CN116013989A - With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method - Google Patents

With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method Download PDF

Info

Publication number
CN116013989A
CN116013989A CN202310208722.5A CN202310208722A CN116013989A CN 116013989 A CN116013989 A CN 116013989A CN 202310208722 A CN202310208722 A CN 202310208722A CN 116013989 A CN116013989 A CN 116013989A
Authority
CN
China
Prior art keywords
layer
reaction chamber
gallium oxide
epitaxial wafer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310208722.5A
Other languages
Chinese (zh)
Inventor
周弘
孙斯瀚
王晨璐
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202310208722.5A priority Critical patent/CN116013989A/en
Publication of CN116013989A publication Critical patent/CN116013989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The invention discloses a silicon dioxide (SiO) containing material 2 Vertical structure Ga of barrier layer 2 O 3 The transistor and the preparation method mainly solve the problem that the existing vertical gallium oxide field effect transistor does not block the leakage structure between the source and the drain, resulting in poor device performance and reliability. The device comprises a drain electrode, a gallium oxide substrate layer, a gallium oxide epitaxial layer, a gate oxide layer and a gate electrode from bottom to top; the inner periphery of the epitaxial layer is provided with SiO 2 The current blocking layer is provided with a vertical heavily doped conductive channel at the center, an n-type conductive layer grown by ALD is arranged above the current blocking layer, and a source electrode is arranged above the n-type conductive layer. The invention is provided with vertical heavy doped conductive channelFor the existing structure, the on-resistance of the device is reduced; and due to the arrangement of SiO at the inner periphery of the epitaxial layer 2 Compared with the existing structure, the blocking layer effectively reduces the electric leakage between the source and the drain of the device, improves the breakdown voltage of the device, and can be used for preparing high-power integrated circuits.

Description

具有SiO2阻挡层的垂直结构Ga2O3晶体管及制备方法Vertical structure Ga2O3 transistor with SiO2 barrier layer and its preparation method

技术领域technical field

本发明属于微电子技术领域,特别涉及一种垂直结构Ga2O3场效应晶体管,可用于制作高压电路变压器电路芯片、高速铁路输电系统和民用电动车充电模块等。The invention belongs to the technical field of microelectronics, and in particular relates to a Ga 2 O 3 field effect transistor with a vertical structure, which can be used for making high-voltage circuit transformer circuit chips, high-speed railway power transmission systems, and charging modules for civilian electric vehicles.

技术背景technical background

随着第四代超宽禁带半导体的发展,氧化镓材料逐渐成为新一代半导体材料的焦点。目前可制备的氧化镓材料有α、β、γ、δ和ε五种晶型,由于其他几种亚稳定相在进行高温工艺处理时会转化成β-Ga2O3,所以单斜的β-Ga2O3具有最好的热稳定性,目前大部分研究工作也都是围绕β-Ga2O3展开的。β-Ga2O3具有为4.85eV的超大的禁带宽度,这一特征使其电离率较低,从而击穿场强较高,理论计算极限约为8MV/cm,超过第一代半导体Si约20倍,第三代半导体SiC和GaN一到二倍。此外,由于β-Ga2O3具有较高的电子迁移率、介电常数和临界电场强度,其Baliga优质达到4H-SiC的3倍、GaN的1.5倍。另外,β-Ga2O3材料的导通电阻理论值很低,因此对于相同击穿电压条件下的单极器件,其导通损耗比SiC、GaN器件低至少一个数量级,有利于提高功率器件的效率。所以氧化镓材料在功率器件的研究和制作方面具有巨大的潜力和发展前景。With the development of the fourth-generation ultra-wide bandgap semiconductors, gallium oxide materials have gradually become the focus of the new generation of semiconductor materials. At present, there are five crystal forms of gallium oxide materials that can be prepared: α, β, γ, δ, and ε. Since several other metastable phases will be converted into β-Ga 2 O 3 during high-temperature processing, the monoclinic β -Ga 2 O 3 has the best thermal stability, and most of the current research work is carried out around β-Ga 2 O 3 . β-Ga 2 O 3 has a large forbidden band width of 4.85eV. This feature makes its ionization rate low, so the breakdown field strength is high. The theoretical calculation limit is about 8MV/cm, which exceeds the first-generation semiconductor Si About 20 times, the third generation semiconductor SiC and GaN one to two times. In addition, due to the high electron mobility, dielectric constant and critical electric field strength of β-Ga 2 O 3 , its Baliga quality is 3 times that of 4H-SiC and 1.5 times that of GaN. In addition, the theoretical value of on-resistance of β-Ga 2 O 3 material is very low, so for unipolar devices under the same breakdown voltage condition, its conduction loss is at least an order of magnitude lower than that of SiC and GaN devices, which is conducive to improving power device s efficiency. Therefore, gallium oxide materials have great potential and development prospects in the research and manufacture of power devices.

氧化镓场效应晶体管主要有水平结构和垂直结构两类。由于工艺和结构更加成熟,在目前发布的文章中,氧化镓场效应晶体管还是以水平结构为主。对于水平结构场效应晶体管,如果想获得较大的饱和电流和较高的击穿电压,就必须增大沟道的尺寸,进而牺牲芯片面积,且在增大面积的同时又会由于体材料缺陷总数的增加带来新的可靠性问题。Gallium oxide field effect transistors mainly have two types: horizontal structure and vertical structure. Due to the more mature process and structure, in the currently published articles, the gallium oxide field effect transistor is still dominated by a horizontal structure. For horizontal field effect transistors, if you want to obtain a larger saturation current and a higher breakdown voltage, you must increase the size of the channel, thereby sacrificing the chip area, and at the same time increasing the area due to bulk material defects The increase in the total number brings new reliability problems.

为了充分发挥氧化镓材料在耐高压和大功率方面的优势,垂直结构的氧化镓场效应晶体管才是更好的选择,对于垂直结构器件,其反偏电场分布在整块体材料上,在增大电场承受区域的同时不仅可避免表面击穿带来的可靠性问题,而且可获得更高的击穿电压,并且由于其结构特点,可以很容易地获得较大的导通电流,并在不多牺牲芯片面积的情况下,通过提高漂移区的厚度来获得更高的击穿电压。In order to give full play to the advantages of gallium oxide materials in terms of high voltage resistance and high power, vertical structure gallium oxide field effect transistors are a better choice. For vertical structure devices, the reverse bias electric field is distributed on the entire bulk material, increasing the The large electric field bearing area can not only avoid the reliability problems caused by the surface breakdown, but also obtain a higher breakdown voltage, and because of its structural characteristics, it is easy to obtain a larger conduction current, and without In the case of sacrificing more chip area, a higher breakdown voltage can be obtained by increasing the thickness of the drift region.

然而,由于氧化镓材料的价带过于平缓和受主电离能过大的影响,在氧化镓材料和器件的制备过程中很难实现P型掺杂,无法像传统垂直结构一样采用pn结来对源漏之间的漏电进行有效的阻隔。However, due to the flat valence band of gallium oxide materials and the influence of excessive principal ionization energy, it is difficult to achieve p-type doping in the preparation process of gallium oxide materials and devices, and it is impossible to use pn junctions like traditional vertical structures to The leakage between source and drain is effectively blocked.

目前垂直型氧化镓场效应晶体管有两种结构:At present, there are two structures of vertical gallium oxide field effect transistors:

第一种为早期工作中被采用的非平面的多鳍型结构,如图1所示,该结构自下而上包括漏电极、氧化镓衬底层、氧化镓漂移层、鳍型沟道、氧化铝栅氧化层、二氧化硅隔离层、栅电极和源电极。该结构通过侧壁调制的方法来实现源漏之间的电学隔离,成功实现了垂直型氧化镓场效应晶体管的基本功能。但是鳍型结构的沟槽栅极氧化层的拐角处会受到强烈的场应力使器件的可靠性降低,击穿电压只有1000V,并且由于鳍型结构的工艺实现复杂、精度要求高使器件的生产过程十分困难。The first is the non-planar multi-fin structure used in early work, as shown in Figure 1, the structure includes drain electrode, gallium oxide substrate layer, gallium oxide drift layer, fin channel, oxide oxide from bottom to top. Aluminum gate oxide layer, silicon dioxide isolation layer, gate electrode and source electrode. The structure realizes the electrical isolation between the source and the drain through the method of sidewall modulation, and successfully realizes the basic function of the vertical gallium oxide field effect transistor. However, the corners of the trench gate oxide layer of the fin structure will be subject to strong field stress, which will reduce the reliability of the device, and the breakdown voltage is only 1000V, and due to the complex process and high precision requirements of the fin structure, the production of the device The process is very difficult.

第二种为具有全离子注入电流阻挡层结构的氧化镓场效应晶体管,如图2所示,该结构自下而上包括漏电极、锡重掺杂氧化镓衬底层、硅掺杂氧化镓漂移层、镁离子注入电流阻挡层、硅离子掺杂氧化镓沟道、源电极、氧化铝栅氧化层和栅电极,该结构通过引入平面栅结构降低了垂直型氧化镓场效应晶体管的生产难度,并且避免了器件拐角处强烈的场应力问题,但是由于该结构器件的制备过程中需要高温退火使注入离子激活,该高温会导致引入的电子陷阱中心离子发生扩散,使源漏之间产生非理想的漏电通道,从而产生较大的泄漏电流,其击穿电压也还无法超过300V,器件性能十分不稳定。The second type is a gallium oxide field effect transistor with a full ion implantation current blocking layer structure, as shown in Figure 2, the structure includes a drain electrode, a heavily tin-doped gallium oxide substrate layer, a silicon-doped gallium oxide drift Layer, magnesium ion implantation current blocking layer, silicon ion doped gallium oxide channel, source electrode, aluminum oxide gate oxide layer and gate electrode, this structure reduces the production difficulty of vertical gallium oxide field effect transistors by introducing a planar gate structure, It also avoids the problem of strong field stress at the corner of the device, but due to the high temperature annealing required to activate the implanted ions during the preparation of the device, the high temperature will cause the introduced electron trap center ions to diffuse, resulting in non-ideal between the source and drain. Leakage channel, resulting in a large leakage current, the breakdown voltage can not exceed 300V, the performance of the device is very unstable.

发明内容Contents of the invention

本发明的目的在于针对上述现有技术的不足,提出一种具有SiO2阻挡层的垂直结构Ga2O3晶体管及制备方法,以提高器件击穿电压,避免源漏之间由于热扩散产生的泄漏电流,提升晶体管漏极输出电流,并解决高掺杂欧姆区域生长工艺困难的问题。The purpose of the present invention is to address the above-mentioned deficiencies in the prior art, and propose a vertical Ga2O3 transistor with a SiO2 barrier layer and its preparation method, so as to improve the breakdown voltage of the device and avoid thermal diffusion between the source and drain. Leakage current, increase transistor drain output current, and solve the difficult problem of high-doped ohmic region growth process.

为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:

1.一种具有SiO2阻挡层的垂直结构Ga2O3晶体管,包括氧化镓衬底层、氧化镓外延层、栅氧化层,栅氧化层上方设有栅电极,氧化镓衬底层下表面为漏电极,其特征在于:1. A vertical structure Ga 2 O 3 transistor with SiO barrier layer, comprising a gallium oxide substrate layer, a gallium oxide epitaxial layer, a gate oxide layer, a gate electrode is arranged above the gate oxide layer, and the gallium oxide substrate layer lower surface is a leakage current Pole, characterized by:

所述外延层,其内部外围设有SiO2电流阻挡层,以实现有效的源漏间电学隔离,其中心设有垂直重掺杂导电通道,以降低器件导通电阻;其上方设有n型导电层,以实现氧化镓材料的再生长;The epitaxial layer is provided with a SiO2 current blocking layer on its inner periphery to achieve effective electrical isolation between source and drain, and a vertical heavily doped conductive channel is provided in the center to reduce the on-resistance of the device; above it is provided with an n-type Conductive layer to enable regrowth of gallium oxide material;

该n型导电层的上方设有源电极。A source electrode is arranged above the n-type conductive layer.

进一步,所述氧化镓衬底层,采用厚度为500um-700um,浓度为1×1018-5×1018cm-3的N型高掺β-Ga2O3材料。Further, the gallium oxide substrate layer is made of N-type highly doped β-Ga 2 O 3 material with a thickness of 500um-700um and a concentration of 1×10 18 -5×10 18 cm -3 .

进一步,所述氧化镓外延层,其采用厚度为3um-10um,浓度为1.5×1016-1×1017cm-3的N型低掺β-Ga2O3材料。Further, the gallium oxide epitaxial layer is made of an N-type low-doped β-Ga 2 O 3 material with a thickness of 3um-10um and a concentration of 1.5×10 16 -1×10 17 cm -3 .

进一步,所述的晶体管,其特征在于:所述SiO2电流阻挡层,其厚度为500nm-1000nm。Further, the transistor is characterized in that: the SiO 2 current blocking layer has a thickness of 500nm-1000nm.

进一步,所述的晶体管,其特征在于:所述n型导电层,其采用厚度为5nm-50nm,浓度为1×1017-5×1019cm-3的N型高掺杂GaN或SiC或In2O3宽禁带或超宽禁带n型导电材料。Further, the transistor is characterized in that : the n-type conductive layer is made of N-type highly doped GaN or SiC or In 2 O 3 wide or ultra-wide bandgap n-type conductive material.

进一步,所述的晶体管,其特征在于:所述垂直重掺杂导电通道,采用厚度1um-10um,宽度为2um-20um,浓度为1×1017-5×1019cm-3的N型高掺杂β-Ga2O3材料。Further, the transistor is characterized in that: the vertical heavily doped conductive channel adopts an N-type high-density channel with a thickness of 1um-10um, a width of 2um-20um, and a concentration of 1×10 17 -5×10 19 cm -3 Doped β- Ga2O3 material .

2.一种制备具有SiO2阻挡层的垂直结构Ga2O3晶体管的方法,其特征在于,包括如下、步骤:2. A method for preparing a vertical structure Ga 2 O 3 transistor with SiO 2 barrier layer, characterized in that, comprising the following steps:

1)清洗外延片,即将同质外延的氧化镓片子依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗5min-10min,然后用氮气吹干;1) Cleaning the epitaxial wafer, that is, putting the homoepitaxial gallium oxide wafer into acetone solution, absolute ethanol solution and deionized water in sequence for ultrasonic cleaning for 5min-10min, and then blowing dry with nitrogen;

2)在清洗后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,刻蚀掉外延片待刻蚀区域上的氧化镓形成沟槽结构;2) Perform photolithography on the cleaned epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system to etch away the gallium oxide on the area to be etched on the epitaxial wafer to form a trench structure;

3)将刻蚀后的氧化镓外延片放入电感耦合等离子体增强化学气相淀积系统ICP-CVD反应室内,设置反应室温度为80℃-90℃,在外延片表面淀积厚度为500nm-1000nm的SiO2,再将淀积后的片子放入剥离液中,通过剥离形成SiO2阻挡层;3) Put the etched gallium oxide epitaxial wafer into the ICP-CVD reaction chamber of the inductively coupled plasma enhanced chemical vapor deposition system, set the temperature of the reaction chamber at 80°C-90°C, and deposit a thickness of 500nm- 1000nm SiO 2 , and then put the deposited sheet into the stripping solution to form a SiO 2 barrier layer by stripping;

4)通过原子层淀积ALD工艺,在氧化镓外延片表面淀积厚度为10nm-20nm的n型导电材料;4) Deposit an n-type conductive material with a thickness of 10nm-20nm on the surface of the gallium oxide epitaxial wafer by atomic layer deposition ALD process;

5)在淀积后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,刻蚀掉外延片待刻蚀区域上的n型导电材料,形成欧姆接触区域;5) Perform photolithography on the deposited epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system to etch away the n-type conductive material on the area to be etched on the epitaxial wafer to form an ohmic contact area;

6)在刻蚀后的外延片上进行光刻,形成待离子注入区域,再通过离子注入技术在该区域注入n型导电离子;6) Perform photolithography on the etched epitaxial wafer to form a region to be ion implanted, and then implant n-type conductive ions in this region by ion implantation technology;

7)通过原子层淀积ALD工艺,在离子注入后的氧化镓外延片表面淀积厚度为20nm-50nm的Al2O37) Depositing Al 2 O 3 with a thickness of 20nm-50nm on the surface of the gallium oxide epitaxial wafer after ion implantation by atomic layer deposition ALD process;

8)在Al2O3表面光刻源端电极通孔,利用反应离子刻蚀RIE系统刻蚀去掉电极通孔区域的Al2O38) Lithographically etch the through hole of the source end electrode on the surface of Al 2 O 3 , and use the reactive ion etching RIE system to etch and remove the Al 2 O 3 in the area of the electrode through hole;

9)将刻蚀完成的外延片再次光刻形成源端电极区域,通过电子束蒸发E-Beam系统先在源端电极区域淀积Ti/Au,通过剥离形成源端电极,之后再在衬底表面淀积Ti/Au,形成漏端电极,并在N2环境中退火形成欧姆接触;9) The etched epitaxial wafer is photolithographically formed again to form the source electrode area, and Ti/Au is first deposited on the source electrode area by electron beam evaporation E-Beam system, and the source electrode is formed by stripping, and then the substrate Deposit Ti/Au on the surface to form a drain terminal electrode, and anneal in N2 environment to form an ohmic contact;

10)对形成欧姆接触后的氧化镓外延片进行光刻,在Al2O3表面形成栅极区域,再通过电子束蒸发E-Beam系统在栅极区域淀积Ni/Au,通过剥离形成栅电极,完成器件制作。10) Perform photolithography on the gallium oxide epitaxial wafer after the ohmic contact is formed, form a gate region on the surface of Al 2 O 3 , and then deposit Ni/Au on the gate region by electron beam evaporation E-Beam system, and form a gate region by lift-off Electrode, complete device fabrication.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

1.本发明由于在外延层中心设有重掺杂的垂直导电通道结构,不仅保证了器件的耐压能力不受明显影响,同时提高了器件的输出电流。1. Since the present invention is provided with a heavily doped vertical conductive channel structure in the center of the epitaxial layer, it not only ensures that the withstand voltage capability of the device is not significantly affected, but also improves the output current of the device.

2.本发明由于在外延层上部设有SiO2高质量电流阻挡层结构,实现了源漏区域的电学隔离,同时由于SiO2介电常数很高,将会显著提高垂直结构氧化镓的场效应晶体管器件击穿电压。2. Since the present invention is provided with a SiO2 high-quality current blocking layer structure on the upper part of the epitaxial layer, the electrical isolation of the source and drain regions is realized, and at the same time, due to the high dielectric constant of SiO2 , the field effect of the vertical structure gallium oxide will be significantly improved Transistor device breakdown voltage.

3.本发明由于在外延层上部设有SiO2高质量电流阻挡层结构,相比现有的对离子注入区域注入Mg离子或N离子形成源漏之间电流阻挡层的技术,避免了在后续高温工艺会引起Mg离子或N离子的热扩散所产生较大的泄漏电流的问题。3. The present invention is owing to be provided with SiO on epitaxial layer top The high-quality electric current blocking layer structure, compares existing ion implantation region implantation Mg ion or the technology of N ion forming electric current blocking layer between source and drain, has avoided in follow-up The high temperature process will cause the problem of large leakage current generated by the thermal diffusion of Mg ions or N ions.

4.本发明由于采用了原子层淀积ALD工艺淀积的n型导电材料材料形成欧姆接触,没有采用离子注入工艺产生欧姆接触,从而减小了离子注入对晶格的损伤,使得半导体缺陷密度降低,晶格完整度提高,进而提高器件的耐压能力。4. The present invention forms the ohmic contact due to the n-type conductive material deposited by the atomic layer deposition (ALD) process, and does not use the ion implantation process to produce the ohmic contact, thereby reducing the damage of the ion implantation to the crystal lattice and making the semiconductor defect density Reduced, the integrity of the lattice is improved, and then the withstand voltage capability of the device is improved.

5.本发明由于在淀积的SiO2电流阻挡层上通过原子层淀积ALD工艺淀积n型导电材料形成高掺杂欧姆区域,避免了SiO2阻挡层上再生长氧化镓材料工艺无法实现的问题。5. In the present invention, due to depositing n-type conductive material by atomic layer deposition (ALD) process on the deposited SiO2 current blocking layer to form a highly doped ohmic region, it is avoided that the re-growth gallium oxide material process cannot be realized on the SiO2 blocking layer The problem.

附图说明Description of drawings

图1为现有多鳍型结构氧化镓场效应晶体管示意图。FIG. 1 is a schematic diagram of a conventional gallium oxide field effect transistor with a multi-fin structure.

图2为现有全离子注入电流阻挡层结构的氧化镓场效应晶体管结构示意图。FIG. 2 is a schematic structural diagram of a gallium oxide field effect transistor with an existing full ion implantation current blocking layer structure.

图3为本发明的具有SiO2阻挡层的垂直结构Ga2O3晶体管结构示意图。FIG. 3 is a schematic structural diagram of a Ga 2 O 3 transistor with a vertical structure having a SiO 2 barrier layer according to the present invention.

图4为本发明制备具有SiO2阻挡层的垂直结构Ga2O3晶体管的实现流程示意图。Fig. 4 is a schematic flow chart of the present invention for preparing a vertical Ga 2 O 3 transistor with a SiO 2 barrier layer.

具体实施方式Detailed ways

以下结合附图对本发明具有SiO2阻挡层的垂直结构Ga2O3晶体管结构和制备过程做进一步详细描述。The structure and preparation process of the vertical structure Ga 2 O 3 transistor with SiO 2 barrier layer of the present invention will be further described in detail below with reference to the accompanying drawings.

参照图3,本发明的具有SiO2阻挡层的垂直结构Ga2O3晶体管包括:漏电极D、源电极S、衬底层1、漂移层2、栅氧化层3、垂直重掺杂通道5、SiO2层4、n型导电材料层6和栅源电极G,其中:Referring to Fig. 3, the vertical structure Ga2O3 transistor with SiO2 barrier layer of the present invention includes: drain electrode D, source electrode S, substrate layer 1, drift layer 2, gate oxide layer 3, vertical heavily doped channel 5, SiO 2 layer 4, n-type conductive material layer 6 and gate-source electrode G, wherein:

所述衬底层1,采用厚度为500um-700um,浓度为1×1018-5×1018cm-3的N型高掺β-Ga2O3材料;The substrate layer 1 is made of an N-type highly doped β-Ga 2 O 3 material with a thickness of 500um-700um and a concentration of 1×10 18 -5×10 18 cm -3 ;

所述漂移层2,采用厚度为3um-10um,浓度为1.5×1016-1×1017cm-3的N型低掺β-Ga2O3材料,其位于衬底层1之上;The drift layer 2 is made of an N-type low-doped β-Ga 2 O 3 material with a thickness of 3um-10um and a concentration of 1.5×10 16 -1×10 17 cm -3 , which is located on the substrate layer 1;

所述栅氧化层3采用厚度为20nm-50nm的Al2O3材料,位于漂移层2上方;The gate oxide layer 3 is made of Al 2 O 3 material with a thickness of 20nm-50nm, and is located above the drift layer 2;

所述SiO2层4的厚度为500nm-1000nm,其位于刻蚀沟槽内部;The thickness of the SiO 2 layer 4 is 500nm-1000nm, which is located inside the etched trench;

所述垂直重掺杂通道5从β-Ga2O3漂移层2上表面深入到漂移区内部,厚度1um-10um,宽度为2um-20um,浓度为1×1017-5×1019cm-3The vertical heavily doped channel 5 penetrates from the upper surface of the β-Ga 2 O 3 drift layer 2 to the inside of the drift region, with a thickness of 1um-10um, a width of 2um-20um, and a concentration of 1×10 17 -5×10 19 cm- 3 ;

所述n型导电材料层6,位于SiO2层4上方,采用厚度为5nm-50nm,浓度为1×1017-5×1019cm-3的N型高掺杂GaN、SiC或In2O3材料;The n-type conductive material layer 6 is located above the SiO 2 layer 4, using N-type highly doped GaN, SiC or In 2 O with a thickness of 5nm-50nm and a concentration of 1×10 17 -5×10 19 cm -3 3 materials;

所述栅电极G位于栅氧化层3的上部;The gate electrode G is located on the top of the gate oxide layer 3;

所述源电极S位于N型导电材料层6上部;The source electrode S is located on the upper part of the N-type conductive material layer 6;

所述漏电极D位于N型高掺β-Ga2O3衬底层1的下部。The drain electrode D is located under the N-type highly doped β-Ga 2 O 3 substrate layer 1 .

参照图4,本发明制备具有SiO2阻挡层的垂直结构Ga2O3晶体管的方法给出如下三种实施例:Referring to FIG. 4, the method for preparing a Ga2O3 transistor with a vertical structure having a SiO2 barrier layer according to the present invention provides the following three examples:

实施例1:制作N型β-Ga2O3衬底层厚度为500um、掺杂为1×1018cm-3;N型β-Ga2O3漂移层厚度为3um、掺杂为1.5×1016cm-3;SiO2厚度为500nm,垂直重掺杂通道宽度为2um、厚度为1um、掺杂浓度为1×1017cm-3;n型导电材料为In2O3、厚度为5nm、掺杂为1×1017cm-3;栅氧化层厚度为20nm的垂直结构Ga2O3晶体管。Example 1: Making an N-type β-Ga 2 O 3 substrate layer with a thickness of 500um and a doping of 1×10 18 cm -3 ; an N-type β-Ga 2 O 3 drift layer with a thickness of 3um and a doping of 1.5×10 16 cm -3 ; the thickness of SiO 2 is 500nm, the vertical heavily doped channel width is 2um, the thickness is 1um, and the doping concentration is 1×10 17 cm -3 ; the n-type conductive material is In 2 O 3 , the thickness is 5nm, The doping is 1×10 17 cm -3 ; the thickness of the gate oxide layer is 20nm and the vertical structure Ga 2 O 3 transistor.

步骤1:清洗β-Ga2O3外延片,如图4(a)。Step 1: cleaning the β-Ga 2 O 3 epitaxial wafer, as shown in Figure 4(a).

清洗外延片,即将同质外延的氧化镓片子依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗5min,然后用氮气吹干;Clean the epitaxial wafer, that is, put the homoepitaxial gallium oxide wafer into acetone solution, absolute ethanol solution and deionized water in sequence for ultrasonic cleaning for 5 minutes, and then dry it with nitrogen;

步骤2:沟槽结构刻蚀,如图4(b)。Step 2: Etching the trench structure, as shown in Figure 4(b).

在清洗后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,进行深度为510nm的刻蚀,以刻蚀掉外延片待刻蚀区域上的氧化镓,形成沟槽结构。Perform photolithography on the cleaned epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system for etching with a depth of 510nm to etch away the oxidation on the area to be etched on the epitaxial wafer Gallium, forming a trench structure.

反应离子刻蚀RIE系统工艺条件是:Reactive ion etching RIE system process conditions are:

反应室压强:1500mtorrReaction chamber pressure: 1500mtorr

反应室气体:SF6、CHF3、HeReactor gas: SF 6 , CHF 3 , He

反应室气体流速比例:SF6:CHF3:He=5.5sccm:32sccm:150sccmReaction chamber gas flow rate ratio: SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm

RF射频源:150W。RF radio frequency source: 150W.

步骤3:淀积SiO2,如图4(c)。Step 3: Deposit SiO 2 , as shown in Figure 4(c).

将刻蚀后的氧化镓外延片放入电感耦合等离子体增强化学气相淀积系统ICP-CVD反应室内,在外延片表面淀积厚度为500nm的SiO2,再将淀积后的片子放入剥离液中,通过剥离形成SiO2阻挡层。Put the etched gallium oxide epitaxial wafer into the ICP-CVD reaction chamber of the inductively coupled plasma enhanced chemical vapor deposition system, deposit SiO 2 with a thickness of 500nm on the surface of the epitaxial wafer, and then put the deposited wafer into the stripping solution, the SiO2 barrier layer was formed by exfoliation.

化学气相淀积系统ICP-CVD工艺条件是:Chemical vapor deposition system ICP-CVD process conditions are:

反应室温度:80℃Reaction chamber temperature: 80°C

反应室压力:500PaReaction chamber pressure: 500Pa

反应室气体流速:300sccmReaction chamber gas flow rate: 300sccm

步骤4:制作n型导电材料层,如图4(d)。Step 4: Fabricate an n-type conductive material layer, as shown in Figure 4(d).

通过原子层淀积ALD工艺,在氧化镓外延片表面淀积厚度为5nm的n型导电材料In2O3;在淀积后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,刻蚀掉外延片待刻蚀区域上的n型导电材料,形成欧姆接触区域材料;By atomic layer deposition ALD process, deposit n-type conductive material In 2 O 3 with a thickness of 5nm on the surface of the gallium oxide epitaxial wafer; perform photolithography on the deposited epitaxial wafer to form the area to be etched, and then place it Enter the reactive ion etching RIE system to etch away the n-type conductive material on the area to be etched of the epitaxial wafer to form the material of the ohmic contact area;

原子层淀积ALD工艺条件是:Atomic layer deposition ALD process conditions are:

反应室温度:200℃Reaction chamber temperature: 200°C

反应室压力:800PaReaction chamber pressure: 800Pa

反应室气体:高纯氮气Reaction chamber gas: high-purity nitrogen

反应室气体流速:300sccmReaction chamber gas flow rate: 300sccm

反应离子刻蚀RIE系统工艺条件是:Reactive ion etching RIE system process conditions are:

反应室压强:1500mtorrReaction chamber pressure: 1500mtorr

反应室气体:SF6、CHF3、HeReactor gas: SF 6 , CHF 3 , He

反应室气体流速比例:SF6:CHF3:He=5.5sccm:32sccm:150sccmReaction chamber gas flow rate ratio: SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm

RF射频源:150W。RF radio frequency source: 150W.

步骤5:离子注入,如图4(e)。Step 5: Ion implantation, as shown in Figure 4(e).

对刻蚀后的外延片表面进行光刻,形成垂直导电通道离子注入区域,再对离子注入区域进行两次Si离子注入,注入剂量为1×1014cm-2,注入能量为10kev,形成掺杂浓度为1×1017cm-3,深度为1um的高掺杂区域;Perform photolithography on the surface of the etched epitaxial wafer to form a vertical conductive channel ion implantation area, and then perform Si ion implantation on the ion implantation area twice, the implantation dose is 1×10 14 cm -2 , and the implantation energy is 10kev to form a doped A highly doped region with a dopant concentration of 1×10 17 cm -3 and a depth of 1um;

将离子注入完成后的外延片置于N2环境中,设置退火炉内温度为900℃,进行30分钟退火,以对注入的离子进行激活。Place the epitaxial wafer after ion implantation in N 2 environment, set the temperature in the annealing furnace to 900° C., and perform annealing for 30 minutes to activate the implanted ions.

步骤6:生长栅介质,如图4(f)。Step 6: growing a gate dielectric, as shown in Figure 4(f).

通过原子层淀积ALD工艺,在氧化镓外延片表面淀积厚度为20nm的Al2O3的栅介质;Deposit Al 2 O 3 gate dielectric with a thickness of 20nm on the surface of gallium oxide epitaxial wafer through atomic layer deposition ALD process;

原子层淀积ALD工艺条件是:Atomic layer deposition ALD process conditions are:

反应室温度:200℃Reaction chamber temperature: 200°C

反应室压力:800PaReaction chamber pressure: 800Pa

反应室气体:高纯氮气Reaction chamber gas: high-purity nitrogen

反应室气体流速:300sccmReaction chamber gas flow rate: 300sccm

步骤7:光刻形成待蒸发源极金属区域,如图4(g)-(h)。Step 7: Photolithography forms the source metal region to be evaporated, as shown in Figure 4(g)-(h).

在Al2O3表面光刻源端电极通孔,如图4(g);Photoetching the through-holes of the source terminal electrodes on the surface of Al 2 O 3 , as shown in Figure 4(g);

利用反应离子刻蚀RIE系统刻蚀去掉电极通孔区域的Al2O3,形成待蒸发源极金属区域如图4(h)Use the reactive ion etching RIE system to etch away the Al 2 O 3 in the electrode through hole area to form the source metal area to be evaporated as shown in Figure 4(h)

反应离子刻蚀RIE系统工艺条件是:Reactive ion etching RIE system process conditions are:

反应室压强:10-30mTorrReaction chamber pressure: 10-30mTorr

反应室气体:BCl3、ArReaction chamber gas: BCl 3 , Ar

反应室气体流速比例:BCl3:Ar=20sccm:10sccmReaction chamber gas flow rate ratio: BCl 3 :Ar=20sccm:10sccm

刻蚀功率:200W。Etching power: 200W.

步骤8:制作源漏欧姆电极,如图4(i)。Step 8: Make source-drain ohmic electrodes, as shown in Figure 4(i).

8.1)将刻蚀完成的外延片再次光刻形成源端电极区域,通过电子束蒸发E-Beam系统先在源端电极区域淀积厚度为60nm/120nm的Ti/Au;8.1) Form the source electrode region by photolithography on the etched epitaxial wafer again, and deposit Ti/Au with a thickness of 60nm/120nm on the source electrode region by electron beam evaporation E-Beam system;

8.2)将电子束蒸发完成后的片子放入剥离液中,通过剥离形成源端电极;8.2) Put the sheet after electron beam evaporation into the stripping solution, and form the source terminal electrode by stripping;

8.3)在衬底表面淀积厚度为60nm/120nm的Ti/Au,形成漏端电极,并在N2环境中,设置退火炉内温度为475℃,退火一分钟,形成欧姆接触,如图4(i);8.3) Deposit Ti/Au with a thickness of 60nm/120nm on the surface of the substrate to form a drain terminal electrode, and set the temperature in the annealing furnace to 475°C in an N2 environment, and anneal for one minute to form an ohmic contact, as shown in Figure 4 (i);

8.4)在Al2O3表面进行光刻,形成待蒸发栅金属区域。8.4) Perform photolithography on the surface of Al 2 O 3 to form a gate metal region to be evaporated.

步骤9:制作栅电极,如图4(j)。Step 9: Make a gate electrode, as shown in Figure 4(j).

通过电子束蒸发E-Beam系统在待蒸发栅金属区域淀积厚度为50nm/100nm的Ni/Au,将电子束蒸发完成后的片子放入剥离液中,通过剥离形成栅电极,完成器件制作。Deposit Ni/Au with a thickness of 50nm/100nm on the gate metal area to be evaporated by electron beam evaporation E-Beam system, put the sheet after electron beam evaporation into the stripping solution, form the gate electrode by stripping, and complete the device fabrication.

实施例2:制作N型β-Ga2O3衬底层厚度为600um、掺杂为2.5×1018cm-3,N型β-Ga2O3漂移层厚度为7um、掺杂为5×1016cm-3,SiO2厚度为750nm,垂直重掺杂通道宽度为10um、厚度为5um、掺杂浓度为5×1018cm-3,n型导电材料为In2O3、厚度为25nm、掺杂为5×1018cm-3的具有SiO2阻挡层和垂直重掺杂通道的垂直结构Ga2O3场效应晶体管。Example 2: Making an N-type β-Ga 2 O 3 substrate layer with a thickness of 600um and a doping of 2.5×10 18 cm -3 , and an N-type β-Ga 2 O 3 drift layer with a thickness of 7um and a doping of 5×10 16 cm -3 , the thickness of SiO 2 is 750nm, the vertical heavily doped channel width is 10um, the thickness is 5um, the doping concentration is 5×10 18 cm -3 , the n-type conductive material is In 2 O 3 , the thickness is 25nm, Vertical structure Ga2O3 field effect transistor with SiO2 barrier layer and vertical heavily doped channel with doping of 5× 1018 cm - 3 .

步骤A:清洗β-Ga2O3外延片。Step A: cleaning the β-Ga 2 O 3 epitaxial wafer.

本步骤的具体实现与实施例1的步骤1相同。The specific implementation of this step is the same as step 1 of Embodiment 1.

步骤B:沟槽结构刻蚀。Step B: trench structure etching.

在清洗后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,设置反应室压强为1500mtorr,反应室气体为SF6、CHF3、He,反应室气体流速比例为SF6:CHF3:He=5.5sccm:32sccm:150sccm,RF射频源功率为175W的工艺条件,进行深度为810nm的刻蚀,以刻蚀掉外延片待刻蚀区域上的氧化镓,形成沟槽结构。Perform photolithography on the cleaned epitaxial wafer to form the area to be etched, then put it into the reactive ion etching RIE system, set the reaction chamber pressure to 1500mtorr, and the reaction chamber gas to be SF 6 , CHF 3 , He The gas flow rate ratio is SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm, the RF source power is 175W, and the etching depth is 810nm, so as to etch away the oxidation on the area to be etched of the epitaxial wafer Gallium, forming a trench structure.

步骤C:淀积SiO2Step C: Deposit SiO 2 .

将刻蚀后的氧化镓外延片放入电感耦合等离子体增强化学气相淀积系统ICP-CVD反应室内,设置反应室温度为85℃,反应室压力为550Pa,反应室气体流速为300sccm的工艺条件,在外延片表面淀积厚度为750nm的SiO2,再将淀积后的片子放入剥离液中,通过剥离形成SiO2阻挡层。Put the etched gallium oxide epitaxial wafer into the ICP-CVD reaction chamber of the inductively coupled plasma enhanced chemical vapor deposition system, set the reaction chamber temperature to 85°C, the reaction chamber pressure to 550Pa, and the reaction chamber gas flow rate to 300sccm process conditions , deposit SiO 2 with a thickness of 750nm on the surface of the epitaxial wafer, and then put the deposited wafer into a stripping solution to form a SiO 2 barrier layer by stripping.

步骤D:制作n型导电材料层。Step D: making an n-type conductive material layer.

采用原子层淀积ALD方法,设置反应室温度为200℃,反应室压力为850Pa,反应室气体为高纯氮气,反应室气体流速为300sccm的工艺条件,在氧化镓外延片表面淀积厚度为25nm的n型导电材料In2O3;在淀积后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,设置反应室压强为1500mtorr,反应室气体为SF6、CHF3、He,反应室气体流速比例为SF6:CHF3:He=5.5sccm:32sccm:150sccm,RF射频源功率为175W的工艺条件,刻蚀掉外延片待刻蚀区域上的n型导电材料,形成欧姆接触区域材料;Adopt the atomic layer deposition ALD method, set the temperature of the reaction chamber to be 200°C, the pressure of the reaction chamber to be 850Pa, the gas in the reaction chamber to be high-purity nitrogen, and the flow rate of the gas in the reaction chamber to be 300 sccm. 25nm n-type conductive material In 2 O 3 ; perform photolithography on the deposited epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system, set the reaction chamber pressure to 1500mtorr, and the reaction chamber The gas is SF 6 , CHF 3 , He, the gas flow rate ratio in the reaction chamber is SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm, and the RF source power is 175W, and the area to be etched on the epitaxial wafer is etched. The n-type conductive material on the top forms the material of the ohmic contact area;

步骤E:离子注入。Step E: Ion implantation.

对刻蚀后的外延片表面进行光刻,形成垂直导电通道离子注入区域,再对离子注入区域进行两次Ge离子注入,注入剂量为3×1014cm-2,注入能量为10kev,形成掺杂浓度为5×1018cm-3,深度为5um的高掺杂区域;Perform photolithography on the surface of the etched epitaxial wafer to form a vertical conductive channel ion implantation area, and then perform Ge ion implantation twice on the ion implantation area, the implantation dose is 3×10 14 cm -2 , and the implantation energy is 10kev, forming a doped A highly doped region with a dopant concentration of 5×10 18 cm -3 and a depth of 5um;

将离子注入完成后的外延片置于N2环境中,设置退火炉内温度为950℃,进行30分钟退火,以对注入的离子进行激活。Place the epitaxial wafer after ion implantation in N 2 environment, set the temperature in the annealing furnace to 950° C., and perform annealing for 30 minutes to activate the implanted ions.

步骤F:生长栅介质。Step F: growing a gate dielectric.

采用原子层淀积ALD方法,设置反应室温度为220℃,反应室压力为850Pa,反应室气体为高纯氮气,反应室气体流速为300sccm的工艺条件,在氧化镓外延片表面淀积厚度为35nm的Al2O3的栅介质。Adopt atomic layer deposition ALD method, set reaction chamber temperature as 220 ℃, reaction chamber pressure as 850Pa, reaction chamber gas as high-purity nitrogen, reaction chamber gas flow rate as 300sccm process conditions, deposit thickness on gallium oxide epitaxial wafer surface 35nm Al 2 O 3 gate dielectric.

步骤G:光刻形成待蒸发源极金属区域。Step G: forming the source metal region to be evaporated by photolithography.

在Al2O3表面光刻源端电极通孔,设置反应离子刻蚀RIE系统反应室压强为20mTorr,反应室气体为BCl3、Ar,反应室气体流速比例为BCl3:Ar=20sccm:10sccm,刻蚀功率为300W,刻蚀去掉电极通孔区域的Al2O3,形成待蒸发源极金属区域。Lithograph the through hole of the source electrode on the surface of Al 2 O 3 , set the reaction chamber pressure of the reactive ion etching RIE system to 20mTorr, the reaction chamber gas is BCl 3 , Ar, and the reaction chamber gas flow rate ratio is BCl 3 :Ar=20sccm:10sccm , the etching power is 300W, and the Al 2 O 3 in the electrode through hole area is etched away to form the source metal area to be evaporated.

步骤H:制作源漏欧姆电极。Step H: making source-drain ohmic electrodes.

H.1)将刻蚀完成的外延片再次光刻形成源端电极区域,通过电子束蒸发E-Beam系统先在源端电极区域淀积厚度为70nm/130nm的Ti/Au;H.1) Form the source electrode region by photolithography again on the epitaxial wafer after etching, and deposit Ti/Au with a thickness of 70nm/130nm on the source electrode region by electron beam evaporation E-Beam system;

H.2)将电子束蒸发完成后的片子放入剥离液中,通过剥离形成源端电极;H.2) Put the sheet after electron beam evaporation into the stripping solution, and form the source terminal electrode by stripping;

H.3)在衬底表面淀积厚度为70nm/130nm的Ti/Au,形成漏端电极,并在N2环境中,设置退火炉内温度为475℃,退火一分钟,形成欧姆接触;H.3) Deposit Ti/Au with a thickness of 70nm/130nm on the surface of the substrate to form a drain terminal electrode, and set the temperature in the annealing furnace to 475°C in an N2 environment, and anneal for one minute to form an ohmic contact;

H.4)在Al2O3表面进行光刻,形成待蒸发栅金属区域。H.4) Perform photolithography on the surface of Al 2 O 3 to form a gate metal region to be evaporated.

步骤I:制作栅电极。Step 1: make gate electrode.

通过电子束蒸发E-Beam系统在待蒸发栅金属区域淀积厚度为55nm/110nm的Ni/Au,将电子束蒸发完成后的片子放入剥离液中,通过剥离形成栅电极,完成器件制作。Deposit Ni/Au with a thickness of 55nm/110nm on the gate metal area to be evaporated by electron beam evaporation E-Beam system, put the sheet after electron beam evaporation into the stripping solution, form the gate electrode by stripping, and complete the device fabrication.

实施例3,制作N型β-Ga2O3衬底层厚度为700um、掺杂为5×1018cm-3,N型β-Ga2O3漂移层厚度为10um、掺杂为1×1017cm-3,SiO2厚度为1000nm,垂直重掺杂通道宽度为20um、厚度为10um、掺杂浓度为5×1019cm-3,n型导电材料为In2O3、厚度为50nm、掺杂为5×1019cm-3的具有SiO2阻挡层和垂直重掺杂通道的垂直结构Ga2O3场效应晶体管。Example 3, making an N-type β-Ga 2 O 3 substrate layer with a thickness of 700um and a doping of 5×10 18 cm -3 , and an N-type β-Ga 2 O 3 drift layer with a thickness of 10um and a doping of 1×10 17 cm -3 , the thickness of SiO 2 is 1000nm, the vertical heavily doped channel width is 20um, the thickness is 10um, the doping concentration is 5×10 19 cm -3 , the n-type conductive material is In 2 O 3 , the thickness is 50nm, Vertically structured Ga2O3 field-effect transistor with SiO2 barrier layer and vertical heavily doped channel with doping of 5× 1019 cm - 3 .

步骤一:清洗β-Ga2O3外延片。Step 1: cleaning the β-Ga 2 O 3 epitaxial wafer.

本步骤的具体实现与实施例1的步骤1相同。The specific implementation of this step is the same as step 1 of Embodiment 1.

步骤二:沟槽结构刻蚀。Step 2: trench structure etching.

在清洗后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,设置反应室压强为1500mtorr,反应室气体为SF6、CHF3、He,反应室气体流速比例为SF6:CHF3:He=5.5sccm:32sccm:150sccm,RF射频源功率为200W的工艺条件,进行深度为1010nm的刻蚀,以刻蚀掉外延片待刻蚀区域上的氧化镓,形成沟槽结构。Perform photolithography on the cleaned epitaxial wafer to form the area to be etched, then put it into the reactive ion etching RIE system, set the reaction chamber pressure to 1500mtorr, and the reaction chamber gas to be SF 6 , CHF 3 , He The gas flow rate ratio is SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm, the RF source power is 200W, and the etching depth is 1010nm to etch away the oxidation on the area to be etched of the epitaxial wafer Gallium, forming a trench structure.

步骤三:淀积SiO2Step 3: Deposit SiO 2 .

将刻蚀后的氧化镓外延片放入电感耦合等离子体增强化学气相淀积系统ICP-CVD反应室内,在反应室温度为90℃,反应室压力为600Pa,反应室气体流速为300sccm的工艺条件下,在外延片表面淀积厚度为1000nm的SiO2,再将淀积后的片子放入剥离液中,通过剥离形成SiO2阻挡层。Put the etched gallium oxide epitaxial wafer into the ICP-CVD reaction chamber of the inductively coupled plasma enhanced chemical vapor deposition system. The reaction chamber temperature is 90°C, the reaction chamber pressure is 600Pa, and the reaction chamber gas flow rate is 300sccm. Next, deposit SiO 2 with a thickness of 1000 nm on the surface of the epitaxial wafer, and then put the deposited wafer into a stripping solution to form a SiO 2 barrier layer by stripping.

步骤四:制作n型导电材料层。Step 4: making an n-type conductive material layer.

使用原子层淀积ALD方法,在反应室温度为200℃,反应室压力为900Pa,反应室气体为高纯氮气,反应室气体流速为300sccm的工艺条件下,在氧化镓外延片表面淀积厚度为50nm的n型导电材料In2O3;在淀积后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,设置反应室压强为1500mtorr,反应室气体为SF6、CHF3、He,反应室气体流速比例为SF6:CHF3:He=5.5sccm:32sccm:150sccm,RF射频源功率为200W的工艺条件,刻蚀掉外延片待刻蚀区域上的n型导电材料,形成欧姆接触区域材料;Using the atomic layer deposition ALD method, under the process conditions that the reaction chamber temperature is 200°C, the reaction chamber pressure is 900Pa, the reaction chamber gas is high-purity nitrogen, and the reaction chamber gas flow rate is 300sccm, the thickness is deposited on the surface of the gallium oxide epitaxial wafer. 50nm n-type conductive material In 2 O 3 ; carry out photolithography on the deposited epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system, set the reaction chamber pressure to 1500mtorr, and react The chamber gas is SF 6 , CHF 3 , He, the reaction chamber gas flow rate ratio is SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm, the RF source power is 200W, and the epitaxial wafer is etched to be etched n-type conductive material on the region, forming an ohmic contact region material;

步骤五:离子注入。Step five: ion implantation.

对刻蚀后的外延片表面进行光刻,形成垂直导电通道离子注入区域,再对离子注入区域进行两次Sn离子注入,注入剂量为5×1014cm-2,注入能量为10kev,形成掺杂浓度为5×1018cm-3,深度为5um的高掺杂区域;Perform photolithography on the surface of the etched epitaxial wafer to form a vertical conductive channel ion implantation region, and then perform Sn ion implantation on the ion implantation region twice, with an implantation dose of 5×10 14 cm -2 and an implantation energy of 10 keV to form a doped A highly doped region with a dopant concentration of 5×10 18 cm -3 and a depth of 5um;

将离子注入完成后的外延片置于N2环境中,设置退火炉内温度为950℃,进行30分钟退火,以对注入的离子进行激活。Place the epitaxial wafer after ion implantation in N 2 environment, set the temperature in the annealing furnace to 950° C., and perform annealing for 30 minutes to activate the implanted ions.

步骤六:生长栅介质。Step six: growing gate dielectric.

采用原子层淀积ALD方法,在反应室温度为240℃,反应室压力为900Pa,反应室气体为高纯氮气,反应室气体流速为300sccm的工艺条件下,在氧化镓外延片表面淀积厚度为50nm的Al2O3的栅介质;Using the atomic layer deposition ALD method, under the process conditions of the reaction chamber temperature of 240°C, the reaction chamber pressure of 900Pa, the reaction chamber gas of high-purity nitrogen, and the reaction chamber gas flow rate of 300sccm, the thickness is deposited on the surface of the gallium oxide epitaxial wafer. 50nm Al 2 O 3 gate dielectric;

步骤七:光刻形成待蒸发源极金属区域。Step 7: Forming the source metal region to be evaporated by photolithography.

在Al2O3表面光刻源端电极通孔,设置反应离子刻蚀RIE系统反应室压强为20mTorr,反应室气体为BCl3、Ar,反应室气体流速比例为BCl3:Ar=20sccm:10sccm,刻蚀功率为400W,刻蚀去掉电极通孔区域的Al2O3,形成待蒸发源极金属区域。Lithograph the through hole of the source electrode on the surface of Al 2 O 3 , set the reaction chamber pressure of the reactive ion etching RIE system to 20mTorr, the reaction chamber gas is BCl 3 , Ar, and the reaction chamber gas flow rate ratio is BCl 3 :Ar=20sccm:10sccm , the etching power is 400W, and the Al 2 O 3 in the electrode through hole area is etched away to form the source metal area to be evaporated.

步骤八:制作源漏欧姆电极。Step 8: Make source-drain ohmic electrodes.

将刻蚀完成的外延片再次光刻形成源端电极区域,通过电子束蒸发E-Beam系统先在源端电极区域淀积厚度为80nm/140nm的Ti/Au;再将电子束蒸发完成后的片子放入剥离液中,通过剥离形成源端电极;接着在衬底表面淀积厚度为80nm/140nm的Ti/Au,形成漏端电极,并在N2环境中,设置退火炉内温度为475℃,退火一分钟,形成欧姆接触;最后在Al2O3表面进行光刻,形成待蒸发栅金属区域。The etched epitaxial wafer was photolithographically formed again to form the source electrode area, and Ti/Au with a thickness of 80nm/140nm was deposited on the source electrode area by electron beam evaporation E-Beam system; Put the chip into the stripping solution, and form the source terminal electrode by stripping; then deposit Ti/Au with a thickness of 80nm/140nm on the substrate surface to form the drain terminal electrode, and set the temperature in the annealing furnace to 475 ℃, annealing for one minute to form an ohmic contact; finally, photolithography is performed on the surface of Al 2 O 3 to form a gate metal region to be evaporated.

步骤九:制作栅电极。Step 9: Make the gate electrode.

通过电子束蒸发E-Beam系统在待蒸发栅金属区域淀积厚度为60nm/120nm的Ni/Au,将电子束蒸发完成后的片子放入剥离液中,通过剥离形成栅电极,完成器件制作。Deposit Ni/Au with a thickness of 60nm/120nm on the gate metal area to be evaporated by electron beam evaporation E-Beam system, put the sheet after electron beam evaporation into the stripping solution, form the gate electrode by stripping, and complete the device fabrication.

以上仅是本发明的三种实施例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。The above are only three embodiments of the present invention, and do not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principles of the present invention, it is possible without departing from the principles and structures of the present invention. In some cases, various modifications and changes in form and details are made, but these modifications and changes based on the idea of the present invention are still within the protection scope of the claims of the present invention.

Claims (13)

1.一种具有SiO2阻挡层的垂直结构Ga2O3晶体管,包括氧化镓衬底层(1)、氧化镓外延层(2)、栅氧化层(3),栅氧化层(3)上方设有栅电极(G),氧化镓衬底层(1)下表面为漏电极(D),其特征在于:1. A vertical structure Ga 2 O 3 transistor with SiO 2 blocking layer, comprising gallium oxide substrate layer (1), gallium oxide epitaxial layer (2), gate oxide layer (3), and setting gate oxide layer (3) top There is a gate electrode (G), and the lower surface of the gallium oxide substrate layer (1) is a drain electrode (D), which is characterized in that: 所述外延层(2),其内部外围设有SiO2电流阻挡层(4),以实现有效的源漏间电学隔离,其中心设有垂直重掺杂导电通道(5),以降低器件导通电阻;其上方设有n型导电层(6),以实现n型导电材料的再生长;The epitaxial layer (2) is provided with a SiO2 current blocking layer (4) on its inner periphery to achieve effective electrical isolation between source and drain, and a vertical heavily doped conductive channel (5) is provided at its center to reduce the device conductivity. On-resistance; an n-type conductive layer (6) is arranged above it to realize the re-growth of n-type conductive material; 该n型导电层(6)的上方设有源电极(S)。A source electrode (S) is arranged above the n-type conductive layer (6). 2.根据权利要求1所述的晶体管,其特征在于:所述氧化镓衬底层(1),采用厚度为500um-700um,浓度为1×1018-5×1018cm-3的N型高掺β-Ga2O3材料。2. The transistor according to claim 1, characterized in that: the gallium oxide substrate layer (1) is made of N - type high Doped β-Ga 2 O 3 material. 3.根据权利要求1所述的晶体管,其特征在于:所述氧化镓外延层(2),其采用厚度为3um-10um,浓度为1.5×1016-1×1017cm-3的N型低掺β-Ga2O3材料。3. The transistor according to claim 1, characterized in that: the gallium oxide epitaxial layer (2) is an N-type layer with a thickness of 3um-10um and a concentration of 1.5×10 16 -1×10 17 cm -3 Low-doped β-Ga 2 O 3 material. 4.根据权利要求1所述的晶体管,其特征在于:所述SiO2电流阻挡层(4),其厚度为500nm-1000nm。4. The transistor according to claim 1, characterized in that: the SiO 2 current blocking layer (4) has a thickness of 500nm-1000nm. 5.根据权利要求1所述的晶体管,其特征在于:所述n型导电层(6),其采用厚度为5nm-50nm,浓度为1×1017-5×1019cm-3的N型高掺杂GaN或SiC或In2O3宽禁带或超宽禁带n型导电材料。5. The transistor according to claim 1, characterized in that: the n-type conductive layer (6) is an N-type conductive layer with a thickness of 5nm-50nm and a concentration of 1×10 17 -5×10 19 cm -3 Highly doped GaN or SiC or In 2 O 3 wide or ultra-wide bandgap n-type conductive material. 6.根据权利要求1所述的晶体管,其特征在于:所述垂直重掺杂导电通道(5),采用厚度1um-10um,宽度为2um-20um,浓度为1×1017-5×1019cm-3的N型高掺杂β-Ga2O3材料。6. The transistor according to claim 1, characterized in that: the vertical heavily doped conductive channel (5) has a thickness of 1um-10um, a width of 2um-20um, and a concentration of 1×10 17 -5×10 19 cm -3 N-type highly doped β-Ga 2 O 3 material. 7.一种制备具有SiO2阻挡层的垂直结构Ga2O3晶体管的方法,其特征在于,包括如下步骤:7. A method for preparing a vertical structure Ga 2 O 3 transistor with SiO 2 barrier layer, characterized in that, comprising the steps: 1)清洗外延片,即将同质外延的氧化镓片子依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗5min-10min,然后用氮气吹干;1) Cleaning the epitaxial wafer, that is, putting the homoepitaxial gallium oxide wafer into acetone solution, absolute ethanol solution and deionized water in sequence for ultrasonic cleaning for 5min-10min, and then blowing dry with nitrogen; 2)在清洗后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,刻蚀掉外延片待刻蚀区域上的氧化镓形成沟槽结构;2) Perform photolithography on the cleaned epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system to etch away the gallium oxide on the area to be etched on the epitaxial wafer to form a trench structure; 3)将刻蚀后的氧化镓外延片放入电感耦合等离子体增强化学气相淀积系统ICP-CVD反应室内,设置反应室温度为80℃-90℃,在外延片表面淀积厚度为500nm-1000nm的SiO2,再将淀积后的片子放入剥离液中,通过剥离形成SiO2阻挡层;3) Put the etched gallium oxide epitaxial wafer into the ICP-CVD reaction chamber of the inductively coupled plasma enhanced chemical vapor deposition system, set the temperature of the reaction chamber at 80°C-90°C, and deposit a thickness of 500nm- 1000nm SiO 2 , and then put the deposited sheet into the stripping solution to form a SiO 2 barrier layer by stripping; 4)通过原子层淀积ALD工艺,在氧化镓外延片表面淀积厚度为10nm-20nm的n型导电材料;4) Deposit an n-type conductive material with a thickness of 10nm-20nm on the surface of the gallium oxide epitaxial wafer by atomic layer deposition ALD process; 5)在淀积后的外延片上进行光刻,形成待刻蚀区域,再将其放入反应离子刻蚀RIE系统内,刻蚀掉外延片待刻蚀区域上的n型导电材料,形成欧姆接触区域;5) Perform photolithography on the deposited epitaxial wafer to form the area to be etched, and then put it into the reactive ion etching RIE system to etch away the n-type conductive material on the area to be etched on the epitaxial wafer to form an ohmic contact area; 6)在刻蚀后的外延片上进行光刻,形成待离子注入区域,再通过离子注入技术在该区域注入n型导电离子;6) Perform photolithography on the etched epitaxial wafer to form a region to be ion implanted, and then implant n-type conductive ions in this region by ion implantation technology; 7)通过原子层淀积ALD工艺,在离子注入后的氧化镓外延片表面淀积厚度为20nm-50nm的Al2O37) Depositing Al 2 O 3 with a thickness of 20nm-50nm on the surface of the gallium oxide epitaxial wafer after ion implantation by atomic layer deposition ALD process; 8)在Al2O3表面光刻源端电极通孔,利用反应离子刻蚀RIE系统刻蚀去掉电极通孔区域的Al2O38) Lithographically etch the through hole of the source end electrode on the surface of Al 2 O 3 , and use the reactive ion etching RIE system to etch and remove the Al 2 O 3 in the area of the electrode through hole; 9)将刻蚀完成的外延片再次光刻形成源端电极区域,通过电子束蒸发E-Beam系统先在源端电极区域淀积Ti/Au,通过剥离形成源端电极,之后再在衬底表面淀积Ti/Au,形成漏端电极,并在N2环境中退火形成欧姆接触;9) The etched epitaxial wafer is photolithographically formed again to form the source electrode area, and Ti/Au is first deposited on the source electrode area by electron beam evaporation E-Beam system, and the source electrode is formed by stripping, and then the substrate Deposit Ti/Au on the surface to form a drain terminal electrode, and anneal in N2 environment to form an ohmic contact; 10)对形成欧姆接触后的氧化镓外延片进行光刻,在Al2O3表面形成栅极区域,再通过电子束蒸发E-Beam系统在栅极区域淀积Ni/Au,通过剥离形成栅电极,完成器件制作。10) Perform photolithography on the gallium oxide epitaxial wafer after the ohmic contact is formed, form a gate region on the surface of Al 2 O 3 , and then deposit Ni/Au on the gate region by electron beam evaporation E-Beam system, and form a gate region by lift-off Electrode, complete device fabrication. 8.根据权利要求7所述的方法,其中步骤2)中采用反应离子刻蚀RIE工艺刻蚀,其工艺条件如下:8. The method according to claim 7, wherein step 2) adopts reactive ion etching (RIE) process etching, and its processing conditions are as follows: 反应室压强:1500-2000mtorrReaction chamber pressure: 1500-2000mtorr 反应室气体:SF6、CHF3、HeReactor gas: SF 6 , CHF 3 , He 反应室气体流速比例:SF6:CHF3:He=5.5sccm:32sccm:150sccmReaction chamber gas flow rate ratio: SF 6 :CHF 3 :He=5.5sccm:32sccm:150sccm RF射频源:150-300W。RF radio frequency source: 150-300W. 9.根据权利要求7所述的方法,其中步骤4)中的采用原子层淀积ALD工艺淀积n型材料,其工艺条件如下:9. The method according to claim 7, wherein in the step 4) adopting atomic layer deposition (ALD) technique to deposit n-type material, its process condition is as follows: 反应室压力:800-900PaReaction chamber pressure: 800-900Pa 反应室气体:高纯氮气Reaction chamber gas: high-purity nitrogen 反应室气体流速:300sccm。Reaction chamber gas flow rate: 300 sccm. 10.根据权利要求7所述的方法,其中步骤6)中在离子注入区域进行离子注入,是在外延片上注入剂量为1e14cm-2-5e14cm-2、能量为10keV的离子Si、Ge、Sn、F、Cl的其中一种,形成掺杂浓度为1e19cm-3-5e19cm-3,注入深度为1-10um的高掺区域。10. The method according to claim 7, wherein performing ion implantation in the ion implantation region in step 6) is to implant Si, Ge, Sn, ions with a dose of 1e14cm −2 to 5e14cm −2 and an energy of 10keV on the epitaxial wafer. F, one of Cl, forming a high-doped region with a doping concentration of 1e19cm -3 -5e19cm -3 and an implantation depth of 1-10um. 11.根据权利要求7所述的方法,其中步骤7)中的采用原子层淀积ALD工艺淀积Al2O3型材料,其工艺条件如下:11. The method according to claim 7, wherein in the step 7), the ALD process is used to deposit the Al2O3 type material, and its processing conditions are as follows: 反应室压力:800-900PaReaction chamber pressure: 800-900Pa 反应室气体:高纯氮气Reaction chamber gas: high-purity nitrogen 反应室气体流速:300sccm。Reaction chamber gas flow rate: 300 sccm. 12.根据权利要求7所述的方法,其中步骤8)中采用反应离子刻蚀RIE工艺刻蚀Al2O3,其工艺条件如下:12. The method according to claim 7, wherein in step 8), the reactive ion etching (RIE) process is used to etch Al 2 O 3 , and the process conditions are as follows: 反应室压强:10-30mTorrReaction chamber pressure: 10-30mTorr 反应室气体:BCl3、ArReaction chamber gas: BCl 3 , Ar 反应室气体流速比例:BCl3:Ar=20sccm:10sccmReaction chamber gas flow rate ratio: BCl 3 :Ar=20sccm:10sccm 刻蚀功率:200-400W。Etching power: 200-400W. 13.根据权利要求7所述的方法,其中:13. The method of claim 7, wherein: 所述步骤9)中淀积的Ti/Au,其厚度为60nm/120nm-80nm/140nm;The Ti/Au deposited in the step 9) has a thickness of 60nm/120nm-80nm/140nm; 所述步骤10)中淀积的Ni/Au,其厚度为50nm/100nm-60nm/120nm。The Ni/Au deposited in step 10) has a thickness of 50nm/100nm-60nm/120nm.
CN202310208722.5A 2023-03-06 2023-03-06 With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method Pending CN116013989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310208722.5A CN116013989A (en) 2023-03-06 2023-03-06 With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310208722.5A CN116013989A (en) 2023-03-06 2023-03-06 With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method

Publications (1)

Publication Number Publication Date
CN116013989A true CN116013989A (en) 2023-04-25

Family

ID=86037589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310208722.5A Pending CN116013989A (en) 2023-03-06 2023-03-06 With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method

Country Status (1)

Country Link
CN (1) CN116013989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276352A (en) * 2023-11-23 2023-12-22 三峡智能工程有限公司 Transistor structure and preparation method, recording medium and system thereof
CN118431270A (en) * 2024-07-01 2024-08-02 深圳市港祥辉电子有限公司 A field-stop gallium oxide IGBT device and its preparation method
CN118486735A (en) * 2024-07-10 2024-08-13 深圳市港祥辉电子有限公司 An enhanced planar gate gallium oxide VDMOS device and its preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276352A (en) * 2023-11-23 2023-12-22 三峡智能工程有限公司 Transistor structure and preparation method, recording medium and system thereof
CN117276352B (en) * 2023-11-23 2024-02-06 三峡智能工程有限公司 Transistor structure and preparation method, recording medium and system thereof
CN118431270A (en) * 2024-07-01 2024-08-02 深圳市港祥辉电子有限公司 A field-stop gallium oxide IGBT device and its preparation method
CN118486735A (en) * 2024-07-10 2024-08-13 深圳市港祥辉电子有限公司 An enhanced planar gate gallium oxide VDMOS device and its preparation method

Similar Documents

Publication Publication Date Title
WO2020228352A1 (en) Semiconductor device and manufacturing method therefor
CN116013989A (en) With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method
WO2016141762A1 (en) Iii-nitride enhancement hemt and preparation method therefor
CN111384171B (en) High channel mobility vertical UMOSFET device and method of making the same
CN102637726A (en) MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof
CN112382655B (en) Wide bandgap power semiconductor device and preparation method thereof
CN110120425A (en) The high-voltage MOSFET device and production method of vertical-type
CN109037326A (en) A kind of enhanced HEMT device and preparation method thereof with p type buried layer structure
CN111785776B (en) Vertical structure Ga2O3Preparation method of metal oxide semiconductor field effect transistor
CN110571275A (en) Preparation method of gallium oxide MOSFET
CN112133756A (en) PN junction gate-controlled gallium oxide field effect transistor based on T-type gate structure and preparation method thereof
CN108417617A (en) Silicon carbide trench MOSFETs and methods of making the same
CN112599603A (en) Quasi-vertical field effect transistor based on longitudinal Schottky source tunneling junction and method
CN110676172A (en) Method for realizing low-on-resistance enhanced gallium nitride transistor
CN116387361A (en) SiO2 Barrier Layer Ga2O3 Vertical UMOS Transistor and Its Fabrication Method
CN118315413A (en) Vertical structure Ga2O3 field effect transistor based on regrowth stable ion injection current aperture and preparation method thereof
CN117711940A (en) An enhanced HEMT device structure and its manufacturing method
CN112133757B (en) Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof
CN116959991A (en) Field effect transistor and preparation method thereof and method for preparing groove structure in drift layer of field effect transistor
CN115084224A (en) NiO/Ga with vertical structure 2 O 3 JFET (junction field effect transistor) and preparation method thereof
CN115732566A (en) UMOSFET device and method for improving performance of UMOSFET device
CN114300538A (en) PN junction grid-controlled gallium oxide field effect transistor based on strip source field plate structure and preparation method thereof
CN112614889A (en) All-vertical field effect transistor based on longitudinal Schottky source tunneling junction and method
JP2017092398A (en) Diamond electronic element
CN221596458U (en) Enhancement type GaN HEMT device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination