JPH02142187A - Insulated gate type field effect transistor - Google Patents

Insulated gate type field effect transistor

Info

Publication number
JPH02142187A
JPH02142187A JP29567488A JP29567488A JPH02142187A JP H02142187 A JPH02142187 A JP H02142187A JP 29567488 A JP29567488 A JP 29567488A JP 29567488 A JP29567488 A JP 29567488A JP H02142187 A JPH02142187 A JP H02142187A
Authority
JP
Japan
Prior art keywords
inp
gate
semiconductor
misfet
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29567488A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishimura
石村 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29567488A priority Critical patent/JPH02142187A/en
Publication of JPH02142187A publication Critical patent/JPH02142187A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a MISFET using InP suitable for high-frequency, high-output operation by specifying the surface orientation of a semiconductor crystal which is in contact with a gate insulator and forms an interface of insulator/ semiconductor. CONSTITUTION:At first, Si ions are implanted by a dose of 4X10<12>/cm<2> into a semi-insulating substrate InP (1) having the surface orientation of (111) at accelerating energy of 70keV. Thereafter, annealing is performed in an Ar atmosphere containing phosphine (PH3) of about 5Torr at 730 deg.C for 10 minutes. Thus the implanted Si is activated. An N-type operating layer 2 having the carrier concentration of about 5X10<17>/cm<3> is formed. Then, mesa etching for element isolation is performed. Then, a plasma generating part and an indirect plasma CVD device wherein a reaction part for depositing a film is formed in a separated pattern in space are used, and a PSG film 3 is deposited by 60nm at a substrate temperature of 300 deg.C. Then, AuGe-Ni is formed and heat- treated for forming alloy to form a source electrode 4S and a drain electrode 4D. Then a gate electrode 4G is formed with Al through a gate forming PEP step and an evaporating lift-off step. Thus a depression type InP MISFET is completed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は化合物半導体を用いた絶縁ゲート型電界効果ト
ランジスタに関し、特にその構成元素に少なくともイン
ジウムを含む化合物半導体、とりわけInPを用いた高
周波、高出力動作に好適な絶縁ゲート型電界効果1ヘラ
ンジスタ(以下MISFETと略す)に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an insulated gate field effect transistor using a compound semiconductor, and particularly to a compound semiconductor containing at least indium as a constituent element, particularly InP. The present invention relates to an insulated gate field effect transistor (hereinafter abbreviated as MISFET) suitable for high frequency, high output operation.

(従来の技術) InPは、現在マイクロ波半導体素子用材料の主流を占
めているGaAsに比べても、電子飽和速度が大きく、
また熱伝導率が大きい等の特性を有しているため、 G
aAsを上回る高周波動作が期待される半導体素子用材
料として注目を集めている。
(Prior art) InP has a higher electron saturation speed than GaAs, which is currently the mainstream material for microwave semiconductor devices.
Also, because it has characteristics such as high thermal conductivity, G
It is attracting attention as a material for semiconductor devices, which is expected to have higher frequency operation than aAs.

InPでは、GaAsのように逆方向リーク電流の小さ
い良好なショットキ接合を形成することが難しいため、
金属/絶縁体/半導体構造(以下MISと略す)をゲー
トとするMISFIETが中心に開発されてきた。
With InP, it is difficult to form a good Schottky junction with low reverse leakage current as with GaAs.
MISFIETs having a metal/insulator/semiconductor structure (hereinafter abbreviated as MIS) as a gate have been mainly developed.

InP MISI・”ETを実用化するにあたっての最
も大きな問題点の一つは、ドレイン電流が時間と共に変
動する所謂電流ドリフトが生ずることであった。電流ド
リフトの〃x囚については現在のところ不明な点も多い
が、絶Rn / InP (IS界面)に存在する界面
準位への電子の充放電により、動作チャンネルが時間と
共に変調を受けることが主な原因の一つと考えられる。
One of the biggest problems in putting InP MISI・ET into practical use was the occurrence of so-called current drift, in which the drain current fluctuates over time.The problem with current drift is currently unknown. Although there are many points, one of the main causes is considered to be that the operating channel is modulated over time due to charging and discharging of electrons to the interface level existing at the absolute Rn/InP (IS interface).

従ってIs界面の界面準位を極力低減させることが、電
流ドリフトを低減させるための必要条件となる。
Therefore, reducing the interface state of the Is interface as much as possible is a necessary condition for reducing current drift.

従来、化合物半導体のMISF訂開発は半導体結晶の(
100)面を用いてなされてきた6しかしながら、従来
のように(100)面に形成されたIS界面では。
Conventionally, MISF revision development of compound semiconductors has been carried out using semiconductor crystal (
However, the IS interface formed on the (100) plane as in the past.

種々の絶縁膜形成方法1例えば熱酸化法、陽極酸化法、
化学的気相堆積法(CVD)法、光CVD法などにより
1例えば、In2O,膜、陽極酸化膜、Sin。
Various insulating film forming methods 1 For example, thermal oxidation method, anodic oxidation method,
For example, an In2O film, an anodic oxide film, a Sin film, etc. by a chemical vapor deposition (CVD) method, a photo-CVD method, or the like.

膜、 Si3N4膜など種々の絶縁膜を形成することが
試みられてきたにもかかわらず、未だに、界面準位密度
を満足なレベルにまで低下させ得るMIS界面は見いだ
されていない、このため、 InP等の化合物半導体で
は、電流ドリフトが生じないMISFETも実用化され
ていないのが実情であった゛。
Although attempts have been made to form various insulating films such as InP film and Si3N4 film, no MIS interface has been found that can reduce the interface state density to a satisfactory level. The reality is that MISFETs that do not cause current drift have not been put into practical use with compound semiconductors such as the above.

(発明が解決しようとする課題) 以上述べたように、InPのような化合物半導体では2
従来のように(100)面を用いた場合、界面準位密度
の小さな、良好な特性を有するIs界面を形成し得る絶
縁膜、及びその堆積方法が見出せていなかった。このた
め、電流ドリフトを生じない化合物半導体の阿l5FI
ET 、例えば、 InP MISFETは実用化され
ていなかった。
(Problem to be solved by the invention) As stated above, in compound semiconductors such as InP, 2
When a (100) plane is used as in the past, an insulating film capable of forming an Is interface with a small interface state density and good characteristics, and a method for depositing the same, have not been found. Therefore, Al5FI, a compound semiconductor that does not cause current drift,
ET, for example, InP MISFET, had not been put into practical use.

本発明は、上記問題点を解決すべくなされたもので、化
合物半導体を用いた電流ドリフトを生じないMISFE
Tに関し、特にインジウム(In)を少なくともその構
成元素として含む化合物半導体、とりわけInPを用い
た高周波、高出力動作に好適なMISFIETを堤供す
ることを目的とする。
The present invention has been made to solve the above problems, and is a MISFE that uses a compound semiconductor and does not cause current drift.
Regarding T, an object of the present invention is to provide a MISFIET suitable for high-frequency, high-output operation using a compound semiconductor, especially InP, containing at least indium (In) as a constituent element.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明では、化合物半導体結
晶層を動作層とするMISFETにおいて、ゲート絶縁
体に接し絶縁体/半導体界面を形成する半導体結晶の面
方位を(111) とするものであり、トランジスタの
動作層を形成する化合物半導体が、インジウム(In)
を少なくともその構造元素として含むこと、あるいは、
ゲート絶縁体に接する半導体層が、InPであることを
実施態様としている。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, in a MISFET having a compound semiconductor crystal layer as an active layer, the plane orientation of the semiconductor crystal that is in contact with the gate insulator and forms the insulator/semiconductor interface is (111), and the compound semiconductor forming the active layer of the transistor is indium (In).
contains as at least its structural element, or
In this embodiment, the semiconductor layer in contact with the gate insulator is made of InP.

尚、動作層を形成する半導体層と、ゲート絶縁体に接す
る半導体層は同一の半導体で形成されていても、あるい
は異なる半導体で形成されていてもよい。
Note that the semiconductor layer forming the active layer and the semiconductor layer in contact with the gate insulator may be formed of the same semiconductor, or may be formed of different semiconductors.

(作 用) 本発明は、種々実験、検討を重ねた結果、m+)面など
の(111)面に形成したIS界面のほうが、(111
)面に形成したIS界面よりも界面準位密度が低減され
るという事実を見出してなされたものであり、界面準位
に付随したlMISFETのドレイン電流ドリフトを抑
えることが出来る。
(Function) As a result of various experiments and studies, the present invention has found that IS interfaces formed on (111) planes such as m+) planes are better than (111) planes.
This was done based on the discovery of the fact that the interface state density is lower than that of an IS interface formed on the ) surface, and it is possible to suppress the drain current drift of the IMISFET accompanying the interface state.

(実施例) 以下、本発明の一つの実施例を図面を参照して説明する
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.

第1図は、この発明に係るデイブレジョン型InP M
ISFETの概略の断面図である。この第1図において
、1は半絶縁性(III)InP基板、2はn型InP
動作層、3は燐珪酸ガラス(psc)ゲート絶縁膜。
FIG. 1 shows a day-length InP M according to the present invention.
FIG. 2 is a schematic cross-sectional view of an ISFET. In FIG. 1, 1 is a semi-insulating (III) InP substrate, 2 is an n-type InP substrate, and 2 is an n-type InP substrate.
The active layer 3 is a phosphosilicate glass (PSC) gate insulating film.

4S、 4Dはn型動作層にオーム性接触となるAuG
eがらなり、それぞれソース電極、トレインillであ
り、4GはA1のゲート電極である。
4S and 4D are AuG that makes ohmic contact with the n-type active layer.
4G is the gate electrode of A1, and 4G is the gate electrode of A1.

以下に上記実施例に示したInP MISFETの製造
方法の一例を工程順に第2図〜第4図によって説明する
。先ず、第2図に示すように(111)面方位を有する
半絶縁性基板InP(1)にSiイオンを加速エネルギ
70kcVでドースji 4 X LO”/cd注入し
た後、ホスフィン(Pl+、)を約5 Torr含んだ
Ar雰囲気中で130℃10分間のアニールを行なって
注入Sjを活性化させ、キャリア濃度が概略2.5 X
 (017/dのn型動作層2を形成する。続いて、素
子分離のためのメサエッチングを行なった後(図示せず
)、後に説明する第5図に示すように、プラズマ発生部
と、膜を堆積する反応部を空間的に分離し構成されたイ
ンダイレクトプラズマcvn装置を用い、基板温度30
0℃にてPSG膜3を60nm堆積する。次に、第4図
に示すように、通常のPEP法、蒸着法、およびリフト
オフ法によって、AuGe−Ni を形成し合金化熱処
理を施して、ソースj1i極、ドレインff1ti4s
、 4Dを形成する。続いて、ゲート形成用PEP工程
、蒸着。
An example of a method for manufacturing the InP MISFET shown in the above embodiment will be explained below in the order of steps with reference to FIGS. 2 to 4. First, as shown in FIG. 2, Si ions are implanted into a semi-insulating substrate InP (1) having a (111) plane orientation at a dose of ji 4 The implantation Sj was activated by annealing at 130°C for 10 minutes in an Ar atmosphere containing about 5 Torr, and the carrier concentration was approximately 2.5X.
(An n-type active layer 2 of 017/d is formed. Subsequently, after performing mesa etching for element isolation (not shown), as shown in FIG. Using an indirect plasma CVN system in which the reaction section for film deposition is spatially separated, the substrate temperature is 30°C.
A 60 nm thick PSG film 3 is deposited at 0°C. Next, as shown in FIG. 4, AuGe-Ni is formed by the usual PEP method, vapor deposition method, and lift-off method, and alloying heat treatment is performed to form the source j1i electrode and the drain ff1ti4s.
, forming 4D. Next, PEP process for gate formation and vapor deposition.

リフトオフ工程を経てAlでゲート電極6が形成され、
第1図に示すようなデイブレジョン型InPMISFE
Tが完成する。
A gate electrode 6 is formed of Al through a lift-off process,
Daybreak type InPMISFE as shown in Figure 1
T is completed.

第5図において、51はマイクロ波励起のプラズマ生成
器、52は反応容器、53は第2図にて説明した工程を
経た(110)InP基板、54はこれを保持するため
のサセプタであり、このサセプタ中にはヒータが埋め込
まれており、前記基板を所望の温度に加熱できるように
なっている。前記プラズマ生成器にはガス導入管が、窒
素用55と酸素用5Gの二系統設けられており、切り替
えコック57により切り替え可能となっている。生成さ
れたプラズマは。
In FIG. 5, 51 is a microwave-excited plasma generator, 52 is a reaction vessel, 53 is an InP substrate (110) that has undergone the process explained in FIG. 2, and 54 is a susceptor for holding this. A heater is embedded in this susceptor so that the substrate can be heated to a desired temperature. The plasma generator is provided with two gas introduction pipes, one for nitrogen 55 and one for oxygen 5G, which can be switched by a switching cock 57. The generated plasma.

導入管58を通じて反応容器52に導入される。この反
応容器52にはシラン(Sil14)及びホスフィン(
PH3)等の原料ガスを導入するための2本の導入管5
9゜60が設けられている。さらに、反応容I@52の
下方にはガス排出口61が設けられ、その先は排気ポン
プ(図示せず)に連なり、反応容器52中を1O−3T
orr程度の減圧状態にすることが可能な構成になって
いる。
It is introduced into the reaction vessel 52 through the introduction pipe 58. This reaction vessel 52 contains silane (Sil14) and phosphine (
Two introduction pipes 5 for introducing raw material gas such as PH3)
9°60 is provided. Further, a gas exhaust port 61 is provided below the reaction volume I@52, and the end thereof is connected to an exhaust pump (not shown), and the gas discharge port 61 is connected to an exhaust pump (not shown), and the gas discharge port 61 is connected to the exhaust pump (not shown), and the gas discharge port 61 is connected to the exhaust pump (not shown).
The structure is such that it is possible to create a reduced pressure state of about orr.

尚、上記実施例ではプレーナ型のMISFETについて
説明したが、本発明のMISFETは何らこれらに限定
されるものではなく、例えば、ゲート部がリセス構造を
とっていてもよいことは勿論である。また、上記実施例
では本発明のMISFETを製造する方法において、動
作層2を半絶縁性(111)InP基板にイオン注入法
によって形成する場合を説明したが。
Incidentally, in the above embodiment, a planar type MISFET has been described, but the MISFET of the present invention is not limited thereto, and it goes without saying that, for example, the gate portion may have a recessed structure. Further, in the above embodiment, in the method of manufacturing a MISFET of the present invention, the case where the active layer 2 is formed on a semi-insulating (111) InP substrate by ion implantation has been described.

例えば、(111)面基板を用い、分子線結晶成長(M
BE)法などのエピタキシャル成長技術を使って形成す
ることも出来る。
For example, using a (111) plane substrate, molecular beam crystal growth (M
It can also be formed using an epitaxial growth technique such as BE) method.

尚、上記実施例に於ては、(111)面の場合のみにつ
いて説明したが(111,)面に属する面であれば他の
面方位、例えば(111)面等であっても良い。
In the above embodiment, only the case of the (111) plane has been described, but other plane orientations may be used as long as the plane belongs to the (111,) plane, for example, the (111) plane.

また、  (111)面から数度のオフアングルを有す
る面であっても本発明の効果は変らない。
Further, even if the surface has an off angle of several degrees from the (111) plane, the effects of the present invention will not change.

上記実施例で説明したのと同様の方法で、キャリア濃度
5 X 10”/cJのn型(111)基板に約60n
a+のPSG膜を堆積してMISダイオードを形成し、
周波数IMIIzにおいて容量−電圧(C−V)特性を
ill’l定したところ(バイアスは、 +10−40
−+−IQ−+ 0−++tovと掃引した)、第6図
実線に示すごとく、ヒステリシスがほとんどなく、8祉
の電圧に対する変化も急峻な、良好な結果が得られた。
Approximately 60 nm was applied to an n-type (111) substrate with a carrier concentration of 5
Deposit an a+ PSG film to form a MIS diode,
Ill'l determined the capacitance-voltage (C-V) characteristics at frequency IMIIz (bias is +10-40
-+-IQ-+ 0-++tov), as shown by the solid line in Figure 6, good results were obtained with almost no hysteresis and a steep change in voltage.

本発明の効果を明確にするために、同一のキャリア濃度
を有する(100) n型基板に、同一の方法で形成し
たMISダイオードのC−■特性も図中点線で併せて示
しである。
In order to clarify the effects of the present invention, the C-■ characteristics of MIS diodes formed by the same method on (100) n-type substrates having the same carrier concentration are also shown by dotted lines in the figure.

(1,1+、 )面に形成したMIS界面は、(100
)面に形成したものに比較し、容量(C)の変化が急峻
で、界面準位が低下していることが示されている。
The MIS interface formed on the (1,1+, ) plane is (100
) It is shown that the change in capacitance (C) is steeper than that formed on the surface, and the interface state is lowered.

」二連の方法で製造された本発明のInP MISFE
Tのトレイン電流ドリフトを測定したところ、第7図に
実線で示すごとく、ドリフト量は1mA以内と極めて小
さなものであった。尚、第7図はソース、ドレイン間に
5vの電圧を印加し、ゲートバイアス電圧を時刻(t)
=OでOvから一2vまでステップ状に変化させた場合
のドレイン電流の時間変化を示したものである。本発明
の効果を明確にするために、同一形状のにl5FETを
(100)基板上に同一方法で形成して同様の81q定
を行なった結果を図中破線で合せて示しである。ドリフ
ト特性が大幅に向上したことが分かる。
” InP MISFE of the present invention manufactured by a duplicate method
When the train current drift of T was measured, the amount of drift was extremely small, within 1 mA, as shown by the solid line in FIG. In addition, in Fig. 7, a voltage of 5V is applied between the source and drain, and the gate bias voltage is changed at time (t).
It shows the time change of the drain current when it is changed stepwise from Ov to -2V at =O. In order to clarify the effects of the present invention, the results of similar 81q determinations made by forming 15FETs of the same shape on a (100) substrate by the same method are also shown in the figure with broken lines. It can be seen that the drift characteristics have been significantly improved.

以上は半導体動作層がInPの場合について説明したが
、例えばInGaAsなどのInを含む混晶半導体を動
作層とした場合にも適用できる。また、第8図に示すご
と< 、 InGaAsを動作層とし、InPをその上
に積層した構造のFETにも適用できることは」二連の
説明から明らかである。上記第8図に示したような構造
において、ゲート電極下のInPは不純物がドープされ
ていてもいなくても本発明の効果に影響はない。なお、
第8図において、81は(111)半絶縁性InP基板
、82はn型I n G a A s動作層、82aは
InP層、83はPSGゲート絶縁層、84Gはグート
′11!極、84S、84Dはそれぞれソース電極、ド
レイン電極である。
Although the above description has been made for the case where the semiconductor active layer is InP, the present invention can also be applied to a case where the active layer is a mixed crystal semiconductor containing In, such as InGaAs. Furthermore, it is clear from the two series of explanations that the present invention can also be applied to an FET having a structure in which InGaAs is used as the active layer and InP is laminated thereon, as shown in FIG. In the structure shown in FIG. 8, whether or not the InP under the gate electrode is doped with impurities does not affect the effects of the present invention. In addition,
In FIG. 8, 81 is a (111) semi-insulating InP substrate, 82 is an n-type InGaAs active layer, 82a is an InP layer, 83 is a PSG gate insulating layer, and 84G is a GUT'11! The poles 84S and 84D are a source electrode and a drain electrode, respectively.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、絶縁ゲート部MI
S界面の界面準位密度を大幅に減少させ、ドレイン電流
の時間ドリフト量を、従来のMISFETに比べて大幅
に低減させ得る化合物半導体MISFETを提供するこ
とが可能となった。
As described above, according to the present invention, the insulated gate portion MI
It has become possible to provide a compound semiconductor MISFET that can significantly reduce the interface state density at the S interface and significantly reduce the amount of time drift of drain current compared to conventional MISFETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るInP MISFETを示す概
略の断面図、第2図及至第4図は本発明に係るInPM
ISFETの製造方法の一例を工程順に説明する断面図
、第5図はインダイレクトプラズマCVD装置を示す図
、第6図は本発明のゲートMIS構造と同一の構造を有
するMISダイオードのC−V特性を、従来のMISダ
イオードのC−v特性と比較して示す線図、第7図は本
発明の実施例につきInP MISFETのドレイン電
流の時間変化を、従来のMISFETと比較して示す線
図、第8図は本発明の他の実施例を示す断面図である。 1、 81=4nP基板 2.82・・・動作層 3.83・・・ゲート絶縁膜 4S、84S・・・ソース電極 4D、84D・・・ドレイン電極 4G、 84G・・・ゲート電極 82a・・・・・・・・・InP層 代理人 弁理士 大 胡 典 夫 S +D コ 図 電圧− 第 (v) (rrLAン f30ト 0O FRP:i(t> 1000 (SeC)
FIG. 1 is a schematic cross-sectional view showing an InP MISFET according to the present invention, and FIGS.
A cross-sectional view explaining an example of an ISFET manufacturing method step by step, FIG. 5 is a diagram showing an indirect plasma CVD apparatus, and FIG. 6 is a CV characteristic of a MIS diode having the same structure as the gate MIS structure of the present invention. FIG. 7 is a diagram showing the time change of the drain current of an InP MISFET according to an embodiment of the present invention in comparison with that of a conventional MISFET. FIG. 8 is a sectional view showing another embodiment of the present invention. 1, 81=4nP substrate 2.82...Active layer 3.83...Gate insulating film 4S, 84S...Source electrode 4D, 84D...Drain electrode 4G, 84G...Gate electrode 82a...・・・・・・InP layer agent Patent attorney Norio Ogo S +D Figure voltage - No. (v) (rrLAnf30to0O FRP:i(t>1000 (SeC)

Claims (3)

【特許請求の範囲】[Claims] (1)動作層が化合物半導体の結晶体層でなる絶縁ゲー
ト型電界効果トランジスタにおいて、ゲート絶縁体に接
し絶縁体/半導体界面を形成する半導体結晶の面方位が
(111)であることを特徴とする絶縁ゲート型電界効
果トランジスタ。
(1) An insulated gate field effect transistor whose active layer is a compound semiconductor crystal layer is characterized in that the plane orientation of the semiconductor crystal in contact with the gate insulator and forming an insulator/semiconductor interface is (111). Insulated gate field effect transistor.
(2)動作層を形成する化合物半導体が少なくともその
構成元素にインジウムを含むことを特徴とする請求項1
に記載の絶縁ゲート型電界効果トランジスタ。
(2) Claim 1, wherein the compound semiconductor forming the active layer contains indium at least as a constituent element.
The insulated gate field effect transistor described in .
(3)ゲート絶縁体に接する半導体層がInPであるこ
とを特徴とする請求項1、または請求項2に記載の絶縁
ゲート型電界効果トランジスタ。
(3) The insulated gate field effect transistor according to claim 1 or 2, wherein the semiconductor layer in contact with the gate insulator is made of InP.
JP29567488A 1988-11-22 1988-11-22 Insulated gate type field effect transistor Pending JPH02142187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29567488A JPH02142187A (en) 1988-11-22 1988-11-22 Insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29567488A JPH02142187A (en) 1988-11-22 1988-11-22 Insulated gate type field effect transistor

Publications (1)

Publication Number Publication Date
JPH02142187A true JPH02142187A (en) 1990-05-31

Family

ID=17823720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29567488A Pending JPH02142187A (en) 1988-11-22 1988-11-22 Insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPH02142187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654984C1 (en) * 2017-07-05 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Method for manufacturing doped regions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654984C1 (en) * 2017-07-05 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Method for manufacturing doped regions

Similar Documents

Publication Publication Date Title
US4436770A (en) Oxynitride film and its manufacturing method
US5196907A (en) Metal insulator semiconductor field effect transistor
JPH0794758A (en) Manufacture of delta-doped quantum well type field-effect transistor
US3663870A (en) Semiconductor device passivated with rare earth oxide layer
EP0064829B1 (en) High electron mobility semiconductor device and process for producing the same
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
CN210897292U (en) Gallium nitride epitaxial layer and semiconductor device
CN116013989A (en) With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method
Chen et al. Record low SiO2/Si interface state density for low temperature oxides prepared by direct plasma‐enhanced chemical vapor deposition
JP3436278B2 (en) Field effect transistor
EP0113983B1 (en) Fabricating a semiconductor device by means of molecular beam epitaxy
JPH02142187A (en) Insulated gate type field effect transistor
JP3257077B2 (en) Method of manufacturing MIS type semiconductor device
JPH02142188A (en) Insulated gate type field effect transistor
US5214003A (en) Process for producing a uniform oxide layer on a compound semiconductor substrate
US5094964A (en) Method for manufacturing a bipolar semiconductor device
GB2179679A (en) Forming a dielectric film and semiconductor device including said film
JPH033330A (en) Formation of insulating film onto semiconductor crystal substrate
JP2780501B2 (en) Semiconductor wafer with insulating film and method of manufacturing the same
JPH01289256A (en) Formation of insulating film on semiconductor crystalline substrate
JP3228979B2 (en) Semiconductor device and method of manufacturing the same
Shokrani et al. Plasma Enhanced Chemical Vapor Deposited Silicon and Silicon Dioxide Films for Indium Phosphide MISFET Technology
Kapoor et al. Plasma Deposited SIo2/Si Insulating gate properties for compound semiconductor technology'
JPH04352330A (en) Manufacture of mis semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device