JPS6235453B2 - - Google Patents

Info

Publication number
JPS6235453B2
JPS6235453B2 JP58011946A JP1194683A JPS6235453B2 JP S6235453 B2 JPS6235453 B2 JP S6235453B2 JP 58011946 A JP58011946 A JP 58011946A JP 1194683 A JP1194683 A JP 1194683A JP S6235453 B2 JPS6235453 B2 JP S6235453B2
Authority
JP
Japan
Prior art keywords
steel
temperature
hot
rolled
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58011946A
Other languages
Japanese (ja)
Other versions
JPS59140332A (en
Inventor
Takashi Furukawa
Michio Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1194683A priority Critical patent/JPS59140332A/en
Publication of JPS59140332A publication Critical patent/JPS59140332A/en
Publication of JPS6235453B2 publication Critical patent/JPS6235453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、加工性に優れた高強度複合組織熱延
鋼板の製造方法に関するものである。ここに高強
度とは引張強度40〜70Kg/mm2程度の強さを言い、
複合組織とはフエライト相と急冷変態相(急冷変
態相とはマルテンサイトまたはベイナイト、ある
いはその両者の混合組織であつて、場合により残
留オーステナイトをも含む)とから成る組織を言
う。急冷変態相が形成されると、鋼板の引張強度
が高まるとともに鋼板の降伏比(降伏強度÷引張
強度)が低下する効果が生ずる。降伏比をなるべ
く低く(0.7)することは鋼板のプレス成形に
際して有利である。 低降伏比複合組織鋼板は、その優れた強度、延
性関係の故に、近年自動車産業等において加工用
材料として採用されつつあり、熱延においてこれ
を製造する技術についても、低温仕上、超低温
(概ね300℃程度以下)巻取による方法が既に提唱
されている(例えば特公昭55―49135号、特開昭
56―29624号等)。従つてこの種の技術パターン
は、既に概ね確立されたと言つてよい現状であ
る。 しかしながら、これら既発明にては、例えば引
張強度60Kg/mm2級程度の鋼板を得るに、一般に
Mn量1.3%以上、あるいは、Mn量の少ない場合
(1.1〜1.3%)ならばSi量1%程度以上を鋼成分
として含ませる必要のあるのが一般であつて(例
えば特開昭56―29624号)、コスト増のほか、熱延
時の脱スケール性あるいは製品として使用した際
の塗装密着性等に必ずしも問題なしとしない。 本発明は、微量のBを添加することによりこれ
らMn、Si等の鋼成分を著しく低減せしめて、既
発明の複合組織鋼板と同等の材質を得ることを可
能にし、もつて上記のコスト問題、脱スケール性
あるいは使用特性に関する問題の解決を可能なら
しめたものである。先行発明として、本発明者ら
は既に特願昭57―12277号(昭和57年1月28日出
願、以下先発明と称する)を提案しているが、本
発明においては、先発明よりも更に所要Mn量を
低減せしめ、かつ加工後人工時効硬化性の高い鋼
板を得るに成功したのである。 オーステナイト単相からの焼入れの場合には、
B添加により鋼の焼入性が向上して、同一強度を
得べき成分元素量が低減されることは公知であ
る。しかしながら、本技術における如く連続熱延
条件との関連において、低降伏比ならびに良好な
延性を得べき成分、工程要因を教える公知の成果
は皆無である。何とならば、複合組織鋼板は、フ
エライト相とオーステナイト相が共存する状態か
ら急冷することによつて得られるものであり、こ
のような2相共存状態からのオーステナイト焼入
性に対するBの影響が未知であるのみか、Bを含
む鋼での2相共存状態が連続熱延仕上条件によつ
て如何に変化するかも全く未知であるからであ
る。 本発明者らは、Bを含有する本発明成分範囲の
鋼において、低降伏比および良好な延性を得べき
熱延仕上条件として仕上出側温度が特に重要であ
り、その温度範囲を790〜950℃に限定すべきこと
を確立し、かくの如き仕上出側温度をもつて熱延
し、急冷して低温巻取を行えば、先発明よりも著
しくMn量の少ない鋼にて、先発明による鋼板と
同等の加工性を持ちかつ加工後人工時効硬化性が
それよりも優れた高強度複合組織鋼板が得られる
ことを見出した。加工後人工時効硬化性が高いと
いうことは、鋼板成形後塗装焼付処理等により成
形品の強度を高めることを示すので、例えば自動
車部品等に適用される鋼板に望まれる特性であ
る。 本発明の特徴を述べれば、C 0.05〜0.15%、
Mn 0.4%以上0.7%未満、Si 0.05〜0.9%、Al
0.01〜0.1%、B 0.0005〜0.006%を含み、N
0.006%、残部が実質的にFeからなる鋼を熱延
し、熱延仕上出側温度を790〜950℃の温度範囲と
し、30〜200℃/秒の平均冷却速度にて450℃以下
の温度に至らしめて巻取るものである。 上記の如き技術条件の限定理由を述べれば次の
通りである。 C量は、0.05%未満では十分な引張強度が得ら
れず、0.15%を超えれば熱延仕上終了時点(冷却
開始前)におけるフエライト相とオーステナイト
相の分離が著しく困難となり、軟質フエライト相
に富んだ複合組織を事実上形成し難くなるので、
0.05%C0.15%とする。 Mn量は、0.4%未満では十分な急冷変態相が得
られず、一方0.7%以上では、得られる鋼板の機
械的性質に支障はないが、加工後人工時効硬化性
が低減するので、0.4%以上0.7%未満とする。こ
こに加工後人工時効硬化性とは、次のように定義
する。巻取後室温に至つた鋼板から得た引張試験
片に5%引張歪を与えるに要する応力をSiとし、
その5%引張歪を与えられた試験片を170℃
20min加熱し、室温まで冷却の後、再び引張試験
により降伏せしめるに要する応力をS2としたと
き、S2−S1(Kg/mm2)を加工後人工時効硬化性と
する。 Siは、延性改善に有効な面と、脱スケール性お
よび塗装密着性を阻害するという悪影響面とを持
つ元素であり、この両面を互に妥協できる成分範
囲として0.05%Si0.9%とする。 Alは、脱酸とともに脱窒の効果があるため、
Bを有効に利用するためには不可欠な元素であ
り、その下限は、それらの効果が期待される0.01
%とし、また上限は、脱酸の効果が飽和すること
と、アルミナ系介在物の増加を抑えるため、0.1
%とする。 Bは、0.0005%未満では、引張強度増加作用お
よび降伏比低下作用(急冷変態相形成促進作用に
もとづく)が少なく、0.006%を超えればこれら
の作用が飽和しかつ延性が劣化するので、0.0005
%B0.006%とする。 Nは、多量に存在するとBと結合して窒化物を
形成しBの作用を無効化するので、N0.006%
と限定する。 熱延仕上出側温度の限定理由は、790〜950℃の
範囲を逸脱すると、降伏比が増大しかつ延性が劣
化するためである。この温度範囲は後述の実施例
から求められたものである。 仕上後の冷却速度は、30℃/秒より小さければ
急冷変態相が形成されず、200℃/秒より大きけ
れば延性が劣化する。また巻取温度は450℃以下
としなければ、急冷変態相が形成されず、第2相
はパーライトとなり、鋼板の高い強度が確保でき
ない。なお、巻取温度は450℃以下の巻取可能な
温度であれば良いので特に本質的な下限は規定し
ないが、巻取機の能力が不足した場合には低温で
の巻取になるにつれて、鋼板の巻取がルーズにな
るため表面疵が増加したり、鋼板の形状が悪くな
るので注意が必要である。通常、巻取は室温以上
で行なうことが一般的であり、100℃〜150℃以上
で行なわれることも多く、本発明もこれに準じて
行なえば良い。 本発明における特に好ましい条件は、C 0.06
〜0.12%、Mn 0.5%以上0.7%未満、Si 0.2〜0.7
%、N<0.004%、B 0.002〜0.005%の如き範囲
の成分鋼を用い、連続熱延して急冷、300℃以下
の巻取温度として、引張強度45〜60Kg/mm2級の低
降伏比鋼板を得るが如き場合である。 以下、本発明を実施例により説明する。 実施例 1 分析値がC 0.095%、Mn 0.66%、Si 0.70
%、P 0.005%、S 0.005%、Al 0.04%、B
0.0021%、N 0.002%、残部が実質的にFeか
らなる鋼と、参考のため対応成分にてBを含まな
いもの即ち分析値がC 0.10%、Mn 0.65%、Si
0.71%、P 0.006%、S 0.005%、Al 0.05%、
N 0.002%、残部が実質的にFeからなる鋼とを
用いて、1100℃1時間均熱された25mm厚鋼片を出
発状態とし、1030℃にて14mm(1パス目)、950℃
にて5.6mm(2パス目)更に4.0mm(3パス目)の
各厚さになる如くに圧延し、3パス目の圧下終了
直後の温度が750〜950℃間の種々温度となる如く
にして、60℃/秒の平均冷却速度にて150℃に至
らしめ、以後徐冷(20℃/時間)した(即ち巻取
温度150℃の場合のシミユレーシヨン実験を行つ
た)。引張試験により得られた鋼板材質を図面に
示す。この図から、0.1%C、0.65%Mn、0.7%Si
程度の成分鋼が、B添加なしには著しい低降伏比
が得られないこと、B添加により低降伏比化と高
強度化が達成され、而も延性には悪影響がないこ
とがわかる。この成分鋼の場合、降伏比を最低な
らしめかつ延性を最良ならしめる熱延仕上出側温
度は850℃であるが、その温度をはさんで−20℃
〜+40℃の温度域ならば満足する材質結果を示
す。 実施例 2 第1表に示す各鋼を用いて、実施例1とほぼ同
様な連続熱延実験を行い、第2表に示す結果を得
た。第2表に最良FTと記したのは、降伏比が最
も低く延性が最も良好になるような熱延仕上出側
温度を示す。
The present invention relates to a method for producing a high-strength, composite-structure hot-rolled steel sheet with excellent workability. Here, high strength refers to a tensile strength of about 40 to 70 kg/ mm2 .
The composite structure refers to a structure consisting of a ferrite phase and a quenched transformed phase (the quenched transformed phase is martensite, bainite, or a mixed structure of both, and may also contain retained austenite). When a rapidly cooled transformed phase is formed, the tensile strength of the steel plate increases and the yield ratio (yield strength/tensile strength) of the steel plate decreases. It is advantageous to make the yield ratio as low as possible (0.7) when press forming steel sheets. Due to its excellent strength and ductility, low-yield-ratio composite steel sheets have recently been adopted as processing materials in the automobile industry and other industries. ℃ or less) has already been proposed (for example, Japanese Patent Publication No. 55-49135,
56-29624, etc.). Therefore, it can be said that this type of technology pattern has already been largely established. However, in these existing inventions, it is generally necessary to obtain a steel plate with a tensile strength of 60 kg/mm class 2 , for example.
If the Mn content is 1.3% or more, or if the Mn content is small (1.1 to 1.3%), it is generally necessary to include a Si content of about 1% or more as a steel component (for example, JP-A-56-29624). In addition to increasing costs, there are not necessarily problems with descaling during hot rolling or paint adhesion when used as a product. The present invention significantly reduces these steel components such as Mn and Si by adding a small amount of B, making it possible to obtain a material equivalent to the composite structure steel sheet of the existing invention, thereby solving the above cost problem. This makes it possible to solve problems related to descaling properties or usage characteristics. As a prior invention, the present inventors have already proposed Japanese Patent Application No. 12277-1982 (filed on January 28, 1982, hereinafter referred to as the "prior invention"). We succeeded in reducing the required amount of Mn and in producing a steel sheet with high artificial age hardening properties after processing. In the case of quenching from austenite single phase,
It is known that the addition of B improves the hardenability of steel and reduces the amount of component elements required to obtain the same strength. However, in connection with continuous hot rolling conditions as in the present technology, there are no known results that teach the ingredients and process factors that should obtain a low yield ratio and good ductility. This is because composite-structure steel sheets are obtained by rapid cooling from a state where ferrite and austenite phases coexist, and the influence of B on austenite hardenability from such a two-phase coexistence state is unknown. Not only that, but it is also completely unknown how the two-phase coexistence state in steel containing B changes depending on the continuous hot rolling finishing conditions. The present inventors found that the finish exit temperature is particularly important as a hot rolling finishing condition for obtaining a low yield ratio and good ductility in the steel having the composition range of the present invention containing B, and the temperature range is 790 to 950. ℃, and if hot-rolled with such a finishing exit temperature, rapidly cooled, and low-temperature coiling, the steel of the previous invention can be produced with a significantly lower Mn content than the previous invention. It has been found that a high-strength composite steel sheet can be obtained that has workability equivalent to that of steel sheet and superior artificial age hardening after processing. High artificial age hardenability after processing indicates that the strength of the molded product can be increased by painting and baking treatment after forming the steel plate, and is a desirable characteristic for steel plates used in, for example, automobile parts. To describe the characteristics of the present invention, C 0.05-0.15%,
Mn 0.4% or more and less than 0.7%, Si 0.05-0.9%, Al
0.01~0.1%, B 0.0005~0.006%, N
0.006%, the remainder being substantially Fe, is hot-rolled, the hot-rolled finishing exit temperature is in the temperature range of 790 to 950°C, and the temperature is 450°C or less at an average cooling rate of 30 to 200°C/sec. It is rolled up after reaching the point. The reasons for limiting the technical conditions as described above are as follows. If the C content is less than 0.05%, sufficient tensile strength will not be obtained, and if it exceeds 0.15%, it will be extremely difficult to separate the ferrite phase and austenite phase at the end of hot rolling finishing (before the start of cooling), and the soft ferrite phase will be enriched. However, since it becomes difficult to form a composite tissue,
0.05%C0.15%. If the amount of Mn is less than 0.4%, a sufficient quenched transformation phase cannot be obtained, while if it is more than 0.7%, there will be no problem with the mechanical properties of the obtained steel sheet, but the artificial age hardenability after processing will be reduced. or more and less than 0.7%. The term "artificial age hardenability after processing" is defined as follows. Let Si be the stress required to give 5% tensile strain to a tensile test piece obtained from a steel plate that has reached room temperature after being rolled up,
The test piece given 5% tensile strain was heated to 170°C.
After heating for 20 minutes and cooling to room temperature, a tensile test is performed again, and when the stress required to yield is S2 , S2 - S1 (Kg/ mm2 ) is defined as the artificial age hardenability after processing. Si is an element that is effective in improving ductility and has the negative effect of inhibiting descaling and paint adhesion, and the composition range that can compromise both of these aspects is set to 0.05% and 0.9% Si. Al has the effect of denitrification as well as deoxidation, so
B is an essential element for effective use, and its lower limit is 0.01, where these effects are expected.
%, and the upper limit is 0.1 in order to saturate the deoxidizing effect and to suppress the increase in alumina inclusions.
%. If B is less than 0.0005%, the effect of increasing tensile strength and decreasing the yield ratio (based on the effect of promoting rapid cooling transformation phase formation) is small, and if it exceeds 0.006%, these effects are saturated and ductility deteriorates.
%B shall be 0.006%. If N is present in large amounts, it combines with B to form nitrides and nullifies the action of B, so N0.006%
limited to. The reason for limiting the hot rolling finishing exit temperature is that if it deviates from the range of 790 to 950°C, the yield ratio will increase and the ductility will deteriorate. This temperature range was determined from Examples described later. If the cooling rate after finishing is lower than 30°C/sec, no quenched transformation phase will be formed, and if it is higher than 200°C/sec, ductility will deteriorate. In addition, unless the coiling temperature is 450° C. or lower, the quenched transformation phase will not be formed and the second phase will become pearlite, making it impossible to ensure high strength of the steel sheet. Note that the winding temperature should be 450°C or lower, which is the temperature at which winding can be carried out, so there is no specific lower limit specified, but if the winding machine capacity is insufficient, winding at a lower temperature will Care must be taken because the winding of the steel plate becomes loose, which increases surface flaws and deteriorates the shape of the steel plate. Generally, winding is carried out at room temperature or above, and is often carried out at 100°C to 150°C or above, and the present invention may also be carried out in accordance with this. Particularly preferable conditions in the present invention are C 0.06
~0.12%, Mn 0.5% or more and less than 0.7%, Si 0.2~0.7
%, N<0.004%, B 0.002~0.005%, continuous hot rolling and quenching, coiling temperature below 300℃, tensile strength 45~60Kg/mm, low yield ratio of class 2 . This is the case when obtaining a steel plate. The present invention will be explained below using examples. Example 1 Analysis values are C 0.095%, Mn 0.66%, Si 0.70
%, P 0.005%, S 0.005%, Al 0.04%, B
0.0021%, N 0.002%, the balance is essentially Fe, and for reference, the corresponding components do not contain B, i.e. the analytical values are C 0.10%, Mn 0.65%, Si
0.71%, P 0.006%, S 0.005%, Al 0.05%,
Using steel with 0.002% N and the remainder essentially Fe, a 25 mm thick steel piece was soaked at 1100°C for 1 hour and heated to 14mm at 1030°C (first pass), then 950°C.
The material was rolled to a thickness of 5.6 mm (2nd pass) and 4.0 mm (3rd pass), and the temperature immediately after the completion of rolling in the 3rd pass was at various temperatures between 750 and 950°C. Then, the temperature was reached to 150°C at an average cooling rate of 60°C/sec, and then slow cooling was performed (20°C/hour) (that is, a simulation experiment was conducted in the case where the winding temperature was 150°C). The drawing shows the steel plate material obtained through the tensile test. From this figure, 0.1%C, 0.65%Mn, 0.7%Si
It can be seen that a significantly low yield ratio cannot be obtained without the addition of B, and that a low yield ratio and high strength can be achieved with the addition of B, and there is no adverse effect on ductility. In the case of steel with this composition, the hot-rolling exit temperature that minimizes the yield ratio and maximizes ductility is 850℃, but after that temperature -20℃
Satisfactory material results are shown in the temperature range of ~+40°C. Example 2 Using each steel shown in Table 1, a continuous hot rolling experiment similar to that in Example 1 was conducted, and the results shown in Table 2 were obtained. In Table 2, "best FT" indicates the hot-rolling finishing exit temperature at which the yield ratio is the lowest and the ductility is the best.

【表】【table】

【表】 第2表には最良FTにおける結果のみ示すが、
機械的性質と熱延仕上出側温度との関係のパター
ンがはいずれの鋼でも図面と同様であつて、実施
例1および図面に示した仕上出側温度許容幅と第
2表とを勘案すると、満足すべき低降伏比および
延性を与える熱延仕上出側温度域は、本発明鋼成
分範囲において790〜950℃となる。 実施例 3 本発明による鋼板の一つと、よりMn含有量の
高い比較鋼(先発明に記載のもの)とについて、
加工後人工時効硬化性を比較すると第3表の如く
である。明らかに、本発明による成分鋼におい
て、加工後人工時効硬化性が改善されている。こ
の原因は、Mn量を低減せしめたために、高いMn
量を含む鋼に比較してフエライト相中に残存する
固溶炭素量が若干増加したことによると推察され
る。
[Table] Table 2 shows only the results for the best FT.
The pattern of the relationship between mechanical properties and hot-rolling finishing exit temperature is the same for all steels as shown in the drawings, and considering Example 1 and the allowable finishing exit temperature range shown in the drawings and Table 2. The hot rolling finish exit temperature range that provides a satisfactory low yield ratio and ductility is 790 to 950°C in the steel composition range of the present invention. Example 3 Regarding one of the steel plates according to the present invention and a comparative steel with a higher Mn content (described in the previous invention),
Table 3 shows a comparison of the artificial age hardenability after processing. Clearly, the artificial age hardenability after processing is improved in the component steel according to the invention. This is due to the high Mn content due to the reduced Mn content.
This is presumed to be due to a slight increase in the amount of solid solute carbon remaining in the ferrite phase compared to steel containing a large amount of carbon.

【表】【table】

【表】 本発明鋼は、非金属介在物の形状を制御して特
に曲げ性、フランジ張出し性等を改善するため、
不純物Sの含有量に応じてCaまたは希土類元素
(REM)をCa%/S%>3あるいはREM%/S
%>5なる如く添加することが推奨される。
[Table] The steel of the present invention controls the shape of non-metallic inclusions to improve bendability, flange extension properties, etc.
Depending on the content of impurity S, Ca or rare earth element (REM) is added to Ca%/S%>3 or REM%/S.
It is recommended to add such that %>5.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、Bを添加した鋼と添加しない鋼に関す
る、熱延仕上出側温度FTと機械的性質の関係を
示す図表である。
The drawing is a chart showing the relationship between hot rolling finishing exit temperature FT and mechanical properties for steel with and without B added.

Claims (1)

【特許請求の範囲】 1 C 0.05〜0.15%、 Mn 0.4%以上0.7%未満、 Si 0.05〜0.9%、 Al 0.01〜0.1%、 B 0.0005〜0.006%を含み、 N0.006%、残部が実質的にFeからなる鋼を
熱延し、熱延仕上出側温度を790〜950℃の温度範
囲とし、30〜200℃/秒の平均冷却速度にて450℃
以下の温度に至らしめて巻取ることを特徴とする
加工用高強度複合組織熱延鋼板の製造方法。
[Claims] 1 Contains 0.05 to 0.15% of C, 0.4% to less than 0.7% of Mn, 0.05 to 0.9% of Si, 0.01 to 0.1% of Al, 0.0005 to 0.006% of B, 0.006% of N, and the balance is substantially A steel made of Fe is hot-rolled to 450°C at an average cooling rate of 30-200°C/sec, with a hot-rolled finish temperature in the range of 790 to 950°C.
A method for producing a high-strength composite-structure hot-rolled steel sheet for processing, characterized by rolling it up to the following temperature.
JP1194683A 1983-01-27 1983-01-27 High-strength hot-rolled steel sheet for working having composite structure Granted JPS59140332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194683A JPS59140332A (en) 1983-01-27 1983-01-27 High-strength hot-rolled steel sheet for working having composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194683A JPS59140332A (en) 1983-01-27 1983-01-27 High-strength hot-rolled steel sheet for working having composite structure

Publications (2)

Publication Number Publication Date
JPS59140332A JPS59140332A (en) 1984-08-11
JPS6235453B2 true JPS6235453B2 (en) 1987-08-01

Family

ID=11791804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194683A Granted JPS59140332A (en) 1983-01-27 1983-01-27 High-strength hot-rolled steel sheet for working having composite structure

Country Status (1)

Country Link
JP (1) JPS59140332A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152655A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd High-strength low-carbon steel material having superior heavy workability
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586937A (en) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd Production of hot-rolled high-tensile steel plate for working

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586937A (en) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd Production of hot-rolled high-tensile steel plate for working

Also Published As

Publication number Publication date
JPS59140332A (en) 1984-08-11

Similar Documents

Publication Publication Date Title
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JPH06293910A (en) Production of high strength hot rolled steel plate excellent in bore expandability and ductility
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP2652539B2 (en) Method for producing composite structure high strength cold rolled steel sheet with excellent stretch formability and fatigue properties
JPH0426744A (en) Manufacture of hot-dip galvanized high tensile strength cold rolled steel sheet
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JPS6235453B2 (en)
JPS622611B2 (en)
JPH0567684B2 (en)
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPH03180426A (en) Production of high-strength hot rolled steel plate excellent in spreadability
JPS6150125B2 (en)
KR0143478B1 (en) The making method of coil strip with ductile
JPS61170518A (en) Production of high-strength hot rolled steel sheet having excellent formability
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JP3737558B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS5842753A (en) High gamma value type high strength cold rolled steel plate having composite structure and its manufacture
JP2981629B2 (en) Method for manufacturing bake hardenable steel sheet with composite structure excellent in deep drawability
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP2829510B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility and workability
JPH08269538A (en) Production of hot rolled steel plate excellent in stretch-flange formability
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP4002315B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
KR100256335B1 (en) The manufacturing method for low carbon steel wire