JPH02119906A - Electroosmotic dehydrator - Google Patents

Electroosmotic dehydrator

Info

Publication number
JPH02119906A
JPH02119906A JP63271665A JP27166588A JPH02119906A JP H02119906 A JPH02119906 A JP H02119906A JP 63271665 A JP63271665 A JP 63271665A JP 27166588 A JP27166588 A JP 27166588A JP H02119906 A JPH02119906 A JP H02119906A
Authority
JP
Japan
Prior art keywords
sludge
electrode
passage
electroosmotic
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63271665A
Other languages
Japanese (ja)
Other versions
JPH0722660B2 (en
Inventor
Mikimasa Yamaguchi
山口 幹昌
Hideyuki Oohanamori
英幸 大花森
Shigenori Suzuki
鈴木 成徳
Toshitaka Arai
新井 利孝
Katsuo Inami
伊波 克雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63271665A priority Critical patent/JPH0722660B2/en
Publication of JPH02119906A publication Critical patent/JPH02119906A/en
Publication of JPH0722660B2 publication Critical patent/JPH0722660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently execute electroosmotic dehydration with lower electric power consumption by expelling the gas generated between sludge and a non- water collecting side electrode by the electrolytic effect in an electroosmotic dehydration process to the outside of the system through venting passages. CONSTITUTION:A voltage is impressed between the electrodes on an anode 1a and cathode 2 side which face each other via a sludge passage to collect the water contained in the sludge 5 supplied in the sludge passage to one electrode side by the electroosmotic effect. The filtrate is discharged to the outside of the system through a filter member 3. Strings 6 to form the venting passages 6a between the surface of the electrode 1a and the sludge 5a are laid to the electrode 1a on the non-water collecting side across the inside and outside of the sludge passage. Further, the gas generated between the non-water collecting side electrode 1a and the sludge 5 in the electroosmotic process is expelled to the outside of the system through the venting passages 6a. As a result, the increase in the contact electric resistance occurring in the gas stagnation is averted and the electroosmotic dehydration is efficiently executed with the lower electric power consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水処理場あるいはし尿処理場での処理工程
で生じた汚泥を対象に、汚泥を脱水処理する電気浸透式
脱水機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroosmotic dewatering machine for dewatering sludge generated in a treatment process at a sewage treatment plant or human waste treatment plant.

〔従来の技術〕[Conventional technology]

電気浸透を応用して汚泥を連続式に脱水処理する電気浸
透式脱水機として、第5@、R6図に示す構成のものが
特開昭60−25597などで公知である。
As an electroosmotic dewatering machine that continuously dehydrates sludge by applying electroosmosis, an electroosmotic dewatering machine having the configuration shown in Fig. 5@, R6 is known in Japanese Patent Application Laid-Open No. 60-25597.

図において、1は周上に陽極側の電極1aを装備した回
転ドラム、2は回転ドラム1に対向して張り巡らした陰
極側の電極を兼ねたプレスベルト、3はプレスベルト2
の周面上に重ね合わせて敷設した濾布などのフィルタベ
ルト、4は陽極側の電極1aと陰極側の電極2との間に
電圧を印加する直流電源であり、前記した回転ドラム1
とプレスベルト2との間の対向面域に脱水領域となる汚
泥通路が形成されている。
In the figure, 1 is a rotating drum equipped with an anode side electrode 1a on its circumference, 2 is a press belt that is stretched across the rotating drum 1 and also serves as a cathode side electrode, and 3 is a press belt 2
4 is a DC power supply that applies voltage between the anode side electrode 1a and the cathode side electrode 2;
A sludge passage serving as a dewatering area is formed in the opposing surface area between the press belt 2 and the press belt 2.

かかる構成で、プレスベルト2を駆動し、かつ電極間に
電圧を印加した状態でプレ脱水された汚泥5を汚泥通路
へ供給すると、汚泥5は回転ドラム1とプレスベルト2
との間に挾まれてベルト搬送され、この過程で機械的な
圧搾力に加えて対向電極間の電場で電気浸透作用を受け
るようになる。
With this configuration, when the press belt 2 is driven and the pre-dehydrated sludge 5 is supplied to the sludge passage with a voltage applied between the electrodes, the sludge 5 is transferred to the rotating drum 1 and the press belt 2.
During this process, it is subjected to electroosmotic action due to the electric field between the opposing electrodes in addition to the mechanical squeezing force.

すなわち、汚泥5の粒子(ぐ−電位が負)が負。That is, the particles of sludge 5 (negative potential) are negative.

含有水は正に帯電され、汚泥水は陰極側のプレスベルト
2の方へ流動し、ここで電極部材に放電するとともに、
フィルタベルト3を透過して汚泥5より分離脱水される
。また、フィルタベルト3を透過した濾水はプレスベル
ト2に穿孔した排水穴2a (第6図)より下方に滴下
し、ここから系外に排水される。一方、汚泥5は脱水さ
れて低含水率のケーキに変わり、プレスベルト2に沿っ
て搬出。
The contained water is positively charged, and the sludge water flows toward the press belt 2 on the cathode side, where it is discharged to the electrode member, and
It passes through the filter belt 3 and is separated and dehydrated from the sludge 5. Further, the filtered water that has passed through the filter belt 3 drips downward through a drainage hole 2a (FIG. 6) drilled in the press belt 2, and is drained out of the system from there. On the other hand, the sludge 5 is dehydrated and turned into a cake with a low moisture content, which is then carried out along the press belt 2.

回収される。It will be collected.

なお、前記は汚泥5の粒子のぐ一電位が負であることか
ら回転ドラム1のt極1a(非集水側)のli性を正、
プレスベルト2の電極(集水側)の極性を負としたが、
特に汚泥粒子のζ−電位が正である場合には、逆に回転
ドラム側電極1aの極性を負、プレスベルト2側の極性
を正にして電圧を印加するものとする。
In addition, since the potential of the particles of the sludge 5 is negative, the li property of the t-pole 1a (non-water collecting side) of the rotating drum 1 is positive,
The polarity of the electrode (water collection side) of press belt 2 was set to negative,
In particular, when the ζ-potential of the sludge particles is positive, the voltage is applied with the polarity of the electrode 1a on the rotating drum side being negative and the polarity on the press belt 2 side being positive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、下水処理場、し尿処理場などで発生する一般
の汚泥は、含有水に硫酸イオン、塩素イオンなどを多く
含んでいる。このために前記の電気浸透過程で汚泥含有
水が電気分解され、陽極側には酸素ガスと塩素ガスが、
また陰極側には水素ガスが発生する。この場合に、陰極
側電極(プレスベルト2)の表面に発生したガスは、汚
泥より分離した濾水と一緒にフィルタベルトを透過して
系外に排除される。これに対して陽極側電極(回転ドラ
ム1)の表面に発生したガスは逃げ場がなく、第6図で
表すように陽極側電極1aの表面と汚泥5との間にガス
Gが滞留するようになる。しかもこの発生ガスは非導電
性であるために、結果として電極1aと汚泥5との間の
接触面の電気抵抗を増大させる。
By the way, general sludge generated in sewage treatment plants, human waste treatment plants, etc. contains a large amount of sulfate ions, chloride ions, etc. in the water contained therein. For this purpose, sludge-containing water is electrolyzed in the electroosmosis process described above, and oxygen gas and chlorine gas are released to the anode side.
Further, hydrogen gas is generated on the cathode side. In this case, the gas generated on the surface of the cathode side electrode (press belt 2) passes through the filter belt together with the filtrate separated from the sludge and is eliminated from the system. On the other hand, the gas generated on the surface of the anode side electrode (rotating drum 1) has no place to escape, and as shown in FIG. Become. Furthermore, since this generated gas is non-conductive, it results in an increase in the electrical resistance of the contact surface between the electrode 1a and the sludge 5.

一方、電気浸透作用による水の移動量、つまり脱水能力
は、汚泥中を通流する電流の大きさに比例することから
、前記のように電極と汚泥との間にガスが封じ込められ
た状態になると、導電性を阻害して汚泥に電流が流れ難
くなり、このままでは電気浸透の脱水能力が低下する。
On the other hand, the amount of water transferred by electroosmosis, that is, the dewatering capacity, is proportional to the magnitude of the current flowing through the sludge, so as mentioned above, gas is trapped between the electrode and the sludge. This inhibits conductivity, making it difficult for current to flow through the sludge, and if this continues, the dewatering ability of electroosmosis will decrease.

したがって電気浸透式脱水機で所定の脱水処理能力を維
持するには、残留ガスに起因する電気抵抗の増加分を補
償するよう電極間に印加する電圧を高める必要がある。
Therefore, in order to maintain a predetermined dehydration processing capacity in an electroosmotic dehydrator, it is necessary to increase the voltage applied between the electrodes to compensate for the increase in electrical resistance caused by residual gas.

しかして、印加電圧を高めると消費電力量が増大し、結
果として電気浸透式脱水機のランニングコストが嵩むよ
うになり、消費電力量と汚泥の脱水処理量との比で表す
脱水効率が低下する。
However, when the applied voltage is increased, the amount of power consumed increases, and as a result, the running cost of the electroosmotic dehydrator increases, and the dewatering efficiency, which is expressed as the ratio between the amount of power consumed and the amount of sludge dewatered, decreases.

本発明は上記の点にかんがみなされたものであり、電気
浸透過程の電気分解により、特に濾過部材(フィルタベ
ルト)を装備してない非集水側の電極と汚泥との間に発
生したガスを簡易な手段で系外に排除させることにより
、ガス滞留に起因する接触電気抵抗の増加を回避し、少
ない消費電力量で効率よく電気浸透脱水できるようにし
た電気浸透式脱水機を提供することを目的とする。
The present invention has been developed in view of the above points, and is designed to eliminate gas generated between the sludge and the electrode on the non-water collection side that is not equipped with a filter member (filter belt) through electrolysis during the electroosmosis process. To provide an electroosmotic dewatering machine that avoids an increase in contact electrical resistance caused by gas retention by removing gas from the system by a simple means, and enables efficient electroosmotic dehydration with low power consumption. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば、まず第1
の解決手段として、非集水側の電極に対し、該電極の表
面と汚泥との間にガス抜き通路を形成するストリングを
汚泥通路の内外に亙って敷設し、電気浸透過程で非集水
側電極と汚泥との間に発生したガスを前記ガス抜き通路
を通じて系外に排除するよう構成するものとする。
In order to solve the above problems, according to the present invention, first
As a solution to this problem, a string that forms a degassing passage between the surface of the electrode and the sludge is laid inside and outside of the sludge passage for the electrode on the non-water collection side, and the string is installed inside and outside of the sludge passage. The structure is such that gas generated between the side electrode and the sludge is removed from the system through the gas vent passage.

また、第2の解決手段として、汚泥通路を横切るように
対向電極の間にまたがってガス透過性を有するストリン
グを敷設し、電気浸透過程で非集水側電極と汚泥との間
に発生したガスを前記ストリングの内部気孔を経由して
集水側電極に設けた濾過部材へ導き、ここから系外に排
除するよう構成するものとする。
In addition, as a second solution, a string with gas permeability is laid across the sludge passage between the opposing electrodes, and the gas generated between the non-water collection side electrode and the sludge during the electroosmosis process is The water is introduced through the internal pores of the string to a filtration member provided on the water collection side electrode, and is removed from the system from there.

〔作用〕[Effect]

まず、前記第1の手段において、ストリングは例えば断
面凸形の合成ゴム製ベルト体であり、幅の狭い端面を非
集水側電極の電極面に当接し、汚泥通路と平行にその内
外に亙うて敷設されている。
First, in the first means, the string is, for example, a synthetic rubber belt body with a convex cross section, and its narrow end surface is in contact with the electrode surface of the non-water collection side electrode, and the string is stretched in and out parallel to the sludge passage. It is well laid out.

なお、非集水側電極が回転ドラム形であれば、ストリン
グを回転ドラムの周面に沿って敷設する。
Note that if the non-water collecting side electrode is in the form of a rotating drum, the strings are laid along the circumferential surface of the rotating drum.

ここで対向電極間の汚泥通路にプレ脱水された汚泥(生
汚泥に比べて流動性が低い)を供給すると、前記のスト
リングが汚泥に食い込み、ストリングの幅の広い端面の
背後にガス抜き通路として機能する大気側に連通した空
隙が残存成形されるようになる。したがって電気浸透過
程における汚泥水の電気分解で非集水側電極の表面に発
生したガスは、前記したガス抜き通路を経由して大気側
に排除される。これにより、発生ガスが汚泥と電極表面
との間に残留することがなくなり、残留ガスに起因して
電極と汚泥との間の接触電気抵抗が増大するのを回避で
きる。
When pre-dehydrated sludge (lower fluidity than raw sludge) is supplied to the sludge passage between the opposing electrodes, the strings bite into the sludge and form gas venting passages behind the wide end faces of the strings. A functional void communicating with the atmosphere will remain. Therefore, gas generated on the surface of the non-water collection side electrode by electrolysis of sludge water during the electroosmosis process is exhausted to the atmosphere via the gas vent passage. This prevents the generated gas from remaining between the sludge and the electrode surface, and it is possible to avoid an increase in the contact electrical resistance between the electrode and the sludge due to the residual gas.

一方、第2の手段において、ストリングは例えは連続気
泡形の気孔を有するスポンジ状の合成ゴムで作られたガ
ス透過性のベルト体であり、その一方端面を非集水側の
電極面に当接し、他方端面を対向電極上に敷設した濾過
部材と当接するようにして敷設されている。したがって
電気浸透過程での汚泥水の電気分解により非集水側電極
の表面に発生したガスは、この部分に滞留することなく
、前記したガ、ス透過性のストリングの内部気孔を拡散
し、さらにストリングの他方側端面と接する濾過部材を
経て大気側に排除される。
On the other hand, in the second method, the string is a gas-permeable belt made of sponge-like synthetic rubber having open-cell pores, and one end of the string is placed in contact with the electrode surface on the non-water collection side. The other end surface is placed in contact with the filter member placed on the counter electrode. Therefore, the gas generated on the surface of the non-water collection side electrode due to the electrolysis of sludge water during the electroosmosis process does not stay in this part, but diffuses through the internal pores of the gas-permeable string, and further It is discharged to the atmosphere through a filtering member that is in contact with the other end surface of the string.

〔実施例] 次に第1図、第2図、および第3図、第4図により、前
記した第1の解決手段、第2の解決手段の実施例を説明
する。なお各図において第5図。
[Example] Next, an example of the first solving means and the second solving means described above will be described with reference to FIGS. 1, 2, 3, and 4. In addition, FIG. 5 in each figure.

第6図に対応する同一部材には同じ符号が付しである。Identical members corresponding to FIG. 6 are given the same reference numerals.

実施例1!まず第1図、第2図において、6がエンドレ
スベルト体としてなるストリングであり、複数本のスト
リング6が回転ドラム1の局面を取り巻くように回転ド
ラムの幅方向に沿って所定ピッチ間隔置きに分散敷設さ
れている。また、ストリング6はその断面形状が凸形で
あり、第2図に明示されているように幅の狭い端面を電
極1aの表面に当接した状態で、第1図のごとく回転ド
ラム1とプーリ7との間に架は渡して張架されている。
Example 1! First, in FIGS. 1 and 2, 6 is a string serving as an endless belt body, and a plurality of strings 6 are distributed at predetermined pitch intervals along the width direction of the rotating drum so as to surround the surface of the rotating drum 1. It is laid down. Further, the string 6 has a convex cross-sectional shape, and when the narrow end surface is in contact with the surface of the electrode 1a as shown in FIG. 7 and a rack is placed between them.

ここで、対向電極間の汚泥通路に前段でプレ脱水された
汚泥5を供給すると、、第2図のように汚泥5の中にス
トリング6が食い込むようになる。
Here, when the sludge 5 pre-dehydrated in the previous stage is supplied to the sludge passage between the opposing electrodes, the string 6 comes to bite into the sludge 5 as shown in FIG.

この場合に、汚泥5はプレ脱水により流動性が低くなっ
ているので横方向に展延する割合が少なく、したがって
前記のようにストリング6が汚泥5に食い込んだ際に、
ストリング6の最大幅範囲で汚泥5が押し除けられ、ス
トリング6の裏側には符号6aで示すようにii 8i
1 aの表面と汚泥5で取り囲まれたガス抜き通路とし
て機能する空隙が成形されるようになる。このガス抜き
通路6aは汚泥通路の内外に亙って敷設されたストリン
グ部材6に沿って形成され、汚泥通路の入口、出口地点
で大気側に開放している。
In this case, since the sludge 5 has low fluidity due to pre-dewatering, the proportion of the sludge 5 spreading in the lateral direction is small, so when the string 6 bites into the sludge 5 as described above,
The sludge 5 is pushed away in the maximum width range of the string 6, and on the back side of the string 6, as shown by the symbol 6a, ii 8i
A void is formed that functions as a gas venting passage surrounded by the surface of 1a and the sludge 5. This degassing passage 6a is formed along the string member 6 laid both inside and outside the sludge passage, and is open to the atmosphere at the entrance and exit points of the sludge passage.

したがって、汚泥5の電気浸透過程で汚泥含有水の電気
分解により電極1aの表面に発生したガスは、その近傍
に開口している前記のガス抜き通路6aに移行し、該通
路を通じて大気側に排除される。
Therefore, gas generated on the surface of the electrode 1a by electrolysis of sludge-containing water during the electroosmosis process of the sludge 5 moves to the gas vent passage 6a opened in the vicinity, and is exhausted to the atmosphere through the passage. be done.

これにより、回転ドラム1の電極面と汚泥5との間に発
生ガスが残留することがなく、残留ガスに起因する電極
1aと汚泥5との間の接触電気抵抗の増加を回避して高
い導電性が確保される。この結果として印加電圧を必要
以上に高めることなしに、汚泥5に十分な値の電流を流
し続けて高い電気浸透脱水能力が維持できるようになる
As a result, generated gas does not remain between the electrode surface of the rotating drum 1 and the sludge 5, and an increase in contact electrical resistance between the electrode 1a and the sludge 5 due to residual gas is avoided, resulting in high conductivity. gender is ensured. As a result, a sufficient amount of current can be continued to flow through the sludge 5 and a high electroosmotic dewatering ability can be maintained without increasing the applied voltage more than necessary.

次に本発明の効果を確認するために行った実機試験結果
について述べる。この試験では、下水処理場で発生した
生汚泥をロール脱水機により含水率81%にプレ脱水し
た汚泥を試料とし、試料を処理速度を90Kg/ポ・h
r(脱水濾過面積をlイ当たりに換算)で含水率65%
まで脱水させてケーキ化することを条件に、汚泥試料を
第1図および第5図の電気浸透式脱水機で脱水処理し、
この脱水処理に要した電力量を比較した。
Next, the results of an actual machine test conducted to confirm the effects of the present invention will be described. In this test, raw sludge generated at a sewage treatment plant was pre-dehydrated using a roll dehydrator to a moisture content of 81%, and the sample was processed at a processing rate of 90 kg/po/h.
Moisture content 65% in r (dehydration filtration area converted to per liter)
The sludge sample was dehydrated using the electroosmotic dehydrator shown in Figs.
The amount of electricity required for this dehydration process was compared.

この試験結果によれば、従来の電気浸透式脱水機(第5
図)では、安定した電気浸透脱水を維持するのに印加電
圧75Vが必要であり、消費電力量は0.38に−H/
にg(汚泥の脱水ケーキ)であった、これに対して、回
転ドラムの周囲にストリングを70mm間隔おきに取り
付けた電気浸透式脱水機(第1図)では、印加電圧60
Vで安定した電気浸透脱水が維持でき、消費電力量は0
.3KWH/Kg(汚泥の脱水ケーキ)であった。
According to this test result, the conventional electroosmotic dehydrator (5th
In Figure), an applied voltage of 75 V is required to maintain stable electroosmotic dehydration, and the power consumption is -H/
On the other hand, in an electroosmotic dehydrator (Fig. 1) in which strings are attached around a rotating drum at intervals of 70 mm, the applied voltage is 60 g (dehydrated sludge cake).
Stable electroosmotic dehydration can be maintained at V, and power consumption is 0.
.. It was 3KWH/Kg (dehydrated sludge cake).

つまり、従来と比べて印加電圧を15V低めることがで
き、この印加電圧の低下に相応して汚泥の脱水処理に要
する消費電力量も大幅に1!ff減できることが確認さ
れた。また、目視観察でも、脱水処理の過程でストリン
グのガス抜き通路が汚泥で塞がれることが認められなか
った。さらに脱水処理中には、発熱により発生した水蒸
気と一緒に電気分解で生じたガスがストリングのガス抜
き通路を通じて外部に吹き出ることが確認できた。
In other words, the applied voltage can be lowered by 15V compared to the conventional method, and the power consumption required for sludge dewatering treatment is also significantly reduced by 1! It was confirmed that ff could be reduced. Also, visual observation did not show that the string's degassing passage was clogged with sludge during the dewatering process. Furthermore, during the dehydration process, it was confirmed that gas generated by electrolysis along with water vapor generated by heat generation was blown out through the gas vent passage of the string.

実施例2:次に本発明の第2の手段による実施例を第3
図1第4図に示す、この実施例では、ストリング8とし
て、気孔径が50〜100μ簡程度である合成ゴム製の
連続気泡形スポンジで作られた断面方形状のエンドレス
ベルト体が採用され、回転ドラム1の幅方向に間隔を置
いて並べた複数本のストリング8が回転ドラム1とプー
リ7との間に架は渡し張架されている。また、このスト
リング8の断面、特にその高さ方向の厚み寸法は、機内
への装荷状態で外側端面が相手側電極のプレスベルト2
に重ねたフィルタベルト3に当接するように、汚泥通路
の高さhよりも大きめに定めである。なお、ストリング
8の取付は間隔ピッチは70g+m程度に選定されてい
る。
Example 2: Next, the example according to the second means of the present invention will be described as a third example.
In this embodiment shown in FIG. 1 and FIG. 4, an endless belt body with a square cross section made of synthetic rubber open-cell sponge with a pore diameter of about 50 to 100 μm is used as the string 8. A plurality of strings 8 arranged at intervals in the width direction of the rotating drum 1 are stretched between the rotating drum 1 and the pulley 7. In addition, the cross section of this string 8, especially its thickness in the height direction, is such that when loaded in the machine, the outer end surface is the press belt 2 with the mating electrode.
The height h of the sludge passage is set to be larger than the height h of the sludge passage so that it comes into contact with the filter belts 3 stacked on top of each other. Note that the string 8 is attached at a pitch of approximately 70 g+m.

したがりて、汚泥5の電気浸透過程で汚泥含有水の電気
分解により電極1aの表面に発生したガスは、その近傍
に配置されている多孔質のストリング8に移行してスト
リング8の内部気孔を拡散し、その端面からフィルタベ
ルト3を通じて大気側に排除される。これにより、回転
ドラム1の電極面と汚泥5との間に発生ガスが残留する
ことがなく、残留ガスに起因する電極18と汚泥5との
間の接触電気抵抗の増加を回避して高い導電性が確保で
きる。
Therefore, the gas generated on the surface of the electrode 1a by electrolysis of sludge-containing water during the electroosmosis process of the sludge 5 migrates to the porous string 8 disposed in the vicinity and fills the internal pores of the string 8. It diffuses and is removed from its end face to the atmosphere through the filter belt 3. As a result, no generated gas remains between the electrode surface of the rotating drum 1 and the sludge 5, and an increase in contact electrical resistance between the electrode 18 and the sludge 5 due to residual gas is avoided, resulting in high conductivity. The quality can be ensured.

また、この実施例について、先記実施例(第1図、第2
図)で述べた評価試験と同様な試験を行った結果でも、
印加電圧、消費電力量の面で路間等な効果の得られるこ
とが確認されている。
In addition, regarding this example, the previous examples (Fig. 1, 2
Even though the results of a test similar to the evaluation test described in Fig.
It has been confirmed that effects such as road spacing can be obtained in terms of applied voltage and power consumption.

〔発明の効果〕〔Effect of the invention〕

本発明による電気浸透式脱水機は、以上説明したように
構成されているので、次記の効果を奏する。
Since the electroosmotic dehydrator according to the present invention is configured as described above, it achieves the following effects.

すなわち、対向電極間の汚泥通路内にガス抜き機能を与
えるストリングを敷設し、電気浸透脱水過程での電気分
解作用により汚泥と非集水側電極との間に発生したガス
をその場に残留させることなしに系外へ排除させるよう
にしたことにより、残留ガスに起因する電極と汚泥との
接触面で電気抵抗が増大化するのを回避して高い導電性
を維持することができ、これにより汚泥の脱水処理に要
する消費電力量を節減して高い脱水効率が得られる。
In other words, a string that provides a degassing function is installed in the sludge passage between the opposing electrodes, and the gas generated between the sludge and the non-water collection side electrode remains in place due to the electrolysis action during the electroosmotic dehydration process. By eliminating the residual gas from the system, it is possible to avoid an increase in electrical resistance at the contact surface between the electrode and the sludge due to residual gas, and maintain high conductivity. High dewatering efficiency can be achieved by reducing power consumption required for sludge dewatering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図はそれぞれ異なる本発明実施例の全体構
成図、第2図、第4図はそれぞれ第1図。 第3図における汚泥通路部の断面拡大図、第5図は従来
における電気浸透式脱水機の全体構成図、第6図は第5
図における汚泥通路部の断面拡大図である0図において
、 18回転ドラム、la:電極(非集水側電極)、2ニブ
レスベルト(集水側電極)、3:フィルタベルト(濾過
部材)、4を源、5:汚泥、6:ストリング、6a:ガ
ス抜き通路、8:ガス透過性1.・、−7 第3図
FIGS. 1 and 3 are overall configuration diagrams of different embodiments of the present invention, and FIGS. 2 and 4 are FIG. 1, respectively. Fig. 3 is an enlarged cross-sectional view of the sludge passage section, Fig. 5 is an overall configuration diagram of a conventional electroosmotic dehydrator, and Fig. 6 is an enlarged cross-sectional view of the sludge passage section.
In Figure 0, which is an enlarged cross-sectional view of the sludge passage section in the figure, there are 18 rotating drums, la: electrode (non-water collection side electrode), 2 nibbles belt (water collection side electrode), 3: filter belt (filtration member), 4 is the source, 5: sludge, 6: string, 6a: gas vent passage, 8: gas permeability 1.・,-7 Figure 3

Claims (1)

【特許請求の範囲】 1)汚泥通路を隔てて対向する陽極、陰極側の電極間に
電圧を印加し、汚泥通路に供給した汚泥の含有水を電気
浸透作用により一方の電極側に集めた上で、濾過部材を
通じて濾水を系外に排水するようにした電気浸透式脱水
機において、非集水側の電極に対し、該電極の表面と汚
泥との間にガス抜き通路を形成するストリングを汚泥通
路の内外に亙って敷設し、電気浸透過程で非集水側電極
と汚泥との間に発生したガスを前記ガス抜き通路を通じ
て系外に排除するようにしたことを特徴とする電気浸透
式脱水機。 2)汚泥通路を隔てて対向する陽極、陰極側の電極間に
電圧を印加し、汚泥通路に供給した汚泥の含有水を電気
浸透作用により一方の電極側に集めた上で、電極面上に
設けた濾過部材を通じて濾水を系外に排水するようにし
た電気浸透式脱水機において、汚泥通路を横切るように
対向電極の間にまたがってガス透過性を有するストリン
グを敷設し、電気浸透過程で非集水側電極と汚泥との間
に発生したガスを前記ストリングの内部気孔を通じて集
水側電極に設けた濾過部材へ導き、ここから系外に排除
するようにしたことを特徴とする電気浸透式脱水機。
[Claims] 1) A voltage is applied between the anode and cathode electrodes that face each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmosis. In an electroosmotic dehydrator that drains filtrate out of the system through a filtration member, a string is installed on the non-water collection side of the electrode to form a degassing passage between the surface of the electrode and the sludge. An electroosmosis system, characterized in that it is installed both inside and outside the sludge passageway, and gas generated between the non-water collection side electrode and the sludge during the electroosmosis process is removed from the system through the gas venting passageway. Type dehydrator. 2) A voltage is applied between the anode and cathode electrodes that face each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmotic action, and then is deposited on the electrode surface. In an electroosmotic dehydrator in which filtrate is drained out of the system through a filtration member provided, a string with gas permeability is laid across the sludge passage and between opposing electrodes, and the string is Electroosmosis characterized in that the gas generated between the non-water collection side electrode and the sludge is guided through the internal pores of the string to a filtering member provided on the water collection side electrode, and is eliminated from the system from there. Type dehydrator.
JP63271665A 1988-10-27 1988-10-27 Electro-osmotic dehydrator Expired - Lifetime JPH0722660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63271665A JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63271665A JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Publications (2)

Publication Number Publication Date
JPH02119906A true JPH02119906A (en) 1990-05-08
JPH0722660B2 JPH0722660B2 (en) 1995-03-15

Family

ID=17503182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63271665A Expired - Lifetime JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Country Status (1)

Country Link
JP (1) JPH0722660B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578182A2 (en) * 1992-07-07 1994-01-12 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
US5401375A (en) * 1991-05-09 1995-03-28 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
BE1010783A3 (en) * 1996-12-03 1999-01-05 Franki N V Sa Industrial and dredging sludge desiccation method and installation for the implementation of said method
CN105158034A (en) * 2015-07-31 2015-12-16 河海大学 Cohesive soil large-scale triaxial sample consolidating apparatus and consolidating method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345605A (en) * 1986-08-13 1988-02-26 Mitsubishi Electric Corp Composite controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345605A (en) * 1986-08-13 1988-02-26 Mitsubishi Electric Corp Composite controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401375A (en) * 1991-05-09 1995-03-28 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
EP0578182A2 (en) * 1992-07-07 1994-01-12 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
EP0578182A3 (en) * 1992-07-07 1994-02-23 Fuji Electric Co Ltd
BE1010783A3 (en) * 1996-12-03 1999-01-05 Franki N V Sa Industrial and dredging sludge desiccation method and installation for the implementation of said method
CN105158034A (en) * 2015-07-31 2015-12-16 河海大学 Cohesive soil large-scale triaxial sample consolidating apparatus and consolidating method thereof

Also Published As

Publication number Publication date
JPH0722660B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US4367132A (en) Method for removing liquid from chemically-precipitated sludge
US5891342A (en) Dewatering process
JPS621426A (en) Electroosmotic dehydration apparatus
US7828953B2 (en) Process and apparatus for treating sludge by the combined action of electro-osmosis and pressure
KR0137000B1 (en) Electro-endosmosis type dehydrator
JPH02119906A (en) Electroosmotic dehydrator
JPH0356107A (en) Electroosmotic dehydrator
JPH0685845B2 (en) Electro-osmotic dehydrator
US4287046A (en) Process for treating electrolytic solution and apparatus therefor
JPS6345605B2 (en)
JPH0326120B2 (en)
JPS6097012A (en) Dehydration treatment system of sludge
JPS63287514A (en) Electroosmosis dehydrator
JPH11253924A (en) Purification of soil polluted with heavy metal and electrolytic bath for purification
JPH01127012A (en) Electrode of electroosmosis type dehydrator
GB2065169A (en) Electrocoagulation method and apparatus for dewatering of aqueous sludges
JPH09201586A (en) Electrolytic flotation type water-purifying apparatus
JPH02115012A (en) Sludge dehydration apparatus
CN106477845B (en) A kind of fixed plate electrode propelling movement type electric dehydration purification device
JPS5842798A (en) Electrode cover in electrolytic treating device
SU1161477A1 (en) Electrolyzer for processing waste water sediment
JPS6097011A (en) Dehydration treatment system of sludge
SU742394A1 (en) Unit for dehydrating precipitates
JPS589679Y2 (en) Chrome plated wastewater treatment equipment
GB2294948A (en) De-watering sludge/slurry by simultaneous mechanical compression and electro-osmosis using conductive belt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14