JPH02126681A - Manufacture of mos type semiconductor element - Google Patents

Manufacture of mos type semiconductor element

Info

Publication number
JPH02126681A
JPH02126681A JP28076188A JP28076188A JPH02126681A JP H02126681 A JPH02126681 A JP H02126681A JP 28076188 A JP28076188 A JP 28076188A JP 28076188 A JP28076188 A JP 28076188A JP H02126681 A JPH02126681 A JP H02126681A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
region
field oxide
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28076188A
Other languages
Japanese (ja)
Inventor
Masahito Kashima
鹿島 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28076188A priority Critical patent/JPH02126681A/en
Publication of JPH02126681A publication Critical patent/JPH02126681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation

Abstract

PURPOSE:To obtain a LDD structure of good reproducibility by a simplified process by a method wherein a recess formed in the surface of a semiconductor substrate by removing an oxide film region simultaneously with a field oxide film is used as a channel region, the recess is filled with a material for gate electrode use, and a flat gate electrode is formed on the surface of the semiconductor substrate. CONSTITUTION:A removed part of an oxide film 8 which is formed simultaneously in the middle in addition to two field oxide film regions 3 becomes a hollow used to fill a gate electrode 4; when an impurity region is formed in a self- alignment manner by making use of the field oxide film regions 3 and the gate electrode 4 as a mask, a low impurity-concentration source-drain region 71 having a concentration grade is generated under slopes on both ends of the gate electrode 4; this region forms an LDD structure together with a high impurity-concentration source-drain region 72 generated under parts not covered with the gate electrode 4. Accordingly, it is not required to form a side wall; its reproducibility is good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ソース・ドレイン領域が低不純物濃度領域と
高不純物濃度領域からなるLDD構造と呼ばれる構造を
もつMOS型半導体素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a MOS type semiconductor element having a structure called an LDD structure in which source/drain regions are composed of a low impurity concentration region and a high impurity concentration region.

〔従来の技術〕[Conventional technology]

近年、半導体装置の高速、高集積化をめざして、トラン
ジスタの寸法はますます微細化されてきている。特にM
OS型半導体素子においては、ゲートチャネル長が1i
rm前後となり、しきい値電圧の急激な低下等いわゆる
短チヤネル効果による問題が顕著になってきている。ま
た、ドレイン部でのインパクトイオン化による素子特性
の劣化も問題であり、これらをさけるため、ドレイン接
合の濃度を二段階とし、電界集中を緩和するLDD(L
tghLy doped Drain)構造が考案され
ている。このLDDI造の作り方は、従来、第2図[a
l 〜(dlに示すように、CVDによって形成された
サイドウオールを用いるものであった。すなわち、第2
図(a)に示すように、シリコン基板1上のゲート酸化
膜2とフィールド酸化膜3を形成後、ゲート酸化膜2の
上にゲート電極4を形成し、低濃度ドレイン領域を作る
ための低ドーズイオン注入51をゲート電極4およびフ
ィールド酸化膜3をマスクにしたセルフアライメントで
行う0次に、図(blに示すようにイオン注入された領
域を低不純物濃度領域、とし、減圧CVDにより酸化膜
60を全面に堆積させる0次いで、図tc+に示すよう
に反応性イオンエツチング(RIE)法を用いて、酸化
膜を全面エツチングする。RIE法は異方性エツチング
であるため、ゲー) IEi 4 y!壁の酸化膜のエ
ツチングレートは低いので、表面に平行な面上の酸化膜
がエツチングされても、側壁部分は残り、いわゆるサイ
ドウオール6が形成される。このサイドウオール6が形
成された状態で高不純物濃度領域を作る高ドーズイオン
住人52を行うと、図td+に示すようにゲート電極か
られずか離れた部分から高濃度ソース・ドレイン領域7
2が形成できる。その後、眉間絶縁膜としてPSG膜1
0を堆積させる。このような工程を通して、ゲート電極
とセルフアライメントでチャネル形成領域に接する低濃
度ソース・ドレイン領域71と電極との接触に必要な高
濃度ソース・ドレイン領域72とが形成できる。
In recent years, the dimensions of transistors have become smaller and smaller with the aim of increasing the speed and integration of semiconductor devices. Especially M
In an OS type semiconductor device, the gate channel length is 1i
rm, and problems caused by the so-called short channel effect, such as a sudden drop in threshold voltage, are becoming more prominent. In addition, deterioration of device characteristics due to impact ionization in the drain region is also a problem, and in order to avoid these problems, the concentration of the drain junction is set in two stages, and the LDD (L)
tghLy doped drain) structure has been devised. Conventionally, the method of making this LDDI structure is as shown in Fig. 2 [a
As shown in l~(dl, sidewalls formed by CVD were used. In other words, the second
As shown in Figure (a), after forming a gate oxide film 2 and a field oxide film 3 on a silicon substrate 1, a gate electrode 4 is formed on the gate oxide film 2, and a low concentration layer is formed to form a low concentration drain region. Dose ion implantation 51 is performed by self-alignment using the gate electrode 4 and field oxide film 3 as masks.Next, as shown in Figure (bl), the ion-implanted region is defined as a low impurity concentration region, and the oxide film is formed by low pressure CVD. 60 is deposited on the entire surface.Then, as shown in Figure tc+, the oxide film is etched on the entire surface using a reactive ion etching (RIE) method.Since the RIE method is anisotropic etching, ! Since the etching rate of the oxide film on the wall is low, even if the oxide film on the plane parallel to the surface is etched, the side wall portion remains and a so-called sidewall 6 is formed. When the high-dose ion population 52 is performed to form a high impurity concentration region with the sidewall 6 formed, the high concentration source/drain region 7 is started from a portion far away from the gate electrode, as shown in FIG. td+.
2 can be formed. After that, PSG film 1 is used as the glabella insulating film.
Deposit 0. Through these steps, a low concentration source/drain region 71 in contact with the channel formation region and a high concentration source/drain region 72 necessary for contact with the electrode can be formed in self-alignment with the gate electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第2図について説明した方法は低濃度ソース・
ドレイン領域をつくるサイドウオール6の形成が、RI
E法による微妙なエツチングを用いなければならないの
で再現性に乏しく、また工程が長く複雑なため製造原価
が上昇するという問題があった。
However, the method described in Figure 2
The formation of the sidewall 6 that forms the drain region is performed by RI.
Since delicate etching by the E method must be used, reproducibility is poor, and the process is long and complicated, resulting in an increase in manufacturing costs.

本発明の課題は、上記の問題を解決し、少ない工程で再
現性のあるLDD構造を形成できるMOS型半導体素子
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a MOS type semiconductor device that solves the above problems and can form a reproducible LDD structure with a small number of steps.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明の方法は、半導体基
板の表面層を選択的に酸化して二つのフィールド酸化膜
領域の中間に両端が傾斜面により薄くなる酸化膜領域を
設け、その中間領域のみ酸化膜を除去してくぼみを形成
し、そのくぼみを表面平坦に埋めるゲート電極を設け、
残されたフィールド酸化膜とゲート電極とをマスクとし
てイオン注入し、ゲート電極の両端の傾斜面の下に低不
純物濃度の、ゲート電極とフィールド酸化膜領域の間に
高不純物濃度のソース・ドレイン領域をそれぞれ設ける
ものとする。
In order to solve the above problems, the method of the present invention selectively oxidizes the surface layer of a semiconductor substrate to provide an oxide film region between two field oxide film regions whose ends are thinned by sloped surfaces. The oxide film is removed only in the middle region to form a depression, and a gate electrode is provided to fill the depression with a flat surface.
Using the remaining field oxide film and gate electrode as masks, ions are implanted to form source/drain regions with low impurity concentration under the sloped surfaces at both ends of the gate electrode and with high impurity concentration between the gate electrode and the field oxide film region. shall be provided for each.

〔作用〕[Effect]

二つのフィールド酸化膜領域のほかにその中間に同時に
形成される酸化膜の除去部分がゲート電極を埋めるため
のくぼみとなり、フィールド酸化膜領域とゲート’i+
iとをマスクとしてセルフアライメントで不純物領域を
形成すれば、ゲート電極の両端の傾斜面の下には濃度勾
配をもつ低不純物濃度ソース・ドレイン領域が生じ、ゲ
ート電極に覆われない部分の下に生ずる高不純物濃度ソ
ース・ドレイン領域と共にL D D 7i造を形成す
る。従ってサイドウオールの形成の必要はなく、再現性
は良好である。
In addition to the two field oxide film regions, the removed portion of the oxide film formed simultaneously between them becomes a depression for filling the gate electrode, and the field oxide film region and the gate 'i+
If impurity regions are formed by self-alignment using i as a mask, a low impurity concentration source/drain region with a concentration gradient will be created under the sloped surfaces at both ends of the gate electrode, and under the part not covered by the gate electrode. Together with the resulting high impurity concentration source/drain regions, an LDD 7i structure is formed. Therefore, there is no need to form sidewalls, and reproducibility is good.

〔実施例〕〔Example〕

以下、図を引用して本発明の一実施例を述べる。 An embodiment of the present invention will be described below with reference to the drawings.

第3図はLOGO3酸化法による厚い酸化膜形成の方法
を示し、シリコン基板1の上にまず400人程成膜厚さ
の薄いバッファ酸化膜31を形成し、その上に約100
0人の厚さの5lsNa膜32を成長させる。
FIG. 3 shows a method of forming a thick oxide film using the LOGO3 oxidation method. First, a thin buffer oxide film 31 with a thickness of about 400 layers is formed on a silicon substrate 1, and then a thin buffer oxide film 31 with a thickness of about 100
A 5lsNa film 32 with a thickness of 0 is grown.

次いでフォトリソグラフィにより厚い酸化膜を形成する
部分の5isN4膜をドライエツチングなどで除去する
。バッファ酸化膜31はこの際シリコンがエツチングさ
れるのを防止する働きをする。このあと5isNa膜3
2をマスクとして900℃、 10時間程度のスチーム
酸化を行い8400人程度0厚さの酸化膜30を形成す
る。この際Si3N4膜32の上に薄い酸化膜33が生
ずる。また、5iJn膜の縁部の下にも酸化膜が生じい
わゆるバードビーク部34が生ずる。
Next, the portion of the 5isN4 film where a thick oxide film will be formed by photolithography is removed by dry etching or the like. The buffer oxide film 31 serves to prevent the silicon from being etched at this time. After this, 5isNa film 3
2 as a mask, steam oxidation is performed at 900° C. for about 10 hours to form an oxide film 30 with a thickness of about 8,400. At this time, a thin oxide film 33 is formed on the Si3N4 film 32. Furthermore, an oxide film is formed under the edge of the 5iJn film, creating a so-called bird's beak portion 34.

この時のバードビーク部34の幅は450 人となり、
5i−310,界面35から酸化W430の底部36ま
での距離は3400人程度成膜る。
The width of the bird beak section 34 at this time is 450 people,
5i-310, the distance from the interface 35 to the bottom 36 of oxidized W430 is about 3400.

第1図(5)〜fflは本発明の一実施例のソース・ド
レイン領域作成工程を示す、先ず、上に述べたしaco
s酸化法でフィールド酸化膜3およびその中間の酸化膜
領域8を同時に形成し、素子を形成する領域以外をフォ
トレジスI−1!19で覆う (図a)。
FIG. 1(5) to ffl show the source/drain region forming process in one embodiment of the present invention.
A field oxide film 3 and an intermediate oxide film region 8 are simultaneously formed using the S oxidation method, and areas other than those where elements are to be formed are covered with a photoresist I-1!19 (Figure a).

そしてHFによるウェットエツチングを行うことにより
素子を形成する領域のシリコン面を露出させる (図b
)、この際シリコン基板表面にくぼみ11が生ずる0次
に、通常の工程によりゲート酸化膜2およびゲート電極
用多結晶シリコン膜40を積層したのち、エフチバ・7
り法による平坦化を行うためフォトレジスト膜91を塗
布する (図C)・ここで多結晶シリコン膜4oとフォ
トレジスト膜91のエツチング速度が等しくなる条件の
もとて反応性イオンエツチング法(RIE)によるエツ
チングを行い・エッチバック法でくぼみ11を埋め、表
面がシリコン基板面に対して平坦化された表面をもつゲ
ート電極4を形成する (図d)。これにより、ゲート
のバターニング工程を必要とすることなく、酸化膜領域
8を除去したくぼみに正確にゲート電極4を形成するこ
とができる0次いで、熱酸化の工程により表面に熱酸化
膜22を成長させた後、ゲート酸化膜4およびフィール
ド酸化膜3をマスクとしてセルフアライメントでソース
・ドレイン領域のためのイオン注入5を行う、このとき
、バードビーク部34の傾斜面によるゲート電極4端部
の膜厚差により、高不純物濃度ソース・ドレイン領域7
2のための不純物74と低不純物濃度ソース・ドレイン
領域71のための不純物73を同時に導入できる(図e
Lこの後、短い熱処理を900t、 30分程度の条件
で行う、拡散後の高不純物濃度領域72と、その内側の
低不純物濃度領域71が生じ、つづいての減圧CVD工
程により1oooo人程度の厚さにPSG膜10を堆積
させる (図r)。
Then, by performing wet etching with HF, the silicon surface in the region where the element will be formed is exposed (Figure b
), at this time, a depression 11 is formed on the surface of the silicon substrate. Next, a gate oxide film 2 and a polycrystalline silicon film 40 for gate electrode are laminated by a normal process, and then a
A photoresist film 91 is applied for planarization using a reactive ion etching method (RIE) (Figure C). Under the condition that the etching speed of the polycrystalline silicon film 4o and the photoresist film 91 are equal, a reactive ion etching method (RIE) is applied. ) and fill in the recess 11 by an etch-back method to form a gate electrode 4 whose surface is flattened relative to the silicon substrate surface (FIG. d). As a result, the gate electrode 4 can be formed accurately in the recess from which the oxide film region 8 has been removed without requiring a gate patterning process.Next, a thermal oxide film 22 is formed on the surface by a thermal oxidation process. After the growth, ion implantation 5 for source/drain regions is performed by self-alignment using the gate oxide film 4 and field oxide film 3 as masks. At this time, the film at the end of the gate electrode 4 is Due to the thickness difference, the high impurity concentration source/drain region 7
The impurity 74 for 2 and the impurity 73 for the low impurity concentration source/drain region 71 can be introduced at the same time (Fig. e).
After this, a short heat treatment is performed at 900 tons for about 30 minutes to form a high impurity concentration region 72 after diffusion and a low impurity concentration region 71 inside it, and a subsequent low pressure CVD process reduces the thickness to about 100 mm. Then, a PSG film 10 is deposited on the surface (Fig. r).

このような工程を用いることにより、ゲート電極4およ
びフィールド酸化膜3をマスクとしてセルフアライメン
トで低不純物濃度ソース・ドレイン領域71と高不純物
濃度ソース・ドレイン領域72とを同時に形成すること
ができる。また、第1図(f)に示すように低濃度領域
71のチャネル側端部がゲート酸化膜2と浅い角度をも
って交わるため、ドレイン部端の曲率半径の影響による
耐圧の劣化が緩和され基板−ドレイン間の耐圧を向上さ
せることができる。さらに、エッチバック法により、ゲ
ート電極4上部は平坦化されているため、この部分にお
けるM配線の断線をなくすることができる。
By using such a process, the low impurity concentration source/drain regions 71 and the high impurity concentration source/drain regions 72 can be simultaneously formed in self-alignment using the gate electrode 4 and the field oxide film 3 as masks. Further, as shown in FIG. 1(f), since the channel side end of the low concentration region 71 intersects with the gate oxide film 2 at a shallow angle, deterioration in breakdown voltage due to the influence of the radius of curvature of the end of the drain region is alleviated, and the substrate The withstand voltage between the drains can be improved. Furthermore, since the upper part of the gate electrode 4 is flattened by the etch-back method, it is possible to eliminate disconnection of the M wiring in this part.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フィールド酸化膜と同時に形成される
酸化膜領域を除去して生ずる半導体基板面のくぼみをチ
ャネル領域として使用し、そのくぼみをゲート電極用材
料で埋めて半導体基板表面に対して平坦なゲート電極を
形成した後、ゲート電極とフィールド酸化膜をマスクと
してセルフアライメントで低不純物濃度と高不純物濃度
のソース・ドレイン領域を同時に形成することにより・
再現性が良好で簡略化された工程でLDD構造が形成で
き、ドレイン電界緩和が行えるので、より微細化された
高集積半導体装置においても・MO8型素子のインパク
トイオン化等の短チヤネル効果を抑制できる。また、チ
ャネル領域となるフィールド酸化膜のバードビーク長を
制御することにより、チャネル形成領域に隣接する低不
純物濃度領域の濃度を適正化できることと、その低不純
物濃度領域のチャネル側端がゲート酸化膜と浅い角度を
もって交わることにより、ドレイン領域チャネル側端部
の曲率半径の影響による耐圧の劣化が緩和されることか
ら、ごく浅い接合を用いたMO8素子の耐圧の向上に有
効である。またゲート電極部分を半導体基板表面に対し
て平坦化しているため、ゲート電極上に設けられる配線
の段差における断線をなくすることができる。
According to the present invention, a depression in the semiconductor substrate surface that is created by removing an oxide film region that is formed at the same time as a field oxide film is used as a channel region, and the depression is filled with a gate electrode material to form a surface of the semiconductor substrate. After forming a flat gate electrode, low impurity concentration and high impurity concentration source/drain regions are simultaneously formed by self-alignment using the gate electrode and field oxide film as masks.
Since the LDD structure can be formed in a simplified process with good reproducibility and the drain electric field can be relaxed, short channel effects such as impact ionization of MO8 type elements can be suppressed even in finer, highly integrated semiconductor devices. . Furthermore, by controlling the bird's beak length of the field oxide film that becomes the channel region, it is possible to optimize the concentration of the low impurity concentration region adjacent to the channel formation region, and the end of the low impurity concentration region on the channel side is connected to the gate oxide film. By intersecting at a shallow angle, deterioration in breakdown voltage due to the influence of the radius of curvature of the end of the drain region on the channel side is alleviated, which is effective in improving the breakdown voltage of an MO8 element using a very shallow junction. Furthermore, since the gate electrode portion is flattened with respect to the surface of the semiconductor substrate, it is possible to eliminate disconnection at the step of the wiring provided on the gate electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図!al〜tflは本発明の一実施例のソース・ド
レイン領域形成のための工程を順次示す断面図、第2図
(al〜fd+は従来のLDD構造のソース・ドレイン
領域形成のための工程を順次示す断面図、第3図は本発
明の実施に適用できるLOGO3酸化法を示す断面図で
ある。 l:シリコン基板、2:ゲート酸化膜、3:フィールド
酸化膜、4:ゲート電極、5:イオン注入、71:低不
純物濃度ソース・ドレイン領域、72:高不純物濃度ソ
ース・ドレイン領域、8:酸化膜領域、9,91 :フ
ォトレジスト膜、11:<ぼみ。 ? 8訃し―ヱβ゛ 2にルジストπ1 ノ/<に】;^ 7ノ 〃 第2図
Figure 1! al to tfl are cross-sectional views sequentially showing the steps for forming source/drain regions in an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the LOGO3 oxidation method applicable to the implementation of the present invention. l: silicon substrate, 2: gate oxide film, 3: field oxide film, 4: gate electrode, 5: ions Implantation, 71: Low impurity concentration source/drain region, 72: High impurity concentration source/drain region, 8: Oxide film region, 9, 91: Photoresist film, 11: <dent.? 8. 2 to Lujist π1 ノ/<に】;^ 7ノ〃 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板の表面層を選択的に酸化して二つのフィ
ールド酸化膜領域の中間に両端が傾斜面により薄くなっ
ている酸化膜領域を設け、その中間領域のみ酸化膜を除
去してくぼみを形成し、そのくぼみを表面平坦に埋める
ゲート電極を設け、残されたフィールド酸化膜とゲート
電極とをマスクとしてイオン注入し、ゲート電極の両端
の傾斜面の下に低不純物濃度の、ゲート電極とフィール
ド酸化膜領域の間に高不純物濃度のソース・ドレイン領
域をそれぞれ設けることを特徴とするMOS型半導体素
子の製造方法。
1) Selectively oxidize the surface layer of the semiconductor substrate to provide an oxide film region between the two field oxide film regions where both ends are thinned by sloped surfaces, and remove the oxide film only in the middle region to form a depression. A gate electrode is formed to fill the depression with a flat surface, and ions are implanted using the remaining field oxide film and gate electrode as a mask to form a gate electrode with a low impurity concentration under the sloped surfaces at both ends of the gate electrode. A method of manufacturing a MOS type semiconductor device, characterized in that source and drain regions each having a high impurity concentration are provided between field oxide film regions.
JP28076188A 1988-11-07 1988-11-07 Manufacture of mos type semiconductor element Pending JPH02126681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28076188A JPH02126681A (en) 1988-11-07 1988-11-07 Manufacture of mos type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28076188A JPH02126681A (en) 1988-11-07 1988-11-07 Manufacture of mos type semiconductor element

Publications (1)

Publication Number Publication Date
JPH02126681A true JPH02126681A (en) 1990-05-15

Family

ID=17629587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28076188A Pending JPH02126681A (en) 1988-11-07 1988-11-07 Manufacture of mos type semiconductor element

Country Status (1)

Country Link
JP (1) JPH02126681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
US6828203B2 (en) 1998-01-23 2004-12-07 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
US6828203B2 (en) 1998-01-23 2004-12-07 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US6878599B2 (en) 1998-01-23 2005-04-12 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US7125779B2 (en) 1998-01-23 2006-10-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR0159075B1 (en) Trench dmos device and a method of fabricating the same
KR100221063B1 (en) Mos transistor and fabrication process therefor
JP2548994B2 (en) Field effect transistor and method of manufacturing the same
US6165870A (en) Element isolation method for semiconductor devices including etching implanted region under said spacer to form a stepped trench structure
JP3604818B2 (en) Method for manufacturing semiconductor device
KR100378839B1 (en) Semiconductor device and manufacturing method thereof
US6501148B2 (en) Trench isolation for semiconductor device with lateral projections above substrate
JPH06232253A (en) Element-isolation method of semiconductor device
US6656810B1 (en) Semiconductor device capable of reducing dispersion in electrical characteristics and operating at high speed and method for fabricating the same
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
JP3196830B2 (en) Semiconductor device and manufacturing method thereof
JPH02126681A (en) Manufacture of mos type semiconductor element
JP4592193B2 (en) Manufacturing method of semiconductor device
KR0183718B1 (en) Method of manufacturing semiconductor device
JP2004006671A (en) Charge coupled device and manufacturing method thereof
JPH05343680A (en) Manufacturing method of semiconductor device
KR101119739B1 (en) Method for Forming Transistor of Semiconductor Device
JPS60105247A (en) Manufacture of semiconductor device
JP2000306991A (en) Fabrication of semiconductor device
KR100613373B1 (en) Fabrication method of MOS transistor
KR100218739B1 (en) Method of forming a device isolation film of semiconductor device
KR100225383B1 (en) Method of manufacturing semiconductor device
KR19990085622A (en) Manufacturing Method of Semiconductor Device
KR0147255B1 (en) Method for manufacturing mosfet
JPH04297037A (en) Semiconductor device and manufacture thereof