JPH0212262A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0212262A
JPH0212262A JP16337188A JP16337188A JPH0212262A JP H0212262 A JPH0212262 A JP H0212262A JP 16337188 A JP16337188 A JP 16337188A JP 16337188 A JP16337188 A JP 16337188A JP H0212262 A JPH0212262 A JP H0212262A
Authority
JP
Japan
Prior art keywords
layer
photosensitivity
sic
residual potential
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16337188A
Other languages
Japanese (ja)
Other versions
JP2668240B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16337188A priority Critical patent/JP2668240B2/en
Publication of JPH0212262A publication Critical patent/JPH0212262A/en
Application granted granted Critical
Publication of JP2668240B2 publication Critical patent/JP2668240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity and to reduce residual potential by forming a specified amorphous carbon (a-C) layer for the electrophotographic photosensitive body. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate 1 an a-SiC photoconductive layer 2 for generating electric charge and an organic photoconductive layer 3 for transferring charge, and the amorphous carbon (a-C) layer 4 is formed between the layers 2 and 3, and it has a thickness of 10-2,000Angstrom and an optical band of >=2.0eV, thus permitting photosensitivity to be enhanced and residual potential to be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド光導電層とを
機先半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor comprising an amorphous silicon carbide photoconductive layer and a semiconductor layer laminated thereon.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、5e−Te+
A口Saz+ZnO+cdssアモルファスシリコンな
どの無機材料と各種有機材料がある。そのなかで最初に
実用化されたものはSeであり、そして、ZnO,Cd
S、アモルファスシリコンも実用化された。他方、有機
材料ではPVK−TNPが最初に実用化され、その後、
電荷の発生並びに電荷の輸送という機能を別々の有機材
料に分担させるという機能分離型感光体が提案され、こ
の機能分離型感光体によって有機材・料の開発が飛躍的
に発展している。
Photoconductive materials for electrophotographic photoreceptors include Se, 5e-Te+
There are inorganic materials such as A-mouth Saz+ZnO+cdss amorphous silicon and various organic materials. Among them, Se was the first to be put into practical use, and then ZnO, Cd
S, amorphous silicon has also been put into practical use. On the other hand, among organic materials, PVK-TNP was first put into practical use, and then
A functionally separated photoreceptor has been proposed in which the functions of charge generation and charge transport are shared by separate organic materials, and this functionally separated photoreceptor has led to dramatic advances in the development of organic materials.

一方、上記無機光導電層の上に有機光半導体層を積層し
た電子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on the inorganic photoconductive layer has also been proposed.

例えばSeNと有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体においては、Se自体
有害であり、しかも、長波長側の感度に劣るという欠点
もあった。
For example, there is a laminated photoreceptor made of SeN and an organic optical semiconductor layer.
Although it has already been put into practical use, this photoreceptor has the disadvantage that Se itself is harmful and has poor sensitivity on the long wavelength side.

そこで、特開昭56−14241号公報にはアモルファ
スシリコンカーバイド光導電層と有機光半導体層から成
る積層型感光体が提案されており、この感光体によれば
、上記問題点を解消して無公害性並びに高光感度な特性
が得られた。
Therefore, Japanese Unexamined Patent Application Publication No. 14241/1988 proposes a laminated photoreceptor consisting of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer. The properties of pollution resistance and high light sensitivity were obtained.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度と残留電位を測定したところ、両者
とも未だ満足し得るような特性が得られず、更に改善を
要することが判明した。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity and residual potential, it was found that both characteristics were still unsatisfactory, and further improvements were needed. There was found.

従って、本発明は叙上に鑑みて完成されたものであり、
その目的は高い光感度が得られ且つ残留電位を低減させ
た電子写真感光体を提供することにある。
Therefore, the present invention has been completed in view of the above,
The purpose is to provide an electrophotographic photoreceptor that has high photosensitivity and reduced residual potential.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、導電性基板上にアモルファスシリコン
カーバイド光導電層(以下、アモルファスシリコンカー
バイドをa−SiCと略す)と有機光半導体層を順次積
層した電子写真感光体において、前記a−SiC光導電
層と有機光半導体層の間に厚みが10〜2000人の範
囲内にあり且つ光学的バンドギャップが2.0eV以上
であるアモルファスカーボン層を形成したことを特徴と
する電子写真感光体が提供される。
According to the present invention, in an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer (hereinafter amorphous silicon carbide is abbreviated as a-SiC) and an organic photoconductive layer are sequentially laminated on a conductive substrate, the a-SiC Provided is an electrophotographic photoreceptor, characterized in that an amorphous carbon layer having a thickness within the range of 10 to 2000 carbon atoms and an optical band gap of 2.0 eV or more is formed between the conductive layer and the organic optical semiconductor layer. be done.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にa−SiC光導
電層(2)及び有機光半導体層(3)が順次積層されて
いる。そして、a−5iC光導電層(2)には電荷発生
という機能があり、他方の有機光半導体層(3)には電
荷輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an a-SiC photoconductive layer (2) and an organic photo-semiconductor layer (3) are sequentially laminated on a conductive substrate (1). The a-5iC photoconductive layer (2) has a function of charge generation, and the other organic photoconductive layer (3) has a function of charge transport.

本発明は上記a−StC光導電F!1(2)と有機光半
導体層(3)の間にアモルファスカーボン! (4) 
(以下、アモルファスカーボンをa−Cと略す)を形成
し、これにより、光感度及び残留電位の両特性が改善さ
れたことが特徴である。
The present invention relates to the a-StC photoconductive F! Amorphous carbon between 1 (2) and the organic optical semiconductor layer (3)! (4)
(Hereinafter, amorphous carbon is abbreviated as a-C) is formed, thereby improving both the characteristics of photosensitivity and residual potential.

a−SiC光導電N(2)の暗導電率は約10−” 〜
1013(Ω・cm)−’であり、他方の有機光半導体
1i(3)の暗導電率は約10−” 〜1O−IS(Ω
・cm)−’であり、そのためにa−3iC光導電層(
2)で発生したキャリアは暗導電率の大きな差により有
機光半導体層(3)へスムーズに流れなくなる。従って
、本発明者等は暗導電率の小さいa−CIW(4)を形
成し、これにより、両層(2) (3)の界面で暗導電
率の差を小さ(できることを見い出した。
The dark conductivity of a-SiC photoconductive N(2) is about 10-” ~
1013(Ω・cm)−', and the dark conductivity of the other organic optical semiconductor 1i(3) is approximately 10−” to 1O−IS(Ω
・cm)-', and therefore the a-3iC photoconductive layer (
The carriers generated in step 2) do not flow smoothly to the organic optical semiconductor layer (3) due to the large difference in dark conductivity. Therefore, the present inventors have found that it is possible to form a-CIW (4) with low dark conductivity, thereby reducing the difference in dark conductivity at the interface between both layers (2) and (3).

このようなa−C層(4)は下記の通り光学的バンドギ
ャップと厚みにより表わされる。
Such a-C layer (4) is expressed by the optical bandgap and thickness as shown below.

光学的バンドギャップは2.0eV以上、好適には2.
3eV以上に設定するとよく、これにより、その層(4
)の暗導電率をa−SiC光導電層(2)と有機光半導
体層(3)のそれぞれの暗導電率の間に設定することが
でき、その結果、a−SiC光導電N(2)で発生した
キャリアが有機光半導体層(3)へスムーズに流れる。
The optical bandgap is 2.0eV or more, preferably 2.0eV or more.
It is best to set it to 3 eV or higher, which will cause the layer (4
) can be set between the respective dark conductivities of the a-SiC photoconductive layer (2) and the organic photoconductive layer (3), so that the a-SiC photoconductive N(2) The carriers generated flow smoothly into the organic optical semiconductor layer (3).

このバンドギャップはa−C層(4)の水素含有量を変
えることにより制御できる。
This bandgap can be controlled by changing the hydrogen content of the a-C layer (4).

a−Clti(4)の厚みについては、10〜2000
人、好適には500〜1000人の範囲内に設定すると
よく、10人未満の場合には光感度及び残留電位のそれ
ぞれの特性を改善できず、2000人を超えた場合には
残留電位が大きくなる傾向にある。
The thickness of a-Clti (4) is 10 to 2000
If the number of people is less than 10, the characteristics of photosensitivity and residual potential cannot be improved, and if the number of people is more than 2,000, the residual potential becomes large. There is a tendency to

a−3iC光導電FW(2)は実質上の光キヤリア発生
層であり、その元素比率は下記の通りの範囲内に設定す
るとよい。
The a-3iC photoconductive FW (2) is essentially a photocarrier generation layer, and its element ratio is preferably set within the following range.

この層(2)はアモルファス化したSi元素とC元素か
ら成り、更に両者の元素のダングリングボンドを終端さ
せるための水素(H)元素やハロゲン元素(この終端用
元素を、以下、へ元素と略す)から成り、そして、これ
らの元素の組成式を(Si。
This layer (2) consists of amorphous Si element and C element, and furthermore, hydrogen (H) element and halogen element (hereinafter, this terminating element is referred to as H element) to terminate the dangling bonds of both elements. ), and the compositional formula of these elements is (Si.

CX)  +−y Ayとして表わした場合、y値は0
゜05 < x < 0.5、好適には0.1 < x
 < 0.4の範囲内に、y値は0.1 < y< 0
.5 、好適には0.2 < y <0.5、最適には
0.25 < y < 0.45の範囲内に設定すると
よい。y値又はy値を上記範囲内に設定した場合には優
れた光導電特性並びに高い光感度特性が得られる。
CX) +-y When expressed as Ay, the y value is 0
°05 < x < 0.5, preferably 0.1 < x
< 0.4, y value is 0.1 < y < 0
.. 5, preferably within the range of 0.2 < y < 0.5, optimally within the range of 0.25 < y < 0.45. When the y value or y value is set within the above range, excellent photoconductive properties and high photosensitivity properties can be obtained.

a−SiC光導電層(2)の厚みは0.05〜5 jt
m 、好適には0.1〜3μmの範囲内に設定すればよ
(、この範囲内であれば、高い光感度が得られ、残留電
位が低くなる。
The thickness of the a-SiC photoconductive layer (2) is 0.05 to 5 jt
m is preferably set within the range of 0.1 to 3 μm (within this range, high photosensitivity can be obtained and the residual potential will be low).

a−SiC光導電層(2)のC元素含有量は層厚方向に
亘って変化させてもよい。例えば第6図〜第11図に示
す例があり、これらの図において、横軸は層厚方向であ
り、aはa−3iC光導電iJ (2)と基板(1)の
界面、bはa−SiC光導電層(2)とa−CM(4)
の界面を表わし、また、縦軸はC元素含有量を表わす。
The C element content of the a-SiC photoconductive layer (2) may be varied in the layer thickness direction. For example, there are examples shown in FIGS. 6 to 11, in which the horizontal axis is the layer thickness direction, a is the interface between the a-3iC photoconductive iJ (2) and the substrate (1), and b is the interface between the a-3iC photoconductive iJ (2) and the substrate (1). -SiC photoconductive layer (2) and a-CM (4)
The vertical axis represents the C element content.

尚、a−SiC光導電層(2)の内部で層厚方向に亘っ
てC元素含有量を変えた場合、そのC元素含有比率(X
値)はIti(2)全体当たりのC元素平均含有比率に
対応する。
Note that when the C element content is changed in the layer thickness direction inside the a-SiC photoconductive layer (2), the C element content ratio (X
value) corresponds to the average content ratio of C element per whole Iti(2).

前記基板(1)には銅、黄銅、sus 、 AI等の金
属導電体、或いはガラス、セラミックス等の絶縁体の表
面に導電体薄膜をコーティングしたものがあり、就中、
AIがコスト面並びにa−SiC層との密着性という点
で有利である。
The substrate (1) includes a metal conductor such as copper, brass, SUS, or AI, or an insulator such as glass or ceramics coated with a conductor thin film on the surface.
AI is advantageous in terms of cost and adhesion to the a-SiC layer.

また、本発明の電子写真感光体は有機光半導体N(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体N(3)に電子供与性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体層(3
)に電子吸引性化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention is an organic photoconductor N(3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected as the organic photosemiconductor N(3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor layer (3
) is selected as an electron-withdrawing compound.

電子供与性化合物には高分子量のものとして、ポリ−N
−ビニルカルバゾール、ポリビニルピレン、ポリビニル
アントラセン、ピレン−ホルムアルデヒド縮重合体など
があり、また、低分子量のものとしてオキサジアゾール
、オキサゾール、ピラゾリン、トリフェニルメタン、ヒ
ドラゾン、トリアリールアミン、N−フェニルカルバゾ
ール、スチルベンなどがあり、この低分子物質は、ポリ
カーボネート、ポリエステル、メタアクリル樹脂、ポリ
アミド、アクリルエポキシ、ポリエチレン、フェノール
、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル、ユ
リア樹脂などのバインダに分散されて用いられる。
As an electron donating compound, poly-N is used as a high molecular weight compound.
- Vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymer, etc., and low molecular weight ones include oxadiazole, oxazole, pyrazoline, triphenylmethane, hydrazone, triarylamine, N-phenylcarbazole, Examples include stilbene, and this low-molecular substance is used after being dispersed in a binder such as polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate, or urea resin.

電子吸引性化合物には2.4.7− トリニトロフルオ
レンなどがある。
Electron-withdrawing compounds include 2,4,7-trinitrofluorene.

か(して本発明の電子写真感光体によれば、a−CT4
を形成したことにより光感度を高め、しかも、残留電位
を低減できた。
(According to the electrophotographic photoreceptor of the present invention, a-CT4
By forming this, it was possible to increase photosensitivity and reduce residual potential.

また、本発明の電子写真感光体においては、a−SiC
光導電N(2)に周期律表第ma族元素(以下、nla
ma族元素す)を1〜sooppm−好適には2〜20
0ppm含有させるとよい。
Further, in the electrophotographic photoreceptor of the present invention, a-SiC
The photoconductive N(2) is an element of Group Ma of the periodic table (hereinafter referred to as NLA).
1 to sooppm of the ma group element (s), preferably 2 to 20
It is preferable to contain 0 ppm.

このma族元素含有量については、a−SiC贋金体当
たりの平均値によって表わされ、その平均含有量が1 
ppn+以下の場合には暗導電率が大きくなる傾向にあ
り、しかも、光感度の低下が認められ一方、500pp
m以上の場合には暗導電率が著しく大きくなり、更に光
導電率の暗導電率に対する比率が小さくなり、所望通り
の光感度を得ることが難しくなる。
This Ma group element content is expressed by the average value per a-SiC counterfeit body, and the average content is 1
At ppn+ or below, the dark conductivity tends to increase, and a decrease in photosensitivity is observed.
If it is more than m, the dark conductivity becomes significantly large, and the ratio of photoconductivity to dark conductivity becomes small, making it difficult to obtain the desired photosensitivity.

a−SiC光導電層(2)にma族元゛素を含有させる
に当たり、そのドーピング分布は層厚方向に亘って均−
又は不均一のいずれでもよい。不均一にドーピングさせ
た場合、このFJ (2)の一部にma族元素が含有さ
れない層領域があってもよく、その場合にはma族元素
含有のa−3iC層領域並びに■族元素が含有されてい
ないa−3iC[6J(域の両者から成るa−5iCN
全体に対するma族元素平均含存置が1〜500ppn
+でなくてはならない。
When incorporating Ma group elements into the a-SiC photoconductive layer (2), the doping distribution is uniform over the layer thickness direction.
Or it may be non-uniform. In the case of non-uniform doping, there may be a layer region in which the Ma group element is not contained in a part of this FJ (2), and in that case, there may be a layer region containing the Ma group element and the a-5iCN consisting of both a-3iC [6J (range) which does not contain
The average content of Ma group elements in the whole is 1 to 500 ppn
Must be +.

このma族元素にはB+ALGa+ In等があるが、
Bが共有結合性に優れて半導体特性を敏感に変え得る点
で、その上、優れた帯電能並びに光感度が得られるとい
う点で望ましい。
This ma group element includes B+ALGa+ In, etc.
B is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it provides excellent charging ability and photosensitivity.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−SiCN又はa−CJiiを形成するにはグロー放
電分解法、イオンブレーティング法、反応性スパッタリ
ング法、真空蒸着法、CVO法などの薄膜形成方法があ
る。
To form a-SiCN or a-CJii, there are thin film forming methods such as a glow discharge decomposition method, an ion blating method, a reactive sputtering method, a vacuum evaporation method, and a CVO method.

グロー放電分解法を用いてa−SiC層を形成する場合
、Si元素含有ガス4c元素含有ガスを組合せ、この混
合ガスをプラズマ分解して成膜形成する。
When forming an a-SiC layer using a glow discharge decomposition method, a Si element-containing gas and a c-element containing gas are combined, and this mixed gas is plasma decomposed to form a film.

このSi元素含有ガスには5i114,5tzll*、
Si:+IIa、SiF4+5ic14,5tllcl
i等々があり、また、C元素含有ガスにはCH4,CJ
z、CJz、CJs等々があり、就中、C2H2は高速
成膜性が得られるという点で望ましい。
This Si element-containing gas contains 5i114,5tzll*,
Si:+IIa, SiF4+5ic14,5tllcl
i, etc., and C element-containing gases include CH4, CJ, etc.
CJz, CJz, CJs, etc., and C2H2 is particularly desirable because it can provide high-speed film formation.

本実廁例に用いられるグロー放電分解装置を第2図によ
り説明する。
The glow discharge decomposition device used in this practical example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)、第4タンク(7)にはそれぞれS!Ht+C
zn□、Bzllb、 (BdI&が40ppm濃度で
水素希釈されている)及びH2が密封され、これらのガ
スは各々対応する第1調整弁(8)、第2調整弁(9)
、第3調整弁(10)及び第4調製弁(11)の開放に
より放出する。
In the figure, the first tank (4), second tank (5), third tank (6), and fourth tank (7) each have S! Ht+C
zn□, Bzllb, (BdI& is diluted with hydrogen at a concentration of 40 ppm) and H2 are sealed, and these gases are passed through the corresponding first regulating valve (8) and second regulating valve (9), respectively.
, by opening the third regulating valve (10) and the fourth regulating valve (11).

その放出ガスの流量はそれぞれマスフローコントローラ
(12) (13) (14) (15)により制御し
、そして、各々のガスは混合されて主管(16)へ送ら
れる。尚、(17)(1B)は止め弁である。
The flow rates of the released gases are controlled by mass flow controllers (12), (13), (14), and (15), and each gas is mixed and sent to the main pipe (16). Note that (17) and (1B) are stop valves.

主管(16)を通じて流れるガスは反応管(19)へ流
入するが、この反応管(19)の内部には容量結合型放
電用電極(20)が設置され、また、筒状め成膜用基板
(2工)が基板支持体(22)の上に載置され、基板支
持体(22)がモータ(23)により回転駆動され、こ
れに伴って基板(21)が回転する。そして、電極(2
0)に電力5011〜3 Kw、周波数1〜50MHz
の高周波電力が印加され、しかも、基板(21)が適当
な加熱手段により約200〜400℃、好適には約20
0〜350℃の温度に加熱される。また、反応管(19
)は回転ポンプ(24)と拡散ポンプ(25)に連結さ
れており、これによってグロー放電による成膜形成時に
所要な真空状態(放電時のガス圧0.1〜2.0Tor
r)を′設定できる。
The gas flowing through the main pipe (16) flows into the reaction tube (19), and a capacitively coupled discharge electrode (20) is installed inside this reaction tube (19), and a cylindrical film-forming substrate is installed inside the reaction tube (19). (2) is placed on the substrate support (22), the substrate support (22) is rotationally driven by the motor (23), and the substrate (21) is rotated accordingly. Then, the electrode (2
0) Power 5011~3 Kw, Frequency 1~50MHz
high-frequency power is applied, and the substrate (21) is heated to about 200-400°C, preferably about 20°C by suitable heating means.
Heated to a temperature of 0-350°C. In addition, a reaction tube (19
) is connected to a rotary pump (24) and a diffusion pump (25), which maintains the necessary vacuum state (gas pressure during discharge of 0.1 to 2.0 Torr) during film formation by glow discharge.
r) can be set.

このような構成のグロー放電分解装置を用いて基板(2
1)の上にa−SiC層を形成する場合、第1調整弁(
8)、第2調整弁(9)、第3ill整弁(10)及び
第4調整弁(11)を開いてSiL+C*L+B!I(
i+IIgの各々のガスを放出し、その放出量をマスフ
ローコントローラ(12) (13) (14) (1
5)により制御し、各々のガスは混合されて主管(16
)を介して反応管(19)へ流入する。そして、反応管
内部の真空状態、基板温度、電極印加用高周波電力をそ
れぞれ所定の条件に設定するとグロー放電が発生し、ガ
スの分解に伴ってB元素含有のa−5iC膜が基板上に
高速に形成する。
The substrate (2
When forming an a-SiC layer on 1), the first regulating valve (
8), open the second regulating valve (9), the third ill regulating valve (10), and the fourth regulating valve (11) and SiL+C*L+B! I(
Each gas of i+IIg is released, and the amount of release is controlled by a mass flow controller (12) (13) (14) (1
5), each gas is mixed and sent to the main pipe (16
) into the reaction tube (19). Then, by setting the vacuum inside the reaction tube, the substrate temperature, and the high-frequency power applied to the electrodes to predetermined conditions, a glow discharge occurs, and as the gas decomposes, the a-5iC film containing B element is rapidly spread onto the substrate. to form.

上述した通りの薄膜形成方法によりa−SiC層を形成
すると、次に有機光半導体層を形成する。
After forming the a-SiC layer by the thin film forming method described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成する。前者は感光材が溶媒中に分散された塗工液
の中に浸漬し、次いで、一定な速度で引上げ、そして、
自然乾燥及び熱エージング(約150℃、約1時間)を
行うという方法であり、また、後者のコーティング法に
よれば、コーター(塗機)を用いて、溶媒に分散された
感光材を塗布し、次いで熱風乾燥を行う。
The organic optical semiconductor layer is formed by a dip coating method or a coating method. In the former method, the photosensitive material is immersed in a coating solution in which it is dispersed in a solvent, then pulled up at a constant speed, and then
This method involves natural drying and heat aging (approximately 150°C, approximately 1 hour), and the latter coating method involves applying a photosensitive material dispersed in a solvent using a coater. , followed by hot air drying.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第2図のグロー放電分解装置を用いて、SiLガスを2
00sccII+の流量で、H2ガスを270sccm
の流量で、そして、CzHtガスの流量を変化させ、ま
た、ガス圧を0.6Torr 、高周波電力を150W
、基板温度を250℃に設定し、グロー放電によってa
−SiC膜(膜厚約1μm)を形成した。
(Example 1) Using the glow discharge decomposition device shown in Fig. 2, SiL gas is
H2 gas at 270 sccm at a flow rate of 00sccII+
Then, the flow rate of CzHt gas was changed, and the gas pressure was 0.6 Torr and the high frequency power was 150 W.
, the substrate temperature was set at 250°C, and a
- A SiC film (film thickness of approximately 1 μm) was formed.

このようにしてa−SiC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。
In this way, the carbon content ratio of the a-SiC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained.

第3図中、横軸はカーボン含有比率、即ちSi+XCX
のX値であり、縦軸は導電率を表わし、○印は発光波長
550nm(光量50 、u W/cm”)の光に対す
る光導電率のプロットであり、・印は暗導電率のプロッ
トであり、また、a、bはそれぞれの特性曲線である。
In Figure 3, the horizontal axis is the carbon content ratio, i.e. Si+XCX
The vertical axis represents the conductivity, the ○ mark is a plot of photoconductivity for light with an emission wavelength of 550 nm (light intensity 50 μW/cm"), and the mark is a plot of dark conductivity. , and a and b are their respective characteristic curves.

更に上記各a−SiC膜について、その水素含有量を赤
外吸収測定法により求めたところ、第4図に示す通りの
結果が得られた。
Furthermore, when the hydrogen content of each of the above a-SiC films was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

第4図中、横軸はSi+−x CxOX値であり、縦軸
は水素含有量、即ち(Si1−C、l) t−y  H
yのy値であり、○印はSi原子に結合した水素量のプ
ロットであり、・印はC原子に結合した水素量のプロッ
トであり、また、c、dはそれぞれの特性曲線である。
In Fig. 4, the horizontal axis is the Si+-x CxOX value, and the vertical axis is the hydrogen content, i.e. (Si1-C,l)ty H
This is the y value of y, the ◯ mark is a plot of the amount of hydrogen bonded to the Si atom, the * mark is the plot of the amount of hydrogen bonded to the C atom, and c and d are the respective characteristic curves.

第4図より明らかな通り、本例のa−SiC膜はいずれ
もy値が0.3〜0.4の範囲内にあることが判る。
As is clear from FIG. 4, it can be seen that the a-SiC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通り、カーボン含有比率Xが
0.05 < x < 0.5の範囲内であれば、光導
電率と暗導電率の比率が顕著に大きくなり、優れた光感
度が得られることが判る。
Furthermore, as is clear from Fig. 3, if the carbon content ratio X is within the range of 0.05 < It turns out that is obtained.

(例2) 次に本例においては、SiH4ガスを200secmの
流量で、C,t+tガスを20secmの流量で、OX
ガスをθ〜1000scc+++の流量で導入し、そし
て、高周波電力を50〜300W、ガス圧を0.3〜1
.2Torrに設定し、グロー放電によりa−5iC膜
(膜厚約1μm )を形成した。
(Example 2) Next, in this example, SiH4 gas is fed at a flow rate of 200 seconds, C, t+t gas is fed at a flow rate of 20 seconds, and OX
Gas was introduced at a flow rate of θ~1000scc+++, and the high frequency power was 50~300W and the gas pressure was 0.3~1.
.. The a-5iC film (film thickness: about 1 μm) was formed by glow discharge at a pressure of 2 Torr.

かくして、カーボン含有比率×を0.3に設定し、水素
含有ityを変化させた種々のa−SiC膜を形成し、
各々の膜について光導電率及び暗導電率を測定したとこ
ろ、第5図に示す通りの結果が得られた。
In this way, various a-SiC films were formed with the carbon content ratio x set to 0.3 and the hydrogen content changed.
When the photoconductivity and dark conductivity of each film were measured, the results shown in FIG. 5 were obtained.

第5図中、横軸は水素含有量、即ち(Sl+−x C8
〕+−yHyのy値であり°、縦軸は導電率を表わし、
○印は発光波長550nm (光量50μ−/cab”
)の光に対する光導電率のプロットであり、・印は暗導
電率のプロットであり、また、elfはそれぞれの特性
曲線である。
In Fig. 5, the horizontal axis represents the hydrogen content, that is, (Sl+-x C8
] is the y value of +-yHy °, the vertical axis represents the conductivity,
○ indicates emission wavelength of 550nm (light intensity 50μ-/cab)
) is a plot of photoconductivity against light, * marks are plots of dark conductivity, and elf are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

(例3) 鏡面加工した基板(21)の上に第1表に示す条件によ
りa−3iC光導電層(2)及びa−C層(4)を順次
形成した。
(Example 3) An a-3iC photoconductive layer (2) and an a-C layer (4) were sequentially formed on a mirror-finished substrate (21) under the conditions shown in Table 1.

そして、a−C層(4)の光学的バンドギャップを測定
したところ、2.5eVであった。
The optical band gap of the a-C layer (4) was measured and found to be 2.5 eV.

このように形成した積層の上にポリカーボネートにヒド
ラゾン系化合物を発散させた有機光半導電体層(膜厚約
15μm)を形成し、電子写真感光体とした。
On the thus formed laminated layer, an organic photoconductor layer (film thickness of about 15 μm) made of polycarbonate in which a hydrazone compound was diffused was formed to obtain an electrophotographic photoreceptor.

かくして得られた電子写真感光体の特性評価を電子写真
特性測定装置により測定したところ、優れた光感度が得
られ、しかも、低い残留電位が得られた。
When the properties of the thus obtained electrophotographic photoreceptor were measured using an electrophotographic property measuring device, it was found that excellent photosensitivity and low residual potential were obtained.

(例4) 上記(例3)の電子写真感光体を製作するに当たって、
a−Ciを形成しないでa−5iC光導xiだけを形成
し、そして、同じ有機光半導体層を形成して成る電子写
真感光体を製作した。
(Example 4) In manufacturing the electrophotographic photoreceptor of (Example 3) above,
An electrophotographic photoreceptor was manufactured in which only the a-5iC light guide xi was formed without forming the a-Ci, and the same organic optical semiconductor layer was formed.

この電子写真感光体の光感度を測定したところ、(例3
)の電子写真感光体に比べて約12χ低下しており、ま
た、残留電位は約8χ大きくなっていた。
When the photosensitivity of this electrophotographic photoreceptor was measured, (Example 3
), the residual potential was about 12χ lower than that of the electrophotographic photoreceptor, and the residual potential was about 8χ higher.

(例5) 本発明者等は(例3)の電子写真感光体に係るa−Cf
fjを形成するに当たって、C211□ガス及び11□
ガスのそれぞれの流量を変化させ、しかも、その成膜時
間、ガス圧及び高周波電力を変え、これにより、a−C
層の光学的バンドギャップと膜厚を第2表に示す通りに
変え、その他の製造条件を(例3)と同じに設定し、か
くして、8種類の電子写真感光体(感光体A −H)を
製作した。
(Example 5) The present inventors have developed a-Cf related to the electrophotographic photoreceptor of (Example 3).
In forming fj, C211□ gas and 11□
By changing the flow rate of each gas, and also changing the film forming time, gas pressure, and high frequency power, a-C
The optical band gaps and film thicknesses of the layers were varied as shown in Table 2, and the other manufacturing conditions were set the same as in (Example 3), thus eight types of electrophotographic photoreceptors (photoreceptors A to H) were prepared. was produced.

また・、これらの電子写真感光体の光感度と残留電位を
測定したところ、第2表に示す通りの結果が得られた。
Furthermore, when the photosensitivity and residual potential of these electrophotographic photoreceptors were measured, the results shown in Table 2 were obtained.

同表中、光感度は相対評価により◎印、○印及びΔ印の
3段階に区分し、◎印は最も優れた光感度が得られた場
合であり、O印は幾分優れた光感度が得られた場合であ
り、Δ印は他に比べてわずかに劣る光感度になった場合
である。
In the same table, photosensitivity is classified into three levels based on relative evaluation: ◎, ○, and Δ. ◎ indicates the best photosensitivity, and O indicates somewhat better photosensitivity. is obtained, and the mark Δ is a case where the photosensitivity is slightly inferior to the others.

また、残留電位についても三段階に相対評価しており、
■印は残留電位が小さくなった場合であり、○印は残留
電位の低下が幾分認められた場合であり、Δ印は他に比
べて残留電位の低減が認められなかった場合である。
In addition, the residual potential is also evaluated relative to three levels.
The ■ mark indicates a case where the residual potential became small, the ○ mark indicates a case where a slight decrease in the residual potential was observed, and the Δ mark indicates a case where a reduction in the residual potential was not observed compared to the others.

第 表 *印の感光体は本発明の範囲外のものである。No. table Photoreceptors marked with * are outside the scope of the present invention.

第2表より明らかな通り、感光体B並びに感光体D−G
は優れた光感度が得られ、しかも、残留電位の低減が認
められた。
As is clear from Table 2, photoconductor B and photoconductor D-G
Excellent photosensitivity was obtained, and a reduction in residual potential was also observed.

然るに感光体^、及びHはa−C層の厚みが、感光体C
はa−C層の光学的バンドギャップがそれぞれ本発明よ
り外れており、そのために光感度や残留電位の改善が認
められなかった。
However, for photoreceptors ^ and H, the thickness of the a-C layer is that of photoreceptor C.
The optical band gaps of the a-C layers were different from those of the present invention, and therefore no improvement in photosensitivity or residual potential was observed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、a−C
層を形成したことにより優れた光感度が得られ、しかも
、残留電位を低減させることができた。
As described above, according to the electrophotographic photoreceptor of the present invention, a-C
By forming the layer, excellent photosensitivity could be obtained, and the residual potential could be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有量と導電率の関係を示す線
図、第4図はカーボン含有量と水素含有量の関係を示す
線図、第5図は水素含有量と導電率の関係を示す線図で
あり、また、第6図、第7図、第8図、第9図、第1O
図及び第11図はアモルファスシリコンカーバイド光導
電層の層厚方向に亘るカーボン含有量を表わす線図であ
る。 導電性基板 アモルファスシリコンカーバイド光導電層有機光半導体
層 アモルファスカーボン層 特許出願人 (663)京セラ株式会社代表者安城欽寿 同   河村孝夫
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content and electrical conductivity. 4 is a diagram showing the relationship between carbon content and hydrogen content, FIG. 5 is a diagram showing the relationship between hydrogen content and electrical conductivity, and FIGS. Figure 8, Figure 9, 1O
The figure and FIG. 11 are diagrams showing the carbon content in the layer thickness direction of the amorphous silicon carbide photoconductive layer. Conductive substrate Amorphous silicon carbide Photoconductive layer Organic optical semiconductor layer Amorphous carbon layer Patent applicant (663) Kyocera Corporation Representative Kinjudo Anjo Takao Kawamura

Claims (1)

【特許請求の範囲】[Claims] 導電性基板上にアモルファスシリコンカーバイド光導電
層と有機光半導体層を順次積層した電子写真感光体にお
いて、前記アモルファスシリコンカーバイド光導電層と
有機光半導体層の間に厚みが10〜2000Åの範囲内
にあり且つ光学的バンドギャップが2.0eV以上であ
るアモルファスカーボン層を形成したことを特徴とする
電子写真感光体。
In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photosemiconductor layer are sequentially laminated on a conductive substrate, the thickness is within the range of 10 to 2000 Å between the amorphous silicon carbide photoconductive layer and the organic photosemiconductor layer. An electrophotographic photoreceptor comprising an amorphous carbon layer having an optical band gap of 2.0 eV or more.
JP16337188A 1988-06-30 1988-06-30 Electrophotographic photoreceptor Expired - Fee Related JP2668240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337188A JP2668240B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337188A JP2668240B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0212262A true JPH0212262A (en) 1990-01-17
JP2668240B2 JP2668240B2 (en) 1997-10-27

Family

ID=15772610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337188A Expired - Fee Related JP2668240B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2668240B2 (en)

Also Published As

Publication number Publication date
JP2668240B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPS59223446A (en) Electrophotographic sensitive body
JPS59223439A (en) Electrophotographic sensitive body
JPH0212262A (en) Electrophotographic sensitive body
JPH01239563A (en) Electrophotographic sensitive body
JP2668241B2 (en) Electrophotographic photoreceptor
JPH0212264A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JPH01238670A (en) Electrophotographic sensitive body
JPH01315765A (en) Electrophotographic sensitive body
JPH01315761A (en) Electrophotographic sensitive body
JP2761741B2 (en) Electrophotographic photoreceptor
JPH02167555A (en) Electrophotographic sensitive body
JPH0293655A (en) Electrophotographic sensitive body
JPH02213853A (en) Electrophotographic sensitive body
JPH03126040A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPH01315760A (en) Electrophotographic sensitive body
JPH02181155A (en) Electrophotographic sensitive body
JP2789100B2 (en) Electrophotographic photoreceptor
JPH01315764A (en) Electrophotographic sensitive body
JPH02140754A (en) Electrophotographic sensitive body
JPH01315762A (en) Electrophotographic sensitive body
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPH03231254A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees