JPH02149618A - Manufacture of hot rolled high strength steel plate excellent in workability - Google Patents

Manufacture of hot rolled high strength steel plate excellent in workability

Info

Publication number
JPH02149618A
JPH02149618A JP30302288A JP30302288A JPH02149618A JP H02149618 A JPH02149618 A JP H02149618A JP 30302288 A JP30302288 A JP 30302288A JP 30302288 A JP30302288 A JP 30302288A JP H02149618 A JPH02149618 A JP H02149618A
Authority
JP
Japan
Prior art keywords
workability
hot
hot rolled
cooling
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30302288A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
勝亦 正昭
Ichiro Tsukatani
一郎 塚谷
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30302288A priority Critical patent/JPH02149618A/en
Publication of JPH02149618A publication Critical patent/JPH02149618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a hot rolled steel plate having high strength and excellent in workability by hot-rolling a steel with a specific composition under specific conditions, cooling the resulting hot rolled plate down to a winding temp. while specifying cooling conditions, and then winding the above plate. CONSTITUTION:A steel having a composition consisting of, by weight, 0.10-0.35% C, 0.5-3.0% Si, 0.5-2.5% Mn, and the balance iron with inevitable impurities is hot-rolled at >= about 80% finish draft so that finish rolling-finishing temp. is regulated to (Ar3 - 50 deg.C) to 950 deg.C. Subsequently, slow cooling is applied to the hot rolled plate down to a temp. right above the pearlite transformation point at 1-30 deg.C/sec cooling rate to allow ferrite transformation to proceed sufficiently, and then, the above plate is cooled down to a winding temp. (300-500 deg.C) at a cooling rate (preferably >= about 30 deg.C/sec) capable of inhibiting pearlite transformation, followed by winding. By this method, the hot rolled steel plate having high strength as to have >= about 60kgf/mm<2> tensile strength and excellent in workability can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度鋼板の製造技術に係り、特に引張強度6
0 jcgf / arm”以上の高強度で加工性に優
九た熱延鋼板の製造方法に関するものである。 (従来の技術) 従来より、高強度鋼板は自動車、産業機械等に使用され
てきており、特に、自動車用鋼板は自動車の軽量化や、
衝突時の安全性の確保等から鋼板の高強度化の要請が強
くなってきている。しかし。 単に鋼板の高強度化を図るだけではなく、併せて加工性
、溶接性も求められている。 この種の要請に応えるものとしては、従来より、熱延鋼
板でフェライトとマルテンサイトよりなる二相鋼がある
。 しかし、この二相鋼は、固溶強化型や、析出強化型の高
強度鋼板よりも優れた強度−延性バランス(TSXEQ
)を示すものの、TSXEQ″:200oであり、より
厳しい加工性の要求には耐えられないという欠点があっ
た。 (発明が解決しようとする課題) そこで、この欠点を解消するものとして、TSXEQ>
2000を得るために残留オーステナイトを含む組織と
する熱延鋼板が開発された。 その例としては、一つに、仕上温度850℃以上、全圧
下率80%以上で且つ最終3パスの合計圧下率60%以
上、最終バス圧下率20%以上の大圧下圧延を行い、続
いて50℃/S以上の冷却速度で300℃以下まで冷却
し、残留オーステナイトを含む熱延鋼板を製造する方法
(特開昭60−165320号公報)がある。 しかし、このような熱延鋼板の製造には大圧下圧延を必
要とするため、これを解決することを目的トシテ、■ 
C:0.15〜0.40%、5ilo。 5〜2.0%及びMn:0.5〜2.0%を含有し、残
部が鉄及び不可避的不純物からなる鋼を、仕上圧延終了
温度(Ar、−50℃)〜(Ar、 + 50℃)、全
圧下率80%以上で熱間圧延を行い、続いて350〜5
00℃までを冷却速度40℃/S以上で冷却して巻取る
方法、■ 或いは更に延性を向上させて強度−延性バラ
ンスを高めるために、巻取り後、鋼板を30’C/hr
以上の冷却速度で200℃以下まで冷却して残留オース
テナイトを含む熱延鋼板を製造する方法(特開昭63−
4017号公報)等が提案された。 しかし乍ら、これらの方法で得られる熱延鋼板はいずれ
も加工性が良くなく、また、■の方法では、TsxEQ
>2400という強度−延性バランスが得られるものの
、高延性を得るために、巻取り後の冷却としてコイル横
方向からのミスト冷却や、コイル全体を水などに浸漬す
る冷却を必要とするため、鋼板の板幅方向の材質を著し
く不均一にする等々の問題がある。 本発明は、TSXEQ>2000以上の高強度−延性バ
ランスを有し、引張強さ60 kgf / mm2以上
の加工性に優れた高強度熱延鋼板を製造する方法を提供
することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、組成。 製造条件について総合的に研究を重ねた結果、特定組成
の鋼を熱延し、熱延後の冷却中に、徐冷してフェライト
変態を充分進行させ、その後パーライト変態を阻止し得
る冷却速度で巻取温度300〜500℃まで冷却し巻取
ることにより、可能であることを見い出し、ここに本発
明をなしたものである。 すなわち1本発明に係る加工性に優れた高強度熱延鋼板
の製造方法は、C:0.10〜0.35%、Si:0.
5〜3.0%及びMn:0.5〜2.5%を含有し、残
部が鉄及び不可避的不純物からなる組成を有する鋼を、
仕上圧延終了温度(Ar、−50℃)〜950”Cで熱
間圧延を行い、熱延終了後、1〜30’C/sの冷却速
度でパーライト変態直上の温度まで冷却し、その後頁に
巻取温度300〜500℃までをパーライト変態を阻止
し得る冷却速度で冷却し、巻取ることを特徴とするもの
である。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明に用いる鋼の化学組成の限定理由を説明す
る。 C二 Cは鋼の強化に不可欠な元素であり、延性を向上させる
残留オーステナイト量が充分得るには少なくとも0.1
0%のC量が必要である。C量の増加は、第二相のベイ
ナイト若しくは残留オーステナイトが加工誘起変態した
マルテンサイト相とフェライトとの硬度差を増大させる
。マトリックスと第二相との硬度差が大きい場合は、マ
トリックスと第二相との界面で変形が伝達しにくいため
、この界面がクラックの起点となり、加工中に割れが入
ることになる。この作用は、C量が0.35%を越える
ときに生成する第二相で顕著となる。 また、0.35%を超えると溶接性を著しく劣化させる
ので好ましくない。したがって、C量は0゜10〜0.
35%の範囲とする。 Si: SLは含有量を増すと、延性向上に寄与するフェライト
の生成、純化に有利であり、また、Cを未変態オーステ
ナイト中に濃化させて残留オーステナイトを得るのに有
利となる。更に、Siは巻取り後のベイナイト変態の際
に炭化物形成を抑制し、Cをより未変態オーステナイト
中へ濃化させ、残留オーステナイトを得るのにより有利
になる。 更にまた、SL量を増加させるとフェライト相を固溶硬
化させるため、フェライト相と第二相の硬度差を減少さ
せる効果があるため、クラックの発生が高加工度まで抑
制され、その結果、加工性が向上する。このような効果
は、0.5%未満では十分発揮されない。また、3.0
%を超えると、フェライトの生成、純化並びに残留オー
ステナイトの確保の効果は飽和し、却ってスケール性状
、溶接性を悪化させ、また規則相(B2)が形成される
ために加工性を害するので、好ましくない。したがって
、Si量は0.5〜〜3.0%の範囲とする。 Mn: Mnはオーステナイトの安定化元素としてオーステナイ
トの残留に寄与する。この効果は、0゜5%未満では十
分得られず、また、2.5%を超えると効果は飽和し、
却って溶接性を悪化させるので好ましくない。したがっ
て、Mn量は0.5〜3.0%の範囲とする。 なお、上記鋼は残部が鉄及び不可避的不純物であり、他
の合金元素を添加する必要がない。 次に本発明法の条件について説明する。 上記組成の熱延鋼板の延性を向上させるためには、フェ
ライト及びベイナイトの二相マトリックス中に残留オー
ステナイトを体積率で、好ましくは5%以上生じせしめ
ることが必要であり、そのためにはオーステナイトをC
等の元素の濃化等により安定化させる。 このため、本発明では、熱延終了後、パーライト変態直
上まで1〜b しくは5〜b ェライト変態を充分進行せしめ、オーステナイト中への
C等の元素の濃化を促進させ、オーステナイトの残留に
寄与せしめる。勿論、冷却速度が上記範囲以外ではその
ような効果が得られない。 このとき、仕上圧延終了温度がAr、−50℃を下回る
と、延性を損なう加工フェライト組織が形成されるため
、仕上圧延終了温度をAr、−50℃以上にする必要が
ある。また、仕上圧延終了温度が950T:を超える場
合はパーライト変態開始直前の温度まで冷却するのに時
間がかかりすぎて実際的ではない、したがって、仕上圧
延終了温度は(Ar、−50℃)〜950℃の範囲とす
る。なお、仕上圧延率は80%以上が望ましい。 また、フェライト変態が終了しパーライト変態が開始す
ると、オーステナイトの残留に有効なCが消費され、残
留オーステナイト量が減少する。 また、パーライトが形成されるとパーライト中のセメン
タイトとフェライトの界面若しくは、層状のセメンタイ
トから加工中にクラックが発生し易くなり、加工性を著
しく害する。したがって、上記冷却後は、パーライト変
態を阻止し得る冷却速度(好ましくは、30℃/S以上
)で巻取温度まで冷却する必要がある。 巻取温度は、500℃を超えると、巻取り後パーライト
が生成して、或いはベイナイト変態が過度に進行し、十
分な残留オーステナイトが得られない。パーライトが形
成されると上述のように加工性が劣化する。また、30
0℃未満の巻取温度では、形成されるベイナイトの硬度
が高くなり又一部に硬質なマルテンサイトができ、フェ
ライト相との硬度差が大きくなり、これらの界面で加工
中にクラックが発生し易くなるため、加工性(穴拡げ性
)が劣化する。したがって、巻取温度は3oO〜500
℃の範囲とする。 得られる熱延鋼板は、フェライトとベイナイトの二相マ
トリックスに5%以上の残留オーステナイトが均一に分
散している組織を有している。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する鋼A−Dを第2表に示す
条件で熱間圧延を行って巻取り、空冷した。なお、熱間
圧延は、3011II→16Illl→8m+m→3m
mのバススケジュールで行った。 得られた熱延鋼板について機械的性質、組織を調べると
共に加工性(穴拡げ率)を調べた。その結果を第2表に
併記する。 第2表より、以下の如く考察される。 本発明例&1、翫4及び&8は、TSXFII>240
0という非常に高い強度−延性バランスを示しく第1図
参照)、更には、降伏強さが低く、加工性が優れている
。 一方、比較例のNn2はSiが低いため、Nn3はC量
が低いため、残留オーステナイトが殆ど生成せず、延性
が低く、強度−延性バランスも低いし、加工性も悪い。 比較例Ha 5は仕上圧延温度が低すぎ、加工フェライ
ト組織が形成されたために延性が低い。 比較例翫6はパーライト変態開始温度(この場合は65
0℃)以下になってもゆっくりとした冷却速度で冷却し
ているためにパーライト変態が進行し、残留オーステナ
イトが生成せず、延性が低い。加工性も悪い。 比較例&7は巻取温度が高く、残留オーステナイトが生
成せず、延性が不足している。加工性も悪い。 比較例&9は巻取温度が低すぎて穴拡げ性が劣っている
。 比較例&10は熱延後の冷却速度が大きすぎて、フェラ
イト変態が充分に進行していないので、延性が低い、加
工性も悪い。
(Industrial Application Field) The present invention relates to a manufacturing technology for high-strength steel sheets, particularly tensile strength 6
The present invention relates to a method for manufacturing hot rolled steel sheets with high strength of 0 jcgf/arm" or higher and excellent workability. (Prior technology) High strength steel sheets have been used for automobiles, industrial machinery, etc. In particular, automotive steel sheets are used to reduce the weight of automobiles,
There is an increasing demand for higher strength steel plates in order to ensure safety in the event of a collision. but. In addition to simply increasing the strength of steel plates, it is also required that they have better workability and weldability. To meet this type of demand, there has conventionally been a dual-phase steel made of hot-rolled steel sheet made of ferrite and martensite. However, this duplex steel has a better strength-ductility balance (TSXEQ) than solid solution strengthened or precipitation strengthened high strength steel sheets.
), but TSXEQ'': 200o had the disadvantage of not being able to withstand stricter workability requirements. (Problem to be solved by the invention) Therefore, in order to solve this disadvantage, TSXEQ
2000, a hot-rolled steel sheet with a structure containing retained austenite was developed. As an example, one example is performing large reduction rolling with a finishing temperature of 850°C or higher, a total reduction of 80% or more, a total reduction of 60% or more in the final three passes, and a final bath reduction of 20% or more, and then There is a method (Japanese Unexamined Patent Publication No. 165320/1983) of producing a hot rolled steel sheet containing retained austenite by cooling to 300°C or less at a cooling rate of 50°C/S or more. However, manufacturing such hot-rolled steel sheets requires large reduction rolling, so the purpose of Toshite, ■
C: 0.15-0.40%, 5ilo. 5 to 2.0% and Mn: 0.5 to 2.0%, with the remainder consisting of iron and unavoidable impurities. °C), hot rolling is carried out at a total reduction rate of 80% or more, followed by 350-5
00°C at a cooling rate of 40°C/s or more, or 2) To further improve ductility and improve the strength-ductility balance, the steel plate is heated at 30'C/hr after winding.
A method for producing hot-rolled steel sheets containing retained austenite by cooling to 200°C or less at a cooling rate of
4017) etc. were proposed. However, hot-rolled steel sheets obtained by these methods do not have good workability, and in method (2), TsxEQ
Although a strength-ductility balance of >2400 can be obtained, in order to obtain high ductility, it is necessary to perform mist cooling from the side of the coil or cooling the entire coil by immersing it in water, etc., to obtain high ductility. There are problems such as making the material material in the width direction of the plate significantly non-uniform. An object of the present invention is to provide a method for manufacturing a high-strength hot-rolled steel sheet that has a high strength-ductility balance of TSXEQ>2000 or more, has a tensile strength of 60 kgf/mm2 or more, and has excellent workability. It is. (Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a composition. As a result of comprehensive research on manufacturing conditions, we found that we hot rolled steel with a specific composition, slowly cooled it during cooling after hot rolling to allow ferrite transformation to proceed sufficiently, and then set a cooling rate that could prevent pearlite transformation. We have discovered that this is possible by cooling and winding to a winding temperature of 300 to 500°C, and have hereby accomplished the present invention. That is, 1. The method for manufacturing a high-strength hot-rolled steel sheet with excellent workability according to the present invention includes C: 0.10 to 0.35%, Si: 0.
5 to 3.0% and Mn: 0.5 to 2.5%, with the balance consisting of iron and inevitable impurities,
Hot rolling is carried out at a finish rolling finish temperature (Ar, -50°C) to 950"C, and after the completion of hot rolling, it is cooled to a temperature just above pearlite transformation at a cooling rate of 1 to 30'C/s, and then The present invention is characterized in that it is cooled to a winding temperature of 300 to 500°C at a cooling rate that can prevent pearlite transformation, and then wound.The present invention will be explained in more detail below.(Function) First, the present invention The reasons for limiting the chemical composition of steel used for steel are explained below.C2C is an essential element for strengthening steel, and in order to obtain a sufficient amount of retained austenite that improves ductility, it must be at least 0.1
A C content of 0% is required. An increase in the amount of C increases the hardness difference between ferrite and a martensite phase in which the second phase of bainite or retained austenite undergoes deformation-induced transformation. When the difference in hardness between the matrix and the second phase is large, deformation is difficult to transmit at the interface between the matrix and the second phase, and this interface becomes the starting point for cracks, resulting in cracking during processing. This effect becomes remarkable in the second phase generated when the amount of C exceeds 0.35%. Moreover, if it exceeds 0.35%, weldability will be significantly deteriorated, which is not preferable. Therefore, the amount of C is 0°10~0.
The range is 35%. Si: Increasing the content of SL is advantageous for the generation and purification of ferrite that contributes to improving ductility, and is also advantageous for concentrating C in untransformed austenite to obtain retained austenite. Furthermore, Si suppresses carbide formation during bainite transformation after winding, and makes C more concentrated in untransformed austenite, which is more advantageous for obtaining retained austenite. Furthermore, increasing the SL content causes the ferrite phase to harden as a solid solution, which has the effect of reducing the difference in hardness between the ferrite phase and the second phase, suppressing the occurrence of cracks to a high degree of workability, and as a result, improving the workability of the ferrite phase. Improves sex. Such an effect is not sufficiently exhibited when the content is less than 0.5%. Also, 3.0
%, the effects of ferrite generation, purification, and securing retained austenite are saturated, and on the contrary, scale properties and weldability are deteriorated, and ordered phase (B2) is formed, which impairs workability, so it is preferable. do not have. Therefore, the amount of Si is set in the range of 0.5 to 3.0%. Mn: Mn contributes to the retention of austenite as an austenite stabilizing element. This effect cannot be sufficiently obtained below 0.5%, and when it exceeds 2.5%, the effect is saturated.
This is not preferable because it actually worsens weldability. Therefore, the amount of Mn is set in the range of 0.5 to 3.0%. Note that the balance of the above steel is iron and inevitable impurities, and there is no need to add other alloying elements. Next, conditions for the method of the present invention will be explained. In order to improve the ductility of hot-rolled steel sheets with the above composition, it is necessary to generate retained austenite in the two-phase matrix of ferrite and bainite, preferably at a volume percentage of 5% or more.
It is stabilized by concentration of elements such as. Therefore, in the present invention, after the hot rolling is completed, the 1-b or 5-b ellirite transformation is allowed to proceed sufficiently until just above the pearlite transformation, promoting the concentration of elements such as C in the austenite, and preventing the residual austenite from remaining. Make a contribution. Of course, such an effect cannot be obtained if the cooling rate is outside the above range. At this time, if the finish rolling end temperature is less than Ar, -50°C, a worked ferrite structure that impairs ductility is formed, so the finish rolling end temperature needs to be Ar, -50°C or higher. In addition, if the finish rolling end temperature exceeds 950T, it takes too long to cool down to the temperature just before pearlite transformation starts, which is impractical. Therefore, the finish rolling end temperature is (Ar, -50℃) ~ 950T The range is ℃. Note that the finish rolling rate is preferably 80% or more. Further, when the ferrite transformation ends and the pearlite transformation starts, C, which is effective for remaining austenite, is consumed, and the amount of retained austenite decreases. Furthermore, when pearlite is formed, cracks are likely to occur during processing from the interface between cementite and ferrite in pearlite or from layered cementite, which significantly impairs workability. Therefore, after the above cooling, it is necessary to cool down to the coiling temperature at a cooling rate (preferably 30° C./S or higher) that can prevent pearlite transformation. If the winding temperature exceeds 500°C, pearlite will be produced after winding or bainite transformation will proceed excessively, making it impossible to obtain sufficient residual austenite. When pearlite is formed, workability deteriorates as described above. Also, 30
At a coiling temperature of less than 0°C, the hardness of the bainite that is formed increases, and hard martensite is formed in some parts, resulting in a large difference in hardness from the ferrite phase, and cracks occur during processing at these interfaces. As a result, workability (hole expandability) deteriorates. Therefore, the winding temperature is 3oO~500
The range is ℃. The resulting hot rolled steel sheet has a structure in which 5% or more of retained austenite is uniformly dispersed in a two-phase matrix of ferrite and bainite. Next, examples of the present invention will be shown. (Example) Steels A to D having the chemical components shown in Table 1 were hot rolled under the conditions shown in Table 2, wound, and air cooled. In addition, hot rolling is 3011II → 16Illl → 8m+m → 3m
I went according to the bus schedule of m. The mechanical properties and structure of the obtained hot-rolled steel sheets were investigated, as well as the workability (hole expansion rate). The results are also listed in Table 2. From Table 2, the following considerations can be made. Invention example &1, rod 4 and &8 are TSXFII>240
(See Figure 1, which shows an extremely high strength-ductility balance of 0.0).Furthermore, the yield strength is low and the workability is excellent. On the other hand, Nn2 of the comparative example has a low Si content, and Nn3 has a low C content, so almost no retained austenite is generated, the ductility is low, the strength-ductility balance is low, and the workability is also poor. In Comparative Example Ha 5, the finish rolling temperature was too low and a processed ferrite structure was formed, resulting in low ductility. Comparative example 6 has a pearlite transformation start temperature (in this case, 65
Even when the temperature is below 0°C, pearlite transformation progresses because the cooling rate is slow, no retained austenite is formed, and ductility is low. Processability is also poor. In Comparative Example &7, the coiling temperature was high, no retained austenite was formed, and the ductility was insufficient. Processability is also poor. In Comparative Example &9, the winding temperature was too low and the hole expandability was poor. In Comparative Example &10, the cooling rate after hot rolling was too high and ferrite transformation did not progress sufficiently, resulting in low ductility and poor workability.

【以下余白】 (発明の効果) 以上詳述したように、本発明によれば、引張強度60 
kgf / mm2以上で高強度−延性バランスを有し
、且つ加工性に優れた高強度熱延鋼板を得ることができ
る。また特別な合金元素の添加なしに製造できるため、
経済的である等、産業上の効果は非常に大きい。
[Blank below] (Effects of the invention) As detailed above, according to the present invention, the tensile strength is 60
kgf/mm2 or more, it is possible to obtain a high-strength hot-rolled steel sheet that has a high strength-ductility balance and is excellent in workability. Also, since it can be manufactured without adding special alloying elements,
The economical and other industrial effects are very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTSとEQの関係を示した図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 FIG. 1 is a diagram showing the relationship between TS and EQ. Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、C:0.10〜0.35%、
Si:0.5〜3.0%及びMn:0.5〜2.5%を
含有し、残部が鉄及び不可避的不純物からなる組成を有
する鋼を、仕上圧延終了温度(Ar_3−50℃)〜9
50℃で熱間圧延を行い、熱延終了後、1〜30℃/s
の冷却速度でパーライト変態直上の温度まで冷却し、そ
の後更に巻取温度300〜500℃までをパーライト変
態を阻止し得る冷却速度で冷却し、巻取ることを特徴と
する加工性に優れた高強度熱延鋼板の製造方法。
In weight% (the same applies hereinafter), C: 0.10 to 0.35%,
A steel having a composition containing Si: 0.5 to 3.0% and Mn: 0.5 to 2.5%, with the balance consisting of iron and unavoidable impurities, was heated to a finishing rolling temperature (Ar_3-50°C). ~9
Hot rolling is carried out at 50°C, and after the hot rolling is completed, the rolling speed is 1 to 30°C/s.
High strength with excellent workability, characterized by cooling to a temperature just above pearlite transformation at a cooling rate of A method for producing hot rolled steel sheets.
JP30302288A 1988-11-30 1988-11-30 Manufacture of hot rolled high strength steel plate excellent in workability Pending JPH02149618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30302288A JPH02149618A (en) 1988-11-30 1988-11-30 Manufacture of hot rolled high strength steel plate excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30302288A JPH02149618A (en) 1988-11-30 1988-11-30 Manufacture of hot rolled high strength steel plate excellent in workability

Publications (1)

Publication Number Publication Date
JPH02149618A true JPH02149618A (en) 1990-06-08

Family

ID=17915993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30302288A Pending JPH02149618A (en) 1988-11-30 1988-11-30 Manufacture of hot rolled high strength steel plate excellent in workability

Country Status (1)

Country Link
JP (1) JPH02149618A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181230A (en) * 1984-02-29 1985-09-14 Nippon Steel Corp Production of high-tension hot rolled steel plate having excellent workability
JPS6344527A (en) * 1986-08-05 1988-02-25 ロ−バフアルム アクチエンゲゼルシヤフト Composition for stu stimulating cartilage cell and osteoblast cell, osseinhydroxyapatite compound, manufacture and medicinal product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181230A (en) * 1984-02-29 1985-09-14 Nippon Steel Corp Production of high-tension hot rolled steel plate having excellent workability
JPS6344527A (en) * 1986-08-05 1988-02-25 ロ−バフアルム アクチエンゲゼルシヤフト Composition for stu stimulating cartilage cell and osteoblast cell, osseinhydroxyapatite compound, manufacture and medicinal product

Similar Documents

Publication Publication Date Title
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP3406094B2 (en) Method for producing ultra-high strength steel sheet with excellent hydrogen embrittlement resistance
JPS58113318A (en) Manufacture of case hardening steel
JP6515386B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPS6156235A (en) Manufacture of high toughness nontemper steel
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3885314B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent shape and workability
JPH02149618A (en) Manufacture of hot rolled high strength steel plate excellent in workability
JP2829510B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility and workability
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JP2805112B2 (en) Method for manufacturing high-strength hot-rolled steel sheet with excellent ductility and workability
JP2003193191A (en) High tensile strength cold rolled steel sheet with composite structure having excellent deep drawability and production method therefor
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility
JPH10280115A (en) Manufacture of high strength hop dip galvanized steel sheet, excellent in workability
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPH08269538A (en) Production of hot rolled steel plate excellent in stretch-flange formability
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPS6235453B2 (en)
JPH0625743A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness