JPH0212012A - Sensor driving circuit - Google Patents

Sensor driving circuit

Info

Publication number
JPH0212012A
JPH0212012A JP16294588A JP16294588A JPH0212012A JP H0212012 A JPH0212012 A JP H0212012A JP 16294588 A JP16294588 A JP 16294588A JP 16294588 A JP16294588 A JP 16294588A JP H0212012 A JPH0212012 A JP H0212012A
Authority
JP
Japan
Prior art keywords
constant current
circuit
transistors
sensor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16294588A
Other languages
Japanese (ja)
Other versions
JPH0697170B2 (en
Inventor
Toshiaki Shimodaira
下平 俊朗
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP63162945A priority Critical patent/JPH0697170B2/en
Publication of JPH0212012A publication Critical patent/JPH0212012A/en
Publication of JPH0697170B2 publication Critical patent/JPH0697170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To reduce the power consumption of the title circuit by connecting a constant-current circuit provided with two transistors for constant current to a constant-current source through a transistor for load. CONSTITUTION:A constant-current circuit 21 is constituted of two transistors 22 and 23 for constant current and sensor elements 24 and 25 and the emitters of the transistors 22 and 23 are connected with a DC power source VEE respectively through the elements 24 and 25. The collectors of the transistors 22 and 23 are connected with one end of a constant-current source 29 through between the collectors and emitters of transistors 27 and 28 and the other end of the power source 29 is connected with a DC power source VCC. The resistance values of the elements 24 and 25 change following the displacement of an object to be detected. The value of the current flowing to the circuit 21 changes depending upon the resistance values of the elements 24 and 25 and a sensor output is fetched from the output terminal of the circuit 21. Thus the power consumption of this sensor driving circuit can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気式ロータリーエンコーダなどに使用される
センサの駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive circuit for a sensor used in a magnetic rotary encoder or the like.

〔従来の技術〕[Conventional technology]

従来、センサの駆動回路としては磁気式ロータリーエン
コーダなどにおいて、第4図に示すように被検出物の変
位に応じて抵抗値が変化する4つの磁気抵抗効果素子1
1〜14をブリッジ回路に組んでその出力信号を演算増
幅器15で増幅するようにしたものがある。ここに4つ
の磁気抵抗効果素子11〜14は例えば磁気式ロータリ
ーエンコーダがロータなどの回転位置2回転速度の検出
に用いられる場合にそのモータのロータなどに交互に着
磁された多数のN極とS極のパターンに対向してその回
転方向へ配置されてこのパターンによる磁界を検出する
Conventionally, as a drive circuit for a sensor, in a magnetic rotary encoder, etc., four magnetoresistive elements 1 whose resistance value changes according to the displacement of the detected object are used, as shown in Fig. 4.
There is one in which the circuits 1 to 14 are assembled into a bridge circuit and the output signal thereof is amplified by an operational amplifier 15. For example, when a magnetic rotary encoder is used to detect the rotational position and rotational speed of a rotor, the four magnetoresistive effect elements 11 to 14 are used to form a large number of N poles that are alternately magnetized on the rotor of a motor, etc. It is placed opposite to the S-pole pattern in its rotational direction and detects the magnetic field due to this pattern.

また磁気式ロータリーエンコーダにおいて、マグネット
ロータにより与えられる回転磁界が逆相関係になるよう
に配置され且つ電気的に直列接続された2個の磁気抵抗
効果素子と、この直列接続された2個の磁気抵抗効果素
子に検出用電流を流す定電流源と、各磁気抵抗効果素子
の両端に生ずる電圧を検出するための第1段の差動増幅
器と。
In addition, in a magnetic rotary encoder, two magnetoresistive elements are arranged and electrically connected in series so that the rotating magnetic field given by the magnet rotor has an opposite phase relationship, and two magnetoresistive elements electrically connected in series are used. A constant current source that supplies a detection current to the resistance effect element, and a first stage differential amplifier that detects the voltage generated across each magnetoresistive element.

この第1段の差動増幅器の出力信号より磁界による抵抗
変化分のみの検出信号を出力する第2段の差動増幅器と
を備えたセンサの駆動回路が特開昭58−68615号
公報により知られている。
A sensor drive circuit equipped with a second-stage differential amplifier that outputs a detection signal corresponding to only the resistance change due to the magnetic field from the output signal of the first-stage differential amplifier is known from Japanese Patent Laid-Open No. 58-68615. It is being

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したセンサの駆動回路にあっては前者では磁気抵抗
効果素子11〜14が電圧駆動となっているので、磁気
抵抗効果素子11〜14自体の消費電力が大きい。また
低消費電力化しようとして磁気抵抗効果素子11〜14
の抵抗値を高くすると、磁気抵抗効果素子11〜14を
集積回路化した場合そのパターンが大きくなってしまう
。後者では磁気抵抗効果素子を増幅器の一部として用い
ていなくてその出力が小さいので、次段の差動増幅器を
非常に高性能なものとしなければならない。
In the sensor drive circuit described above, in the former case, the magnetoresistive elements 11 to 14 are driven by voltage, so the power consumption of the magnetoresistive elements 11 to 14 themselves is large. In addition, in an attempt to reduce power consumption, the magnetoresistive effect elements 11 to 14
If the resistance value is increased, the pattern becomes larger when the magnetoresistive elements 11 to 14 are integrated into an integrated circuit. In the latter case, since the magnetoresistive element is not used as part of the amplifier and its output is small, the differential amplifier in the next stage must be of very high performance.

本発明は上記欠点を除去し、低消費電力化を計ることが
できてセンサ出力の増幅器として非常に高性能なものを
使用しなくてもよいセンサの駆動回路を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sensor drive circuit that eliminates the above-mentioned drawbacks, can reduce power consumption, and does not require the use of a very high-performance amplifier for the sensor output.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は被検出物の変位に応じて抵抗値が変化するセン
サ素子を定電流駆動するようになしたセンサの駆動回路
において、 2つの定電流用トランジスタを有して構成される定1!
流回路を負荷用トランジスタを介して定電流源に接続し
7 上記定電流回路に流れる電流値を決める抵抗としてセン
サ素子を上記定電流用トランジスタに接続し、 上記定電流回路の出力端よりセンサ出力を取り出すよう
に構成したものである。
The present invention relates to a sensor drive circuit configured to drive a sensor element whose resistance value changes according to the displacement of a detected object with a constant current.
A current circuit is connected to a constant current source via a load transistor, and a sensor element is connected to the constant current transistor as a resistor that determines the value of current flowing in the constant current circuit, and the sensor outputs from the output terminal of the constant current circuit. It is configured to take out.

〔作 用〕[For production]

センサ素子の抵抗値が被検出物の変位に応じて変化して
、このセンサ素子の抵抗値により定電流回路に流れる電
流値が決まり、定電流回路の出力端よりセンサ出力が取
り出される。
The resistance value of the sensor element changes in accordance with the displacement of the object to be detected, and the resistance value of the sensor element determines the value of the current flowing through the constant current circuit, and the sensor output is taken out from the output end of the constant current circuit.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

定電流回路21は2つの定電流用トランジスタ22゜2
3及び磁気抵抗効果素子24 、25により構成され、
トランジスタ22.23のエミッタは磁気抵抗効果素子
24 、25をそれぞれ介して直流型*V、、に接続さ
れる6トランジスタ22.23のベースはトランジスタ
22のコレクタと接続され、トランジスタ23のコレク
タより出力端子26が導出される。磁気抵抗効果素子2
4 、25は定電流回路21に流れる電流値を決める抵
抗として接続され、2つのトランジスタ27゜28は定
電流回路21に対する負荷用トランジスタである。トラ
ンジスタ22.23のコレクタはトランジスタ27.2
8のコレクタ、エミッタ間をそれぞれ介して定電流源2
9の一端に接続され、定電流源29の他端が直流型gV
ccに接続される。直流電源30.31はトランジスタ
27 、28のベースと接地点との各間に接続され、オ
フセット調整用として用いられる。
The constant current circuit 21 includes two constant current transistors 22゜2.
3 and magnetoresistive elements 24 and 25,
The emitters of the transistors 22 and 23 are connected to the DC type *V, through magnetoresistive elements 24 and 25, respectively.The bases of the transistors 22 and 23 are connected to the collector of the transistor 22, and the output is output from the collector of the transistor 23. Terminal 26 is led out. Magnetoresistive element 2
4 and 25 are connected as resistors that determine the value of current flowing through the constant current circuit 21, and two transistors 27 and 28 are load transistors for the constant current circuit 21. The collector of transistor 22.23 is transistor 27.2.
Constant current source 2 is connected between the collector and emitter of 8.
9, and the other end of the constant current source 29 is a DC type gV
Connected to cc. DC power sources 30 and 31 are connected between the bases of transistors 27 and 28 and the ground point, and are used for offset adjustment.

この実施例は磁気式ロータリーエンコーダなどに用いら
れ、磁気抵抗効果素子24 、25は例えば磁気式ロー
タリーエンコーダがロータなどの回転位置。
This embodiment is used in a magnetic rotary encoder, etc., and the magnetoresistive elements 24 and 25 are used, for example, to determine the rotational position of the rotor of the magnetic rotary encoder.

回転速度の検出に用いられる場合にそのモータのロータ
などに交互に着磁された多数のN極とS極のパターンに
対向してその回転方向へ配置されてこのパターンによる
磁界を検出する0、二の磁気抵抗効果素子24.25は
ロータなどの変位に応じて抵抗値が変化する素子であれ
ばよい、トランジスタ22と23.トランジスタ27と
28、磁気抵抗効果素子24と25はそれぞれペア性が
保たれ、例えば1つの集積回路に等しいものとして形成
される。
When used to detect rotational speed, a magnet is placed in the direction of rotation facing a large number of N-pole and S-pole patterns that are alternately magnetized on the rotor of the motor, and detects the magnetic field caused by this pattern. The second magnetoresistive elements 24, 25 may be any element whose resistance value changes according to the displacement of the rotor, etc., and the transistors 22 and 23. The transistors 27 and 28 and the magnetoresistive elements 24 and 25 are maintained as a pair, and are formed as, for example, one integrated circuit.

次にこの実施例の動作を説明する。なおトランジスタ2
2.23.27.28のベース電流は無視する。
Next, the operation of this embodiment will be explained. Note that transistor 2
2.23.27.28 Base currents are ignored.

まず、モータのロータなどによる磁界が磁気抵抗効果素
子24 、25に印加されない時には磁気抵抗効果素子
24.25の抵抗値R8工、R5,は等しいから、トラ
ンジスタ22.23のエミッタ[lu、、r、が等しく
なり、出力端子26の出力電圧VoutがOとなる。
First, when the magnetic field from the motor rotor or the like is not applied to the magnetoresistive elements 24 and 25, the resistance values R8 and R5 of the magnetoresistive elements 24 and 25 are equal, so that the emitters [lu, , r , become equal, and the output voltage Vout of the output terminal 26 becomes O.

またモータのロータなどによる磁界が磁気抵抗効果素子
24 、25に印加された時にはその磁界により磁気抵
抗効果素子24.25の抵抗値R,□1R12に差が現
れてR□〉Roどなると、1〜ランジスタ22゜23の
バランスがくずれてトランジスタ22.23のコレクタ
電流丁C3+IC4が工。3く工C4となり、出力電圧
V o u tが変化する。■。、とIC4との関係は
トランジスタ23のベース・エミッタ間電圧をΔV f
i e 4としてI cff−R,i)ΔV 8、.4
を満咀すわ、ばとなり、磁気抵抗効果素子24.25の
抵抗値R5□。
Furthermore, when a magnetic field from a motor rotor or the like is applied to the magnetoresistive elements 24 and 25, a difference appears in the resistance values R, □1R12 of the magnetoresistive elements 24 and 25 due to the magnetic field, and when R□〉Ro, 1 ~The balance between transistors 22 and 23 is lost, and the collector currents of transistors 22 and 23 (C3+IC4) are broken. 3, the output voltage V out changes. ■. , and IC4, the base-emitter voltage of the transistor 23 is ΔV f
i cff-R as i e 4, i) ΔV 8, . 4
The resistance value of the magnetoresistive element 24.25 is R5□.

Rs□の差に応じて出力端子26から電流が流入する。A current flows from the output terminal 26 according to the difference in Rs□.

ここで、出力端子26は定電流回路21の出力端である
ので、トランジスタ23の出力抵抗が大きくなり、出力
電流が小さく変化しても出力電圧Voutが大きく変化
する。したがって磁気抵抗効果素子24.25の抵抗変
化量が小さくても出力電圧Voutの変化は大きくなる
Here, since the output terminal 26 is the output terminal of the constant current circuit 21, the output resistance of the transistor 23 becomes large, and even if the output current changes small, the output voltage Vout changes greatly. Therefore, even if the amount of change in resistance of the magnetoresistive elements 24, 25 is small, the change in the output voltage Vout becomes large.

また周囲温度が変化した場合には磁気抵抗効果素子24
.25が同一の基板上に作られてμ単位の間隔で配置さ
れているので、周囲温度の変化に対して独立に抵抗値R
s□+Rczが変化するとは考えにくく、抵抗値R8□
、Rs2が同じに変化すると考えられる。すなわち、ノ
ミナル温度Tに対してΔTだけ周囲温度が変化した時に
は磁気抵抗効果素子24.25の抵抗値Rs□、R5□
はそれぞれRs□=R,□+ΔR R,、□=R,2+ΔR と同時に変化する。この時、トランジスタ22とトラン
ジスタ23とは磁気抵抗効果素子24 、25の抵抗値
Rs□IRs□が同時に同じ変化をしているので、バラ
ンスが保たれ、出力電圧V outは変化しない。
In addition, when the ambient temperature changes, the magnetoresistive element 24
.. 25 are made on the same substrate and arranged at intervals of μ, the resistance value R can be adjusted independently against changes in ambient temperature.
It is unlikely that s□+Rcz will change, and the resistance value R8□
, Rs2 are considered to change in the same way. That is, when the ambient temperature changes by ΔT with respect to the nominal temperature T, the resistance values Rs□, R5□ of the magnetoresistive element 24.25 change.
change simultaneously with Rs□=R, □+ΔR R, □=R, 2+ΔR, respectively. At this time, since the resistance values Rs□IRs□ of the magnetoresistive elements 24 and 25 of the transistors 22 and 23 change simultaneously in the same manner, balance is maintained and the output voltage V out does not change.

したがって周囲温度の変化に対して出力電圧Voutは
変化しない。
Therefore, the output voltage Vout does not change with respect to changes in ambient temperature.

この実施例では定電流回路21によって磁気抵抗効果素
子24.25に流す電流を設定できるので、低消費電力
化できる。また能動負荷の(定電流回路21の)エミッ
タ抵抗として磁気抵抗効果素子24.25を用いたので
、初段の増幅度が高くなり、小電流で大きな出力を得る
ことができる。また磁気抵抗効果素子24.25の微小
出力でも大きな出力を得ることができるので、磁気抵抗
効果素子24 、25を薄膜センサ等に形成した場合に
センサを小さくできる。またこの実施例は集積回路で用
いられる差動増幅回路と接続することにより1チツプの
集積回路にしやすい。
In this embodiment, since the current flowing through the magnetoresistive elements 24 and 25 can be set by the constant current circuit 21, power consumption can be reduced. Furthermore, since the magnetoresistive elements 24 and 25 are used as the emitter resistance of the active load (of the constant current circuit 21), the amplification degree of the first stage is increased, and a large output can be obtained with a small current. Furthermore, since a large output can be obtained even with a minute output from the magnetoresistive elements 24 and 25, the sensor can be made smaller when the magnetoresistive elements 24 and 25 are formed into a thin film sensor or the like. Furthermore, this embodiment can easily be made into a one-chip integrated circuit by connecting it to a differential amplifier circuit used in an integrated circuit.

第2図は本発明の他の実施例を示す7 この実施例は上記実施例においてトランジスタ22.2
7のコレクタにトランジスタ32のベースを接続すると
共に、このトランジスタ32のコレクタを直流電源Vc
eに接続し、トランジスタ32のエミッタを抵抗33を
介して直流電源v、eに接続してトランジスタ32のエ
ミッタと抵抗33との接続点をトランジスタ22.23
のベースに接続するようにしたものである。トランジス
タ22.23はトランジスタ22のコレクタ電圧に応じ
てトランジスタ32からベース電流が供給され、磁気抵
抗効果素子24.25には等し2い電流が供給される。
FIG. 2 shows another embodiment of the invention.7 This embodiment is similar to the transistor 22.2 in the above embodiment.
The base of the transistor 32 is connected to the collector of the transistor 7, and the collector of the transistor 32 is connected to the DC power supply Vc.
e, and the emitter of the transistor 32 is connected to the DC power supply v, e via the resistor 33, and the connection point between the emitter of the transistor 32 and the resistor 33 is connected to the transistor 22.23.
It is designed to be connected to the base of The transistors 22 and 23 are supplied with base currents from the transistor 32 in accordance with the collector voltage of the transistor 22, and the magnetoresistive elements 24 and 25 are supplied with equal currents.

上記実施例ではトランジスタ27のコレクタからトラン
ジスタ22.23にベース電流が供給されているが、ト
ランジスタ22,23.27.28のベース電流を無視
できるとした。しかしICJ”IC4を保つためにはこ
の実施例のようにした方がよい。
In the above embodiment, the base current is supplied from the collector of the transistor 27 to the transistors 22, 23, but it is assumed that the base currents of the transistors 22, 23, 27, and 28 can be ignored. However, in order to maintain ICJ"IC4, it is better to do as in this embodiment.

第3図は本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.

上記実施例は出力端子26から電流が流入する電流吸い
込みタイプの例であるが、この実施例は出力端子26か
ら111が流出する電流吐き出しタイプの例である。こ
の実施例は第1図の実施例において直流電源Vccと直
流電源V、を逆に接続すると共に定電流源29を逆向き
に接続し、かつトランジスタ22.23としてNPN形
のものの代りにPNP形のものを用いトランジスタ27
.28としてPNP形のものの代りにNPN形のものを
用いるようにした例であり、第1図の実施例と同様に動
作する。
The above embodiment is an example of a current sink type in which current flows into the output terminal 26, but this embodiment is an example of a current discharge type in which the current flows out from the output terminal 26. In this embodiment, the DC power supply Vcc and the DC power supply V are connected in the opposite direction in the embodiment shown in FIG. Transistor 27
.. This is an example in which an NPN type is used instead of a PNP type as 28, and it operates in the same manner as the embodiment shown in FIG.

〔効 果〕〔effect〕

以上のように本発明によれば被検出物の変位に応じて抵
抗値が変化するセンサ素子を定電流駆動するようになし
たセンサの駆動回路において、2つの定電流用トランジ
スタを有して構成される定電流回路を負荷用トランジス
タを介して定電流源に接続し、上記定電流回路に流れる
電流値を決める抵抗としてセンサ素子を上記定電流用ト
ランジスタに接続し、上記定電流回路の出力端よりセン
サ出力を取り出すように構成したので、低消費電力化を
計ることができ、かつセンサ出力の増幅器として非常に
高性能なものを使用しなくてもよくなる。
As described above, according to the present invention, in a sensor drive circuit configured to drive a sensor element whose resistance value changes according to the displacement of a detected object with a constant current, the sensor drive circuit includes two constant current transistors. A constant current circuit is connected to a constant current source via a load transistor, a sensor element is connected to the constant current transistor as a resistor that determines the value of current flowing through the constant current circuit, and the output terminal of the constant current circuit is connected to the constant current source. Since the sensor output is configured to extract more sensor output, it is possible to reduce power consumption, and there is no need to use a very high performance amplifier for the sensor output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の各実施例を示す回路図、第
4図は従来のセンサの駆動回路を示す回路図である。 21・・・定電流回路、22.23・・・定電流用トラ
ンジスタ、24 、25・・・センサ素子、26・・・
出力端、27.28・・・負荷用トランジスタ、29・
・・定電流源。 EE
1 to 3 are circuit diagrams showing each embodiment of the present invention, and FIG. 4 is a circuit diagram showing a conventional sensor drive circuit. 21... Constant current circuit, 22.23... Constant current transistor, 24, 25... Sensor element, 26...
Output end, 27.28...Load transistor, 29.
...Constant current source. EE

Claims (1)

【特許請求の範囲】  被検出物の変位に応じて抵抗値が変化するセンサ素子
を定電流駆動するようになしたセンサの駆動回路におい
て、 2つの定電流用トランジスタを有して構成される定電流
回路を負荷用トランジスタを介して定電流源に接続し、 上記定電流回路に流れる電流値を決める抵抗としてセン
サ素子を上記定電流用トランジスタに接続し、 上記定電流回路の出力端よりセンサ出力を取り出すよう
に構成したことを特徴とする センサの駆動回路。
[Claims] In a sensor drive circuit configured to drive a sensor element whose resistance value changes according to the displacement of an object with a constant current, a constant current transistor including two constant current transistors is provided. A current circuit is connected to a constant current source via a load transistor, a sensor element is connected to the constant current transistor as a resistor that determines the value of current flowing through the constant current circuit, and a sensor output is generated from the output terminal of the constant current circuit. A sensor drive circuit characterized in that it is configured to take out.
JP63162945A 1988-06-30 1988-06-30 Sensor drive circuit Expired - Lifetime JPH0697170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162945A JPH0697170B2 (en) 1988-06-30 1988-06-30 Sensor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162945A JPH0697170B2 (en) 1988-06-30 1988-06-30 Sensor drive circuit

Publications (2)

Publication Number Publication Date
JPH0212012A true JPH0212012A (en) 1990-01-17
JPH0697170B2 JPH0697170B2 (en) 1994-11-30

Family

ID=15764244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162945A Expired - Lifetime JPH0697170B2 (en) 1988-06-30 1988-06-30 Sensor drive circuit

Country Status (1)

Country Link
JP (1) JPH0697170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191223A (en) * 2010-03-16 2011-09-29 Mitsutoyo Corp Capacity-change displacement gauge
JP2016170152A (en) * 2015-03-16 2016-09-23 株式会社豊田中央研究所 Sensor drive circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123353U (en) * 1974-08-08 1976-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123353U (en) * 1974-08-08 1976-02-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191223A (en) * 2010-03-16 2011-09-29 Mitsutoyo Corp Capacity-change displacement gauge
JP2016170152A (en) * 2015-03-16 2016-09-23 株式会社豊田中央研究所 Sensor drive circuit

Also Published As

Publication number Publication date
JPH0697170B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JP2574659B2 (en) Temperature compensated magnetoresistive sensor circuit with high output voltage swing
JPH04369878A (en) Magnetoresistance effect element circuit
EP1718932B1 (en) Series bridge circuit
JPH1038988A (en) Integrated magnetoresistive effect element circuit
JPH0212012A (en) Sensor driving circuit
JP2977700B2 (en) Hall element circuit
JP3230230B2 (en) Detector
US6392407B1 (en) Rotation angle detecting device
US6208176B1 (en) Adaptive driver circuit for semiconductor magnetoresistors
JP3333318B2 (en) Output transistor saturation prevention circuit
JPH0814616B2 (en) Hall element device
JPS6214712Y2 (en)
JPS63243729A (en) Temperature detection circuit
JPH11329186A (en) Proximity sensor
SU1364862A1 (en) Angle of turn-to-code magnetoresistive converter
JPH03112214A (en) Voltage comparator
JP2800888B2 (en) Magnetic sensor
JPH0846443A (en) High input impedance circuit and semiconductor device
JP2792523B2 (en) Magnetic sensor
JP2001166024A (en) Magnetic field detection device
JPH0411042B2 (en)
JP2594374Y2 (en) 2-wire / 3-wire output device
KR830001977B1 (en) Power amplifier circuit
JP2607296B2 (en) DC motor speed control circuit
JPH0143471B2 (en)