトライド膜および酸化シ
リコンSiO□脛から成る被覆層33を第3図(1)図
示のように形成する。被膜層33は、後述するGaAs
結晶層26を形成する際のマスクの機能を果し、さらに
、シリコン基板3の他の置所にモノリシックに形成され
る半導体回路などの保護膜としての機能を果す。
Prior to manufacturing such an epitaxial growth layer, a covering layer 33 consisting of a silicon nitride film and a silicon oxide SiO□ film is formed on the silicon substrate 3 as shown in FIG. 3(1). The coating layer 33 is made of GaAs, which will be described later.
It functions as a mask when forming the crystal layer 26, and further functions as a protective film for semiconductor circuits and the like monolithically formed in other locations on the silicon substrate 3.

その後、被覆層33上にフォトレジスト34を塗布し、
露光した後、フォトレジスト34によるパターンを第3
図(2)に示すように形成する。
After that, a photoresist 34 is applied on the coating layer 33,
After exposure, the pattern formed by the photoresist 34 is
Form as shown in Figure (2).

この後、エツチングを施すことによりフォトレジスト3
4の直下の波7171133は残存し、残余の部分の被
覆層33は除去される。これにより、透孔32を有する
被覆7133が第3図(3)のように形成される。
After this, the photoresist 3 is etched.
The wave 7171133 immediately below 4 remains, and the remaining portion of the covering layer 33 is removed. As a result, a coating 7133 having through holes 32 is formed as shown in FIG. 3(3).

このようなシリコン基板3に対して、後述するようなM
 OCV D装置によってエピタキシャル層を成長させ
、第3121(4)図示のように透孔32部分にG a
 A S結晶8i26が形成される。
For such a silicon substrate 3, M as described later is applied.
An epitaxial layer is grown using an OCVD apparatus, and Ga is formed in the through hole 32 portion as shown in Figure 3121(4)
A S crystal 8i26 is formed.

このように形成されたG a A s結晶層26は、上
記第1式に示されるようにその大きさが、平面視におけ
る隣接する2つの縁辺の長さの和が約150μm以下に
規制される。GaAs結晶N 26をこのような大きさ
に形成することにより、GaAs結晶層26とシリコン
基板3との間の熱膨張率の相違に基づく熱応力は、上記
G a A s結晶層26の個々の占有面積によって規
定される大きさとなり、シリコン基板3に与える影響は
可及的に抑制される。すなわちシリコン基板3の反りな
どが防止される。また熱応力が個々のGaAs結晶層2
6において低減されるため、熱応力に起因する転位の発
生も抑制され、半導体素子31全体の結晶性、すなわち
EPDも格段に改善されることになる。
The size of the GaAs crystal layer 26 formed in this way is regulated to be approximately 150 μm or less, as shown in the first equation above, in which the sum of the lengths of two adjacent edges in plan view is . By forming the GaAs crystal N 26 in such a size, the thermal stress due to the difference in thermal expansion coefficient between the GaAs crystal layer 26 and the silicon substrate 3 can be reduced by each individual of the GaAs crystal layer 26. The size is determined by the occupied area, and the influence on the silicon substrate 3 is suppressed as much as possible. That is, warping of the silicon substrate 3 is prevented. In addition, thermal stress is applied to individual GaAs crystal layers 2.
6, the occurrence of dislocations caused by thermal stress is also suppressed, and the crystallinity, that is, the EPD, of the entire semiconductor element 31 is significantly improved.

第4図は本実施例の半導体素子31と従来例におけるシ
リコン基板上に全面にわたってG a A s結晶層を
形成した従来例の応力の変化を計測した結果を示すグラ
フである。この計測はいわゆるフォトルミ本ツセンス測
定装置によって計測され、波長514.5r+r口帯の
アルゴンレーザ光を用いて計測した。これによれば、ラ
イン11で示される本件実施例の半導体素子31に対す
る計測結果と、ライン12で示される従来例の半導体素
子に対する計測結果とでは、そのピーク値を示す波長λ
1゜λ2との間に差Δεが計測された。
FIG. 4 is a graph showing the results of measuring changes in stress in the semiconductor element 31 of this embodiment and in a conventional example in which a GaAs crystal layer was formed over the entire surface of a silicon substrate. This measurement was carried out using a so-called photoluminescence measuring device, and was performed using an argon laser beam having a wavelength of 514.5r+r. According to this, the measurement result for the semiconductor device 31 of the present embodiment shown by line 11 and the measurement result for the conventional semiconductor device shown by line 12 have a wavelength λ indicating the peak value.
A difference Δε was measured between 1°λ2 and 1°λ2.

この計測結果によれば応力の大きさについて、従来半導
体素子−2、OX 10 ’ d y n / c m
 2本件半導体素子= 1 、4 X 10 ’ d 
y n / c rn ”の結果が得られた。これによ
れば応力は約30%程度にわたって削減されていること
になる。
According to this measurement result, regarding the magnitude of stress, conventional semiconductor device-2, OX 10' d yn / cm
2 semiconductor devices = 1, 4 x 10' d
A result of y n /c rn'' was obtained. According to this, the stress was reduced by about 30%.

第5図は上記G a A s結晶層26を形成するとき
に用いられるMOCVD装置の構成を示す系統図である
。第5図を参照して、MOCVD装置には、たとえば石
英などから形成される反応管1が設けられ、内部にシリ
コンカーバイドSiCでグラファイトを被覆したサセプ
タ2が配置され、その上にシリコン基板3が乗載される
。反応管1には高周波コイル4が巻回されており、図示
しない高周波電源から高周波電力が供給されてサセプタ
2が誘導加熱される。
FIG. 5 is a system diagram showing the configuration of an MOCVD apparatus used to form the GaAs crystal layer 26. As shown in FIG. Referring to FIG. 5, the MOCVD apparatus is provided with a reaction tube 1 made of, for example, quartz, in which a susceptor 2 coated with graphite with silicon carbide SiC is disposed, and a silicon substrate 3 is placed on top of the susceptor 2. will be boarded. A high frequency coil 4 is wound around the reaction tube 1, and high frequency power is supplied from a high frequency power source (not shown) to heat the susceptor 2 by induction.

上記反応管1に連通される第1タンク5には、水素ガス
H1またはアルゴンガスArなどのキャリアガスが充填
され、第2タンク6および第3タンク7には、それぞれ
PH,およびAsH,が充填される。第1タンク5がら
の水素ガスは純化器8を介して高純度化され、その流量
はマスフローコントローラ(以下、MFCと略す)9.
10により調整される。また第2および第3タンク6.
7からのガス流量も、それぞれMFCII、12により
調整される。
A first tank 5 communicating with the reaction tube 1 is filled with a carrier gas such as hydrogen gas H1 or argon gas Ar, and a second tank 6 and a third tank 7 are filled with PH and AsH, respectively. be done. The hydrogen gas in the first tank 5 is highly purified through a purifier 8, and its flow rate is controlled by a mass flow controller (hereinafter abbreviated as MFC) 9.
Adjusted by 10. Also, the second and third tanks6.
The gas flow rates from 7 are also adjusted by MFCII and 12, respectively.

また本発明では、有機金属として前記TMG(トリメチ
ルガリウム)を用いるが、これは常温で液体であり、恒
温槽14内に設置されたバブラ13内に並質される。
Further, in the present invention, TMG (trimethyl gallium) is used as the organic metal, which is liquid at room temperature and is homogenized in the bubbler 13 installed in the thermostatic chamber 14.

純化器8からのキャリアガスは、MFC10によりバブ
ラ13内に導入されてバブリングを行い、これによりバ
ブラ13内のTMGがガス化して反応管1へ導入される
。またこのキャリアガスは、MFC9を介して第2およ
び第3タンク6.7からのガスのキャリアガスとしても
用いられる。このようなMOCVD装置を構成する構成
要素を接続する配管系には、ガス調整弁17,18.1
9およびバルブ20〜25が設けられる。
The carrier gas from the purifier 8 is introduced into the bubbler 13 by the MFC 10 to perform bubbling, whereby TMG in the bubbler 13 is gasified and introduced into the reaction tube 1 . This carrier gas is also used as a carrier gas for the gas from the second and third tanks 6.7 via the MFC 9. The piping system connecting the components constituting such MOCVD equipment includes gas regulating valves 17, 18.
9 and valves 20-25 are provided.

前記反応管1には、超高真空排気装置15と排気ガス処
理装置16とが接続されており、超高真空排気装置15
を用いて、成膜に先立って反応管1内の残留ガスを除去
し、排気ガス処理装置16を用いて成膜作業中および成
膜作業後の排気ガス中の有毒なヒ素化会物などを除去す
る。
An ultra-high vacuum evacuation device 15 and an exhaust gas treatment device 16 are connected to the reaction tube 1, and the ultra-high vacuum evacuation device 15
is used to remove the residual gas in the reaction tube 1 prior to film formation, and the exhaust gas treatment device 16 is used to remove toxic arsenides, etc. from the exhaust gas during and after the film formation process. Remove.

第6図は第5図示のMOCVDgA置を用い、後述する
ような処理工程を経て得られるG a A s結晶Ji
226を含む半導体素子28の断面図である。
FIG. 6 shows GaAs crystal Ji obtained by using the MOCVDgA apparatus shown in FIG.
226 is a cross-sectional view of a semiconductor element 28 including 226. FIG.

本実施例ではシリコン基板3上にG aA s結晶層2
6を形成するに当たって、両者の格子定数の相違に基づ
き、従来技術の項で指摘したような転位の発生が抑制さ
れた半導体素子28を提供するものである0本実施例の
半導体素子28では、シリコン基板3とGaAs結晶層
26との間に介在層27を設ける。介在層27は、Ga
AsxP。
In this embodiment, a GaAs crystal layer 2 is formed on a silicon substrate 3.
6, the semiconductor element 28 of this embodiment provides a semiconductor element 28 in which the generation of dislocations as pointed out in the prior art section is suppressed based on the difference in lattice constant between the two. An intervening layer 27 is provided between the silicon substrate 3 and the GaAs crystal layer 26. The intervening layer 27 is made of Ga
AsxP.

半導体であり、シリコン基板3からG rt A s結
晶層26に向かうに従い、変′t&xが0から1に変化
する構成となっている。
It is a semiconductor, and has a structure in which the variable 't&x changes from 0 to 1 as it goes from the silicon substrate 3 to the GrtAs crystal layer 26.

すなわち、介在層27のシリコン基板3r!I!端部は
近はG ;i Pであり、G a A s結晶層26側
の端部付近はG a A sとなっている。すなわちG
 Et Pの格子定数dは5450であり、シリコンの
格子定数d=5.430との間には、 (5,450−5,430) X10015.430=
0.368% ・・・(2)の相違があるのみである。
That is, the silicon substrate 3r of the intervening layer 27! I! The near end is G;iP, and the vicinity of the end on the GaAs crystal layer 26 side is GaAs. That is, G
The lattice constant d of EtP is 5450, and the difference between it and the lattice constant d of silicon is (5,450-5,430)X10015.430=
0.368%...There is only the difference in (2).

これは従来技術で説明したG El A sとシリコン
との格子定数の相違(4%)と比較すると、格子定数の
相異の程度が約1/10であり、この界面における転位
の発生は可及的に抑制されている。また介在層27はグ
レーテツド層であり、介在層27中における転位の発生
も可及的に防がれている。このようにして・本実施例の
半導体素子28では、ヘテロ構造における転位の発生を
可及的に抑、ilJすることができる。
This means that the degree of difference in lattice constant is approximately 1/10 compared to the difference in lattice constant between GElAs and silicon (4%) explained in the prior art, and it is possible for dislocations to occur at this interface. is being restrained. Further, the intervening layer 27 is a graded layer, and the occurrence of dislocations in the intervening layer 27 is prevented as much as possible. In this manner, in the semiconductor element 28 of this embodiment, the occurrence of dislocations in the heterostructure can be suppressed as much as possible.

第7図および第8[21は本実施例の半導体素子28の
製造工程を説明するグラフであり、第9図は各製造段階
を説明する断面図である。これらの図面を併せて参照し
て、半導体素子28のilJ造工程について説明する。
7 and 8 [21] are graphs for explaining the manufacturing process of the semiconductor element 28 of this example, and FIG. 9 is a cross-sectional view for explaining each manufacturing step. The ilJ manufacturing process of the semiconductor element 28 will be explained with reference to these drawings.

常法に従って洗浄されたシリコン基板3を、反応管l中
のサセプタ2上に乗載する。
A silicon substrate 3 cleaned according to a conventional method is mounted on a susceptor 2 in a reaction tube l.

次に、前記超高真空排気装置15により、反応管1の内
部をたとえば10−’Torr程度にまで真空にし、第
7図時刻t1から高周波コイル4によりシリコン基板3
を誘導加熱し、所定の温度T13(たとえば900〜9
50℃〉にまで昇温する。このとき第1タンク5のガス
′vJn弁17を開放し、またバルブ21,22.23
を全開にしてMFC9によりキャリアガスを所定流量に
て反応管1内に導入する。これによりシリコン基板3上
の酸化物などが除去され、第7図時刻t2までの期間p
Hに亘ってクリーニングが行われる。
Next, the inside of the reaction tube 1 is evacuated to, for example, about 10-'Torr by the ultra-high vacuum evacuation device 15, and from time t1 in FIG.
is heated by induction to a predetermined temperature T13 (for example, 900 to 9
Raise the temperature to 50°C. At this time, the gas 'vJn valve 17 of the first tank 5 is opened, and the valves 21, 22, 23 are opened.
is fully opened and carrier gas is introduced into the reaction tube 1 at a predetermined flow rate using the MFC 9. As a result, oxides and the like on the silicon substrate 3 are removed, and the period p until time t2 in FIG.
Cleaning is performed over H.

次に、シリコン基板3の温度を第2温度範囲であるT1
1(たとえば400〜450℃、好ましくは420℃)
に設定し、バルブ20を閉じたのちバルブ24.25を
全開にしてMFC10により所定流量を反応管3内に導
入する。これにより前記キャリアガスにて搬送されるT
MGを反応管1内にたとえば30〜80secmで導入
することができる。このTMGガスの供給量は恒温槽1
4の温度と、MPCIOによるキャリアガスの流量で設
定されたバプラ13内の圧力とによって定められる。ま
たバルブ18を全開にし、MFC11によってP Hz
ガス(たとえば600℃に予f11加熱する)を反応管
1内にたとえば500〜7゜Os c c mで供給す
る。この製造段階は第7図時刻t3までの期間PL2に
亘って行われる。これによって第911W(1)に示さ
れるように、シリコン基板3上にアモルファス状のG 
a Pから成る初期膜29を100〜400人く好まし
くは200人)形成する。
Next, the temperature of the silicon substrate 3 is set to T1, which is a second temperature range.
1 (e.g. 400-450°C, preferably 420°C)
After closing the valve 20, the valves 24 and 25 are fully opened, and a predetermined flow rate is introduced into the reaction tube 3 by the MFC 10. This allows T to be transported by the carrier gas.
MG can be introduced into the reaction tube 1 at a rate of, for example, 30 to 80 seconds. The supply amount of this TMG gas is
4 and the pressure inside the bubbler 13 set by the flow rate of carrier gas by MPCIO. In addition, the valve 18 is fully opened, and the MFC 11 adjusts the P Hz
A gas (preheated, for example, to 600 DEG C.) is fed into the reaction tube 1 at, for example, 500 to 7 DEG Os cm. This manufacturing step is carried out over a period PL2 up to time t3 in FIG. As a result, as shown in No. 911W(1), amorphous G is formed on the silicon substrate 3.
an initial film 29 made of P is formed by 100 to 400 people (preferably 200 people).

第7図時刻t3に続(t 4までの期間P13では、バ
ルブ24.25を遮断してTMGガスの供給を遮断し、
かつ温度を前記温度Tllがら第1温度反応である温度
T12(たとえば620”C〜750℃、好ましくは7
20℃)まで上昇する。
Following time t3 in FIG. 7 (in period P13 until t4, the valves 24 and 25 are shut off to shut off the supply of TMG gas,
and the temperature is changed from the temperature Tll to a temperature T12 (for example, 620" to 750"C, preferably 750"C to 750"C, which is the first temperature reaction).
temperature rises to 20°C).

このときアモルファス状態の初期膜29が結晶化し、G
 a P結晶層30が得られる。
At this time, the initial film 29 in an amorphous state crystallizes and becomes G
A P crystal layer 30 is obtained.

次に、前記時刻t4以降の期間P14ではバルブ20を
遮断し、バルブ1つを全開にしてMFC9.10,11
.12により、キャリアガスによって搬送されるTMG
ガスに加えP H、、A s H3をそれぞれ流、13
0〜80 s c c rn、500〜700 s c
 c rnであって、しかも総流量1200scCmに
て反応管1内に供給する。またこのとき、サセプタ2は
、第7図に示される第3温度範囲である温度T12(6
20〜750℃、好ましくは720℃)に定められる。
Next, in a period P14 after the time t4, the valve 20 is shut off, one valve is fully opened, and the MFC9.10, 11
.. TMG carried by carrier gas by 12
In addition to the gas, P H, , A s H3 are respectively flowed, 13
0-80 s c crn, 500-700 s c rn
crn and supplied into the reaction tube 1 at a total flow rate of 1200 scCm. Further, at this time, the susceptor 2 is heated to a temperature T12 (6
20 to 750°C, preferably 720°C).

ここでPH,ガスおよびA S H3ガスの流量は第8
I2!に示されるように、期間P14の初期ではそれぞ
れ流MP2.Fl (F2>Fl)に定められるが、A
 s H!ガスの流量はしだいに増大し、Pll、ガス
の流量はしだいに減少するように制御される。すなわち
、このように第9図(2)に示すようにG a P結晶
層30上に形成される介在層27の層厚が、たとえば0
.5〜2.0μrn (好ましくは1.0μm)に到達
した時点t5で、介在層27を構成するGaAsxP+
−mの変数Xが1となるように制御される。このとき第
8図に示すように、A s HsガスおよびPH,ガス
の流量はそれぞれF3.F4 (F3>F4)に選ばれ
る。
Here, the flow rates of PH, gas and A S H3 gas are the 8th
I2! As shown in , at the beginning of period P14, the streams MP2. Fl (F2>Fl), but A
s H! The gas flow rate is controlled so as to gradually increase, and the Pll gas flow rate to gradually decrease. That is, as shown in FIG. 9(2), the thickness of the intervening layer 27 formed on the GaP crystal layer 30 is, for example, 0.
.. At time t5 when the thickness reaches 5 to 2.0 μrn (preferably 1.0 μm), the GaAsxP+ constituting the intervening layer 27
The variable X of −m is controlled to be 1. At this time, as shown in FIG. 8, the flow rates of the A s Hs gas and PH gas are respectively F3. F4 (F3>F4) is selected.

前記時刻t5以降では、バルブ18を遮断して反応管1
にはキャリアガスで搬送されるTMGガスとA s H
3ガスとのみを供給する。このときサセプタ2の温度は
620℃〜750℃(好ましくは720℃)に選ばれる
。このようにすれば、第9図(3)に示すように、介在
層27上にGaAs結晶層26が所望の層厚で形成され
る。
After the time t5, the valve 18 is shut off and the reaction tube 1 is closed.
TMG gas carried by carrier gas and A s H
Supply only 3 gases. At this time, the temperature of the susceptor 2 is selected to be 620°C to 750°C (preferably 720°C). In this way, as shown in FIG. 9(3), a GaAs crystal layer 26 is formed on the intervening layer 27 with a desired thickness.

このようにして、上述したようにシリコン基板3上にG
 a A s化合物半導体結晶層26を形成するに当た
って、格子定数の相違に基づく転位が格段に抑制された
半導体素子を形成することができる。
In this way, G is applied on the silicon substrate 3 as described above.
In forming the aAs compound semiconductor crystal layer 26, it is possible to form a semiconductor element in which dislocations due to differences in lattice constants are significantly suppressed.

本発明の他の実施例として、介在層を形成する材料とし
て、G a A s x P l−wに代えて、少なく
とも一部分をA 1 y G a 1−y A sを、
変数yが1から0へ変化するように形成してもよい、こ
のとき、初期膜29上にはAlAsが、成長終了時には
G aA sが形成される。
As another embodiment of the present invention, as the material forming the intervening layer, at least a portion of A 1 y Ga 1-y As is used instead of Ga As x P l-w,
It may be formed so that the variable y changes from 1 to 0. In this case, AlAs is formed on the initial film 29, and GaAs is formed on the film when the growth is completed.

このようにして、転位が格段に抑制された高品質な半導
体素子31が得られる。すなわち、PN接合の少数キャ
リアの寿命は、内部応力の大きさに正に相関するからで
ある。
In this way, a high quality semiconductor element 31 in which dislocations are significantly suppressed can be obtained. That is, the lifetime of minority carriers in a PN junction is positively correlated with the magnitude of internal stress.

まなGaAs結晶層26の大きさは平面視における隣接
する2つの縁辺の長さの和が約150μm以下に選ばれ
るが、その下限値は前記長さの和がたとえば約1μm以
上に選ばれる。透孔32中のGaAs結晶層26の結晶
性(EDP)は、その周縁部はど悪く、中心部に近づく
と改善されていることが確認された。したがって透孔3
2の大きさが過小であると、透孔32を形成する被膜層
33の内壁の影響がGaAs結晶層26全体に波及し、
全体の結晶性を劣化させるからである。
The size of the GaAs crystal layer 26 is selected so that the sum of the lengths of two adjacent edges in plan view is about 150 μm or less, and the lower limit is selected so that the sum of the lengths is about 1 μm or more, for example. It was confirmed that the crystallinity (EDP) of the GaAs crystal layer 26 in the through hole 32 was poor at the periphery and improved as it approached the center. Therefore, through hole 3
If the size of 2 is too small, the influence of the inner wall of the coating layer 33 forming the through hole 32 will spread to the entire GaAs crystal layer 26,
This is because it deteriorates the overall crystallinity.

上記被覆層33は、Sin、や、INなど他の電気絶縁
性材料でもよく、透孔32の平面視形状は任意の種類の
矩形であってもよい。
The covering layer 33 may be made of other electrically insulating materials such as Sin or IN, and the through hole 32 may have any type of rectangular shape in plan view.

また前記変数x、yの変動範囲はOから1に限らず、0
と1との間の任意の数値の間を変化させうるちのである
Furthermore, the variation range of the variables x and y is not limited to 0 to 1, but 0 to 1.
It can be varied between any number between 1 and 1.

発明の効果 以上のように本発明に従えば、■−V族化合物半導体の
大きさが、隣接する2つの縁辺の長さの和が約150μ
m以下に制限される。これによりシリコンと■−■族化
合物半導体とで熱膨張係数が異なる場合でも、各透孔毎
の化合物半導体とシリコン基板との間の応力の大きさお
よび、該応力の作用する範囲は可及的に小さく制限され
る。これにより熱応力によってシリコン基板が反るなど
の現象が可及的に抑制されるとともに、このような熱応
力の抑制により熱応力に伴う転位も抑制され、半導体素
子の結晶性(EPD)は格段に改善される。
As described above, according to the present invention, the size of the ■-V group compound semiconductor is such that the sum of the lengths of two adjacent edges is approximately 150 μm.
m or less. As a result, even if silicon and the ■-■ group compound semiconductor have different coefficients of thermal expansion, the magnitude of the stress between the compound semiconductor and the silicon substrate for each through hole and the range in which this stress acts can be minimized. is limited to a small amount. As a result, phenomena such as warping of the silicon substrate due to thermal stress are suppressed as much as possible, and by suppressing such thermal stress, dislocations associated with thermal stress are also suppressed, and the crystallinity (EPD) of semiconductor devices is significantly improved. will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体素子31の断面図、
第2図は半導体素子31の平面図、第3図は半導体素子
31の製造工程を示す断面図、第4図は本件実施例の効
果を説明するグラフ、第5図はMOCVD装置の構成を
示すブロック図、第6図は半導体素子28の断面図、第
7図および第8図は半導体素子28を製造する工程を説
明するグラフ、第9図は半導体素子28を製造する工程
を説明する断面図である。 3・・・シリコン基板、16・・・GaAs結晶層、2
7・・・介在層、28.31・・・半導体素子、32・
・・透孔、33・・・被覆層
FIG. 1 is a cross-sectional view of a semiconductor element 31 according to an embodiment of the present invention;
FIG. 2 is a plan view of the semiconductor element 31, FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor element 31, FIG. 4 is a graph explaining the effects of this embodiment, and FIG. 5 shows the configuration of the MOCVD apparatus. A block diagram, FIG. 6 is a cross-sectional view of the semiconductor element 28, FIGS. 7 and 8 are graphs explaining the process of manufacturing the semiconductor element 28, and FIG. 9 is a cross-sectional view explaining the process of manufacturing the semiconductor element 28. It is. 3... Silicon substrate, 16... GaAs crystal layer, 2
7... Intervening layer, 28.31... Semiconductor element, 32.
...Through hole, 33...Covering layer

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板と、 シリコン基板上に形成され、隣接する2つの縁辺の長さ
の和が約150μm以下の大きさの矩形状の透孔を有す
る電気絶縁性材料から成る被覆層と、 前記透孔に臨むシリコン基板上に形成されたIII−V族
化合物半導体層とを含むことを特徴とする半導体素子。
(1) a silicon substrate; a coating layer made of an electrically insulating material formed on the silicon substrate and having a rectangular through hole having a size in which the sum of the lengths of two adjacent edges is about 150 μm or less; 1. A semiconductor device comprising: a III-V compound semiconductor layer formed on a silicon substrate facing the through hole.
(2)シリコン基板上に隣接する2つの縁辺の長さの和
が約150μm以下の大きさの矩形状の透孔を有する電
気絶縁性材料から成る被覆層を形成し前記透孔に臨むシ
リコン基板上にIII−V族化合物半導体層をエピタキシ
ャル成長させたことを特徴とする半導体素子の製造方法
(2) A silicon substrate formed with a covering layer made of an electrically insulating material having a rectangular through hole whose sum of lengths of two adjacent edges is approximately 150 μm or less on the silicon substrate, and facing the through hole. 1. A method for manufacturing a semiconductor device, comprising epitaxially growing a III-V compound semiconductor layer thereon.
JP63304961A 1988-11-30 1988-11-30 Semiconductor device and method of manufacturing the same Expired - Fee Related JP2786457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304961A JP2786457B2 (en) 1988-11-30 1988-11-30 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304961A JP2786457B2 (en) 1988-11-30 1988-11-30 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02150020A true JPH02150020A (en) 1990-06-08
JP2786457B2 JP2786457B2 (en) 1998-08-13

Family

ID=17939397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304961A Expired - Fee Related JP2786457B2 (en) 1988-11-30 1988-11-30 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2786457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177168A (en) * 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd Semiconductor substrate and method of manufacturing the same, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213117A (en) * 1986-03-13 1987-09-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6398120A (en) * 1986-10-15 1988-04-28 Matsushita Electric Ind Co Ltd Crystal growth method
JPH0258322A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of semiconductor wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213117A (en) * 1986-03-13 1987-09-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6398120A (en) * 1986-10-15 1988-04-28 Matsushita Electric Ind Co Ltd Crystal growth method
JPH0258322A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177168A (en) * 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd Semiconductor substrate and method of manufacturing the same, and electronic device

Also Published As

Publication number Publication date
JP2786457B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5399522A (en) Method of growing compound semiconductor
JP3721674B2 (en) Method for producing nitride III-V compound semiconductor substrate
US8541292B2 (en) Group III nitride semiconductor epitaxial substrate and method for manufacturing the same
US5256594A (en) Masking technique for depositing gallium arsenide on silicon
EP0380815B1 (en) Integration of GaAs on Si substrate
US5019529A (en) Heteroepitaxial growth method
JPH07118450B2 (en) Method for growing a compound semiconductor layer on a single-component semiconductor substrate and such semiconductor structure
KR20150124025A (en) Method of growing nitride single crystal and method of manufacturing nitride semiconductor device
JP3476754B2 (en) Method for manufacturing gallium nitride-based compound semiconductor
JP3953548B2 (en) Method for producing nitride compound semiconductor crystal
JPH02150020A (en) Semiconductor element and manufacture thereof
JP6962463B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP3946976B2 (en) Semiconductor device, epitaxial substrate, semiconductor device manufacturing method, and epitaxial substrate manufacturing method
JP2690538B2 (en) Semiconductor light emitting device
US20050136564A1 (en) Method of laterally growing GaN with indium doping
JP2005057064A (en) Group iii nitride semiconductor layer and growth method thereof
JP2898320B2 (en) Method for manufacturing semiconductor device
JP2763560B2 (en) Method for manufacturing semiconductor device
JP2810299B2 (en) Method for forming compound semiconductor layer
JP3005281B2 (en) Method for manufacturing semiconductor device
JPH0214513A (en) Formation of compound semiconductor layer
JP3134315B2 (en) Method for selective growth of compound semiconductor crystal
JP2001114592A (en) Epitaxial growth method and wafer for forming film
JPH02150077A (en) Semiconductor light emitting device
JP2001313254A (en) Method for growing nitride based iii-v compound semiconductor layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees