JPH02140926A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02140926A
JPH02140926A JP29507788A JP29507788A JPH02140926A JP H02140926 A JPH02140926 A JP H02140926A JP 29507788 A JP29507788 A JP 29507788A JP 29507788 A JP29507788 A JP 29507788A JP H02140926 A JPH02140926 A JP H02140926A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating film
metal wiring
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29507788A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29507788A priority Critical patent/JPH02140926A/en
Publication of JPH02140926A publication Critical patent/JPH02140926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove a contamination product and to improve a characteristic relating to quality of an interlayer insulating film itself for improving reliability by flattening of an interlayer insulating film through plasma-and sputter-etching followed by giving ozone treatment. CONSTITUTION:After forming a first metal wiring 13, a first interlayer insulating film 14 is laminated. After performing dry etching of the prescribed film thickness of this interlayer insulating film 14, a second interlayer insulating is coated by vapor growth or an application method through a process of heat treatment in an atmosphere containing ozone gas. Next, a second metal wiring 17 is formed by making a throughhole. Accordingly, contamination accompanying flattening treatment of a semiconductor device having multilayer wirings is removed so that coming-off of an application film and a crack are excluded. Thereby, qualitative long reliability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、多機能、集積化の為に多層配線構造を有する
半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device having a multilayer wiring structure for multi-function and integration.

[従来の技術] 従来、多層配線構造を持った半導体装置の製造方法は、
例えば第2図の如く、トランジスタや抵抗等の半導体素
子が作り込まれた半導体基板21上のフィールド酸化1
1422を介して、素子からの電極取り出しの為にコン
タクトホールを開孔した後、0.5〜0.8L1mのA
1合金をスパッタリングしてから、フォトエツチングに
より所望形状にバクーニングし、第1の金属配!123
を形成した後、第1の層間絶縁膜として、450℃以下
の低温でS i H4や有機シランと0*、N*Oある
いはオゾンを減圧下で気相反応させ約1.0μmのシリ
コン酸化膜を成長させる(第2図(a))、次に第1の
金属配線23の段差部にかかる第1の層間絶縁膜24を
平坦化する為CF、、CHFIやC*Fsガス等を用い
たドライエツチャーでエッチバックして側壁形成やスム
ージングし、あるいはAr等でスパックエツチングしく
第2図(b))、更に塗布ガラス膿26を被着しアニー
ルし、もしくは直接筒2の層間絶縁膜を成長した後、フ
ォトエツチングによりスルーホールを開孔し、約1.0
umのA1合金をスパッタリングした後、フォトエツチ
ングし第2の金属配線27として(第2図(c))、そ
の後パシベーション膜を積層し、外部電極取り出し用の
パッド部を開孔している。
[Conventional technology] Conventionally, a method for manufacturing a semiconductor device having a multilayer wiring structure is as follows.
For example, as shown in FIG. 2, field oxidation 1 on a semiconductor substrate 21 in which semiconductor elements such as transistors and resistors are built.
After drilling a contact hole to take out the electrode from the element through 1422, an A of 0.5 to 0.8L1m was opened.
After sputtering the first alloy, it is photoetched into a desired shape and the first metal pattern is formed! 123
After forming the first interlayer insulating film, a silicon oxide film of approximately 1.0 μm is formed by reacting SiH4 or organic silane with O*, N*O, or ozone in a gas phase under reduced pressure at a low temperature of 450°C or lower. (FIG. 2(a)), and then CF, CHFI, C*Fs gas, etc. were used to flatten the first interlayer insulating film 24 covering the stepped portion of the first metal wiring 23. Etch back with a dry etcher to form side walls and smooth, or perform spack etching with Ar, etc. (Fig. 2(b)), and then apply coated glass pus 26 and anneal, or directly coat the interlayer insulating film of the cylinder 2. After the growth, a through hole is made by photoetching and the diameter is approximately 1.0.
After sputtering an A1 alloy of um, photoetching is performed to form the second metal wiring 27 (FIG. 2(c)), a passivation film is laminated, and a pad portion for taking out an external electrode is opened.

〔発明が解決しようとする課題1 しかしながら従来技術では、第1の層間絶縁膜24を平
坦化の為に行なうドライエツチングやスパッタエツチン
グする最中に、シリコン酸化膜とガスの反応によりポリ
マー25が生成され、特に段差側面や溝部には多く付着
する。この上に形成される塗布膜26や第2の層間絶縁
膜の密着が悪く成長直後や後工程のストレス等で剥離や
クラックが発生していた。またこれらのコンタミネーシ
ョンに依って信頼性にも悪影響を及ぼしていた。シリコ
ン酸化膜をエッチバックした後処理として、0□プラズ
マによるポリマー除去も一般には試みられてもいるが、
効果はあまりない、また90℃程度のH,SO2とH,
02の混合液に浸漬すると除去されるものの、ウェハー
周辺やピンホールから第1の金属配線23がエツチング
されてしまい、金属配線が形成されてからの処理には適
用出来ない。
[Problem to be Solved by the Invention 1] However, in the prior art, during dry etching or sputter etching for planarizing the first interlayer insulating film 24, the polymer 25 is generated due to a reaction between the silicon oxide film and the gas. In particular, a large amount adheres to the side surfaces of steps and grooves. The adhesion of the coating film 26 and the second interlayer insulating film formed thereon was poor, and peeling and cracking occurred immediately after growth and due to stress in post-processes. Moreover, these contaminants have had a negative effect on reliability. As a post-treatment after etching back the silicon oxide film, polymer removal using 0□ plasma has also been attempted, but
There is not much effect, and H, SO2 and H at about 90℃
Although the first metal wiring 23 is removed by immersion in the mixed solution of No. 02, the first metal wiring 23 is etched from the periphery of the wafer and from the pinholes, making it impossible to apply the process after the metal wiring is formed.

しかるに本発明は、かかる問題点を解決するもので、多
層配線を有する半導体装置の平坦化処理に伴う汚染を除
去し、微細多機能半導体装置の安定供給を図ると共に、
信頼性に伴う品質の向上を図ることを目的としたもので
ある。
However, the present invention solves these problems, and eliminates contamination associated with planarization of semiconductor devices having multilayer interconnections, thereby stably supplying microscopic multifunctional semiconductor devices.
The purpose is to improve quality associated with reliability.

[課題を解決するための手段1 本発明の半導体装置の製造方法は、少なくとも、第1の
金属配線を形成後、第1の層間絶縁膜な積層させる工程
、該層間絶縁膜の所定膜厚をドライエツチングする工程
、オゾンガスを含む雰囲気中で熱処理する工程を経てか
ら気相成長もしくは塗布法による第2の層間絶縁膜を被
着する工科、スルーホールの開孔を行ない第2の金属配
線形成工程を有したことを特徴とする。
[Means for Solving the Problems 1] The method for manufacturing a semiconductor device of the present invention includes at least the step of laminating a first interlayer insulating film after forming a first metal wiring, and forming a predetermined thickness of the interlayer insulating film. After a dry etching step and a heat treatment step in an atmosphere containing ozone gas, a second interlayer insulating film is deposited by vapor phase growth or coating, and a second metal wiring formation step is performed by forming through holes. It is characterized by having the following.

〔実 施 例) 以下本発明の一実施例を、第1図に基づいて詳細に説明
する。
[Embodiment] An embodiment of the present invention will be described in detail below with reference to FIG.

サブミクロンルールのAI配線2層構造のSiゲートC
MO5半導体装置に適用した場合に於いて、トランジス
タや抵抗等の半導体素子が形成されたシリコン基板ll
上に1選択熱酸化や気相成長によるフィールド酸化膜1
2が形成され電極取り出し用のコンタクトホールを開孔
し、Cuを0.5%程度含んだAIを約0.7μmスパ
ッタリングし、フォトリソ後C1,ガスでドライエツチ
ングし、J’!小寸法が0.8〜1.2μmでほぼ垂直
に側面が形成された第1の金属配線13を施した0次に
第1の層間絶縁膜として、まず平行平板のプラズマ気相
成長装置により約380℃でTE01<S i (QC
,H,)4>と02をプラズマ反応させてシリコン酸化
膜を約1.0μm成長させた(第1図(a))、つぎに
CF、とHeガスをもちいた異方性ドライエツチャーに
より0.4μmをエッチバックして平坦化した。このと
き表面に、ポリマー15が付着する。(第1図(b))
。続いてチャンバー内でウェハーを300℃に加熱しな
がらオゾンを5〜6%含む0、ガスを流しなから6ot
orrで60秒処理し、ポリマーを15除去した後(第
1図(c)’) 、この上に塗布ガラス膜16を形成し
て400℃でアニールした。続いてスルーホールを形成
後、A1合金を約1.0amの厚みでスパッタリングし
てパターニングを行ない、第2の金属配線17とした。
Si gate C with submicron rule AI wiring two-layer structure
When applied to an MO5 semiconductor device, a silicon substrate on which semiconductor elements such as transistors and resistors are formed
A field oxide film 1 is formed on top by selective thermal oxidation or vapor phase growth.
2 is formed, a contact hole is opened for taking out the electrode, and AI containing about 0.5% Cu is sputtered to a thickness of about 0.7 μm. After photolithography, dry etching is performed with C1 gas, and J'! First, a 0-order first interlayer insulating film with a first metal wiring 13 having a small dimension of 0.8 to 1.2 μm and a substantially vertical side surface is formed using a parallel plate plasma vapor deposition apparatus. TE01<S i (QC
. It was etched back by 0.4 μm to flatten it. At this time, the polymer 15 adheres to the surface. (Figure 1(b))
. Subsequently, while heating the wafer to 300°C in a chamber, it was heated to 6 oz without flowing gas, containing 5 to 6% ozone.
orr for 60 seconds to remove 15% of the polymer (FIG. 1(c)'), a coated glass film 16 was formed thereon and annealed at 400°C. Subsequently, after forming through-holes, A1 alloy was sputtered and patterned to a thickness of about 1.0 am to form the second metal wiring 17.

その後プラズマシリコン窒化膿を積層し、外部電極取り
出し用のバット部を開孔した。
Thereafter, a layer of plasma silicon nitride was applied, and a hole was made in the butt part for taking out the external electrode.

このようにしてなる半導体装置は、第1の層間絶縁膜を
エッチバックした後、堆積したポリマーがオゾン処理に
より除去された為、従来のように塗布膜16の剥離やク
ラックが皆無となり、品質上の長期信頼性も向上した。
In the semiconductor device thus formed, since the deposited polymer is removed by ozone treatment after the first interlayer insulating film is etched back, there is no peeling or cracking of the coating film 16 as in the conventional case, and the quality is improved. The long-term reliability of the system has also been improved.

このポリマーの除去効果は、オゾン1度が2%程度から
ポリマーの除去効果が明確になり濃度が高い程除去速度
は大きく成る。又処理温度には敏感ではないが、200
℃程度以上で金属配線やPN接合に影響を与えない45
0℃程度までの温度が適当である。又この第1の層間絶
縁膜の成長工程、エッチバック、オゾン処理は、高周波
平行平板電極を持つ同一チャンバーで、処理温度を36
0〜400℃に保って連続処理も行なってみたがポリマ
ーの除去は当然として、搬送による汚染やパーティクル
の問題もなくすことが出来た。
The removal effect of this polymer becomes clear from about 2% ozone at 1 degree, and the higher the concentration, the faster the removal rate becomes. Although it is not sensitive to processing temperature,
Does not affect metal wiring or PN junctions at temperatures above ℃45
A temperature of up to about 0°C is suitable. In addition, the growth process, etchback, and ozone treatment of this first interlayer insulating film were performed in the same chamber equipped with high-frequency parallel plate electrodes at a processing temperature of 36°C.
Continuous processing was also carried out while maintaining the temperature at 0 to 400°C, and it was possible to not only remove the polymer but also eliminate the problems of contamination and particles caused by transportation.

エッチバックはCF、とHeだけでなくCzF、、CH
F、と0□やArのスパッタエツチングの時に生成され
るポリマーの除去にも効果があった。
Etch back not only CF, and He but also CzF,,CH
It was also effective in removing polymers generated during sputter etching of F, 0□, and Ar.

又層間絶縁膜に用いる気相膜は、TEOSと02の反応
だけでなく、SiH4とN20や0□、TEOSとオゾ
ンを用いたプラズマ反応や熱反応させたものでも良く、
又これらの複合膜も活用出来る。更に第2層間絶縁膜構
造としては。
In addition, the gas phase film used for the interlayer insulating film may be formed not only by the reaction of TEOS and 02, but also by a plasma reaction or thermal reaction using SiH4 and N20, 0□, TEOS and ozone,
Composite membranes of these can also be used. Furthermore, as for the second interlayer insulating film structure.

塗布ガラス膜か気相成長膜の単層だけでなく、これ等の
複合膜やエッチバックされた構造のものでも適用できる
It can be applied not only to a single layer of a coated glass film or a vapor-grown film, but also to a composite film or an etched back structure of these films.

本発明は、MO5ICに限らずバイポーラや0MO3及
びこれらを組み合わせたICにも適用でき、この他多結
晶Si同志あるいは、多結晶SiとA1合金配線の層間
絶縁膜の形成にも応用が可能である。更に金属配線とし
ては、A1合金に限られず、他金属、ケイ化物や半導体
物質でもよく、この他平坦化、コンタクトバリヤーの為
にT i、W、Co、Mo等の高融点金属あるいはやそ
の窒化物、ケイ化物および合金膜を積層化したものでも
応用可能である。
The present invention is applicable not only to MO5ICs but also to bipolar, 0MO3, and ICs that combine these, and can also be applied to the formation of interlayer insulating films between polycrystalline Si or polycrystalline Si and A1 alloy wiring. . Furthermore, the metal wiring is not limited to A1 alloy, but may also be other metals, silicides, or semiconductor materials.In addition, high-melting point metals such as Ti, W, Co, and Mo, or their nitrides may be used for planarization and contact barriers. It can also be applied to laminated films of materials, silicides, and alloy films.

〔発明の効果1 以上の様に本発明によれば、MO5LSI等の層間絶縁
膜の平坦化をプラズマやスパッタエツチング行なった後
、オゾン処理を施してやることにより、汚染生成物を除
去し層間絶縁膜自身の品質に関わる特性を改善し信頼性
の向上がなされるもので、より集積化、多機能化された
半導体装置の供給に寄与出来るものである。
[Effect of the invention 1 As described above, according to the present invention, the interlayer insulating film of MO5LSI etc. is flattened by plasma or sputter etching, and then ozone treatment is performed to remove contamination products and flatten the interlayer insulating film. This improves reliability by improving characteristics related to its own quality, and can contribute to the supply of more integrated and multi-functional semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明による半導体装置の実
施例を示す概略断面図である。 第2図(a)〜(C)は、従来の半導体装置に係わる概
略断面図である。 ・半導体基板 ・フィールド酸化膜 ・第1の金属配線 ・第1の層間絶縁膜 ・ポリマー ・塗布ガラス膜 ・第2の金属配線 第1図(α) 第1図cb+ 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)第1図(C
) 第1図rd)
FIGS. 1(a) to 1(d) are schematic cross-sectional views showing embodiments of a semiconductor device according to the present invention. FIGS. 2(a) to 2(C) are schematic cross-sectional views of conventional semiconductor devices. - Semiconductor substrate - Field oxide film - First metal wiring - First interlayer insulating film - Polymer - Coated glass film - Second metal wiring Figure 1 (α) Figure 1 cb+ Applicant Agent for Seiko Epson Corporation Person Patent Attorney Masaharu Kamiyanagi (and 1 other person) Figure 1 (C
) Figure 1rd)

Claims (1)

【特許請求の範囲】[Claims] 少なくとも、第1の金属配線を形成後、第1の層間絶縁
膜を積層させる工程、該層間絶縁膜の所定膜厚をドライ
エッチングする工程、オゾンガスを含む雰囲気中で熱処
理する工程を経てから気相成長もしくは塗布法による第
2の層間絶縁膜を被着する工程、スルーホールの開孔を
行ない第2の金属配線形成工程を有したことを特徴とす
る半導体装置の製造方法。
At least, after forming the first metal wiring, a step of laminating a first interlayer insulating film, a step of dry etching a predetermined thickness of the interlayer insulating film, a step of heat treatment in an atmosphere containing ozone gas, and then a vapor phase A method for manufacturing a semiconductor device, comprising the steps of depositing a second interlayer insulating film by growth or coating, and forming a second metal wiring by forming a through hole.
JP29507788A 1988-11-22 1988-11-22 Manufacture of semiconductor device Pending JPH02140926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29507788A JPH02140926A (en) 1988-11-22 1988-11-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29507788A JPH02140926A (en) 1988-11-22 1988-11-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02140926A true JPH02140926A (en) 1990-05-30

Family

ID=17816020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29507788A Pending JPH02140926A (en) 1988-11-22 1988-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02140926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063992B2 (en) 2003-08-08 2006-06-20 Solid State Measurements, Inc. Semiconductor substrate surface preparation using high temperature convection heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063992B2 (en) 2003-08-08 2006-06-20 Solid State Measurements, Inc. Semiconductor substrate surface preparation using high temperature convection heating

Similar Documents

Publication Publication Date Title
JPS63301548A (en) Manufacture of semiconductor device
JPS63170925A (en) Formation of wiring on substrate and lift-off film
JPH02140926A (en) Manufacture of semiconductor device
JPH03244126A (en) Manufacture of semiconductor device
JPH10247686A (en) Formation of multilayer interconnection
JPH01150342A (en) Multilayer interconnection structure and manufacture thereof
JPH02140927A (en) Manufacture of semiconductor device
JPH11111842A (en) Multilayered wiring structure and its manufacture
JP4207284B2 (en) Manufacturing method of semiconductor device
JPH02260535A (en) Manufacture of semiconductor device
JP2795875B2 (en) Method for manufacturing semiconductor device
JPS6113375B2 (en)
JPS5951549A (en) Manufacture of integrated circuit device
JPH07321202A (en) Forming method for multilayer interconnection
JP2991388B2 (en) Method for manufacturing semiconductor device
JPH0235731A (en) Manufacture of semiconductor device
JPH05152444A (en) Manufacture of semiconductor device
JPS63262856A (en) Manufacture of semiconductor device
JPH08203892A (en) Method and system for producing semiconductor device
JP2730499B2 (en) Method for manufacturing semiconductor device
JPH0327526A (en) Manufacture of semiconductor integrated circuit device
JPS612360A (en) Semiconductor device
JPS63293859A (en) Multilayer interconnection structure and manufacture thereof
JPH0499325A (en) Manufacture of semiconductor device
JPS63308315A (en) Manufacture of semiconductor device