JPH0326120B2 - - Google Patents

Info

Publication number
JPH0326120B2
JPH0326120B2 JP60101960A JP10196085A JPH0326120B2 JP H0326120 B2 JPH0326120 B2 JP H0326120B2 JP 60101960 A JP60101960 A JP 60101960A JP 10196085 A JP10196085 A JP 10196085A JP H0326120 B2 JPH0326120 B2 JP H0326120B2
Authority
JP
Japan
Prior art keywords
sludge
dewatering
electroosmotic
dehydration
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60101960A
Other languages
Japanese (ja)
Other versions
JPS61259800A (en
Inventor
Hideyuki Oohanamori
Masataka Yoshida
Mikimasa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60101960A priority Critical patent/JPS61259800A/en
Publication of JPS61259800A publication Critical patent/JPS61259800A/en
Publication of JPH0326120B2 publication Critical patent/JPH0326120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は下水処理場で発生した余剰汚泥等を
被脱水処理物として、この汚泥を電気浸透脱水法
により脱水してケーキ化する汚泥の脱水処理方式
に関する。
The present invention relates to a sludge dewatering treatment method in which surplus sludge or the like generated in a sewage treatment plant is used as a material to be dehydrated, and this sludge is dehydrated by electroosmotic dehydration to form a cake.

【従来技術とその問題点】[Prior art and its problems]

従来より電気浸透脱水装置を使用して下水処理
場等で発生した高含水率の汚泥脱水を処理する方
法が広く採用されている。 ところで下水処理場から発生する余剰汚泥の性
質は、スラツジに親水性でかつコロイド領域の微
小粒径の物質を多く含んでおり、一般に圧搾等に
よる機械的な脱水手段ではスラツジの粒子と粒子
との間に介在する間隙水の分離脱水が困難である
とされている。さらに汚泥には有機質、無機質と
ともに電解質を多く含んでいてかなり高い電動度
を有する。これに対して前記した電気浸透脱水法
は周知のように、汚泥に電導を作用させることに
より汚泥の間隙水を電気力により陰極側に移動し
て分離脱水する方法であり、かつこの場合の水の
移動量(脱水量)は汚泥内を通流する電流量に比
例することから、電気浸透脱水装置を使用して含
水率の高い生汚泥を脱水して低含水率の脱水ケー
キに変えるにはその運転に多くの電力を消費す
る。 このために従来よりできるだめ少ない電力消費
量で高い脱水効率が得られるような様々な方法が
試みられている。その一例として、生汚泥を電気
浸透脱水装置へ導入する以前の前段工程でまず生
汚泥を水洗して電解質濃度を低下させることによ
り汚泥の電導度を下げ、さらに高分子凝集剤等を
添加して汚泥を凝集濃縮する改質処理を行つた後
に電気浸透脱水装置に導入する方式が同じ出願人
から提案されている(特願昭58−204478号)。次
に前記した脱水方式を第3図に示して説明する。
第3図において、1は汚泥の水洗工程を構成する
水洗装置、2は前濃縮工程を構成する凝集混和装
置、3,4は濾布31にプレスベルト41を組み
合わせてベルトコンベア式のプレ脱水工程を構成
する重力濾過脱水装置および低圧加圧脱水装置、
5が電気浸透脱水装置である。すなわち下水処理
場等に発生した生汚泥Aはまず水洗装置1の洗浄
水槽11内に導入され、ここで撹拌装置12で撹
拌しながら洗浄水の給水ライン13より洗浄水槽
内に加えられた洗浄水と混合して汚泥に含まれて
いる電導度の高い汚泥間隙水を水洗により電解質
濃度を薄めて電導度を低くする。このようにして
低電導度に調整された汚泥は送泥ポンプ14によ
り次段の凝集混和装置2へ送り込まれ、ここで高
分子凝集剤21を添加してコロイド状粒子を凝集
濃縮させる。続いて汚泥はベルトコンベア式の重
力濾過脱水装置3、低圧加圧脱水装置4を経由し
てプレ脱水された後に電気浸透脱水装置5に導入
される。なお前記プレ脱水工程で濾布31を透過
して汚泥より分離脱水された濾液はドレン受け皿
32に適下して系外に排出される。一方、電気浸
透脱水装置5は陽極側の電極部材を兼ねた回転式
の加圧ドラム51と、該ドラム51の周域に対向
してスプロケツトに張架された陰極側電極部材を
兼ねたプレスベルト52およびプレスベルトに重
ね合わせた濾布等のフイルタベルト53と、前記
ドラム51とプレスベルト52との間に電圧を印
加する直流電源54、およびドレン受け皿55等
から構成されている。かかる電気浸透脱水装置5
に対して、前記した前処理工程を経て改質された
汚泥を前記の加圧ドラム51とフイルタベルト5
3との間の汚泥通路入口へ供給することにより、
汚泥は通路内をベルト搬送される過程で機械的な
圧搾力を加えて対向電極間に形成された電場の作
用を受けて電気浸透脱水が行わる。これにより汚
泥に含まれている間隙水は正に帯電されて陰極側
に流動し、フイルタベルト53を透過して汚泥か
ら分離脱水されることになる。なおフイルタベル
ト53を透過した濾液はドレン受け皿55に適下
してここから系外へ排出され、一方、前記電気浸
透脱水により汚泥は符号Bで示す低含水率の脱水
ケーキとなつて装置の出口より搬出される。なお
脱水ケーキBは焼却処分ないしはコンポスト化し
て肥料に再利用される。 このように汚泥を生汚泥のまま電気浸透脱水装
置に導入することなく、前処理の水洗工程で汚泥
を低電導度に調節改質した状態で電気浸透脱水装
置へ送り込むことにより、電気浸透脱水装置では
少ない消費電力量で効率よく脱水処理できるよう
になる。 しかして上記した従来の脱水方式のように前処
理工程として最初の工程で生汚泥を水洗し、汚泥
の電導度を低下させるように調整改質する方式で
は次記のような問題が派生する。すなわち下水処
理場等で多量発生する余剰汚泥は殆ど液相に近い
高含水率を有することから水洗工程における洗浄
負荷が大きくなり、このために水洗装置1の容量
大形化および水道等の洗浄水の消費量増大を招
き、結果として脱水設備の設備費、運転コストが
高くなる。
BACKGROUND ART Conventionally, a method has been widely adopted in which electroosmotic dehydration equipment is used to dewater sludge with a high water content generated in sewage treatment plants and the like. By the way, the nature of surplus sludge generated from sewage treatment plants is that it is hydrophilic and contains many substances with microscopic particle sizes in the colloidal range, and mechanical dewatering methods such as squeezing generally cannot separate the sludge particles. It is said that it is difficult to separate and dehydrate the interstitial water that exists between the two. Furthermore, sludge contains a large amount of electrolytes as well as organic and inorganic substances, and has a considerably high electric power. On the other hand, the electroosmotic dehydration method described above is a method that separates and dehydrates the sludge by applying electrical conductivity to the sludge and moving the pore water of the sludge to the cathode side using electric force. The amount of movement (amount of water removed) is proportional to the amount of current flowing through the sludge, so in order to dehydrate raw sludge with a high water content and turn it into a dehydrated cake with a low water content using an electroosmotic dehydrator, It consumes a lot of electricity to operate. For this reason, various methods have been attempted to achieve high dewatering efficiency with as little power consumption as possible than conventional methods. As an example, in the first step before raw sludge is introduced into an electroosmotic dewatering device, raw sludge is first washed with water to lower the electrolyte concentration, thereby lowering the electrical conductivity of the sludge, and then adding a polymer flocculant, etc. The same applicant has proposed a system in which sludge is subjected to a reforming process to coagulate and concentrate and then introduced into an electroosmotic dewatering apparatus (Japanese Patent Application No. 58-204478). Next, the dewatering method described above will be explained with reference to FIG.
In Fig. 3, 1 is a water washing device that constitutes a sludge washing process, 2 is a coagulation mixing device that is a preconcentration process, and 3 and 4 are a belt conveyor type pre-dewatering process in which a press belt 41 is combined with a filter cloth 31. gravity filtration dehydration equipment and low pressure dehydration equipment,
5 is an electroosmotic dehydration device. That is, raw sludge A generated in a sewage treatment plant or the like is first introduced into the washing water tank 11 of the water washing device 1, and while being stirred by the stirring device 12, the washing water is added to the washing water tank from the washing water supply line 13. The electrolyte concentration is diluted by washing the highly conductive sludge pore water contained in the sludge with water, thereby lowering the conductivity. The sludge adjusted to have a low conductivity in this way is sent by the sludge pump 14 to the next coagulation-mixing device 2, where a polymer flocculant 21 is added to coagulate and concentrate the colloidal particles. Subsequently, the sludge is pre-dehydrated via a belt conveyor-type gravity filtration dehydrator 3 and a low-pressure pressurized dewaterer 4, and then introduced into an electroosmotic dewaterer 5. The filtrate that has passed through the filter cloth 31 and been separated and dehydrated from the sludge in the pre-dehydration step is dripped into the drain tray 32 and discharged out of the system. On the other hand, the electroosmotic dehydration device 5 includes a rotary pressure drum 51 which also serves as an anode side electrode member, and a press belt which also serves as a cathode side electrode member and is stretched across a sprocket facing the circumferential area of the drum 51. 52, a filter belt 53 made of filter cloth or the like superimposed on the press belt, a DC power supply 54 that applies voltage between the drum 51 and the press belt 52, a drain tray 55, and the like. Such an electroosmotic dehydration device 5
The sludge that has been modified through the pre-treatment process is transferred to the pressurized drum 51 and the filter belt 5.
By supplying the sludge to the entrance of the sludge passage between
While the sludge is conveyed through the belt through the passageway, mechanical squeezing force is applied to the sludge, and electroosmotic dehydration is performed under the action of an electric field formed between opposing electrodes. As a result, the pore water contained in the sludge is positively charged and flows toward the cathode, passes through the filter belt 53, and is separated and dehydrated from the sludge. The filtrate that has passed through the filter belt 53 is dripped into a drain pan 55 and discharged from there to the outside of the system, while the electroosmotic dehydration turns the sludge into a dehydrated cake with a low water content, indicated by symbol B, at the exit of the device. It will be carried out. The dehydrated cake B is incinerated or composted and reused as fertilizer. In this way, instead of introducing sludge as raw sludge into the electroosmotic dewatering equipment, the sludge is modified to have a low conductivity in the pre-treatment washing process and then sent to the electroosmotic dehydrating equipment. This enables efficient dehydration with less power consumption. However, in the conventional dewatering method described above, in which raw sludge is washed with water in the first step as a pretreatment step and adjusted and reformed to reduce the electrical conductivity of the sludge, the following problems arise. In other words, surplus sludge generated in large quantities at sewage treatment plants has a high moisture content that is almost liquid phase, which increases the cleaning load in the washing process. This results in an increase in the consumption of water, resulting in higher equipment and operating costs for dewatering equipment.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたもので
あり、前記した従来の脱水方式を改良し、汚泥の
水洗工程における洗浄負荷を軽減して水洗装置の
小形化、洗浄水消費量の低減化を図りつつ、電気
浸透脱水工程では少ない消費電力量で高脱水効率
が得られるようにした電気浸透脱水応用の汚泥の
脱水方式を提供することを目的とする。
This invention was developed in consideration of the above points, and it improves the conventional dewatering method described above, reduces the washing load in the sludge washing process, downsizes the washing equipment, and reduces the amount of washing water consumed. Another object of the present invention is to provide a sludge dewatering method applied to electroosmotic dehydration that achieves high dewatering efficiency with low power consumption in the electroosmotic dewatering process.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は生汚泥
に凝集剤を添加する凝集混和工程、重力濾過脱水
工程、および汚泥の水洗工程の各前処理工程を前
記の順序で行つて汚泥を低電導度に調整改質した
後に、この汚泥を電気浸透脱水工程へ導入して電
気浸透脱水処理することにより、最初に行う凝集
混和工程で生汚泥のスラツジと濾液との分離性を
高めて次段の重力濾過脱水工程で容易に汚泥を減
容し、これにより次段の水洗工程における洗浄負
荷を軽減して汚泥を低電導度に調整改質するため
の水洗装置の小形化と併せて少量の洗浄水で効率
よく汚泥の電導度調整が行えるようにし、かつこ
の前処理工程により電気浸透脱水工程では少ない
消費電力量で高い脱水効率が得られるようにした
ものである。
In order to achieve the above object, the present invention performs each pretreatment process of adding a flocculant to raw sludge, a gravity filtration dewatering process, and a sludge washing process in the above order to reduce the electrical conductivity of sludge. After adjusting and reforming this sludge, this sludge is introduced into the electroosmotic dewatering process and subjected to electroosmotic dehydration treatment, which improves the separation between raw sludge sludge and filtrate in the first flocculation and mixing process, and then In order to easily reduce the volume of sludge in the filtration and dewatering process, thereby reducing the washing load in the next washing process, and adjusting and reforming the sludge to a low conductivity, the washing equipment can be downsized and a small amount of washing water can be used. The electrical conductivity of the sludge can be adjusted efficiently, and this pretreatment process allows high dewatering efficiency to be obtained with low power consumption in the electroosmotic dewatering process.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例による汚泥脱水装置
の構成図、第2図は第1図のフローチヤートを示
すものであり、第1図において第3図と同一部材
には同じ符号が付してある。すなわち図示の実施
例によれば、まず生汚泥Aは最初の前処理工程と
して凝集混和装置2に導入され、ここに高分子凝
集剤21を添加してスラツジの凝集濃縮を行い、
次に汚泥をベルトコンベア式の重力濾過脱水装置
3へ送り出して濾布ベルト上を搬送する過程で重
力濾過脱水を行う。一方、この濾布ベルト上にお
ける重力濾過脱水領域の後段域に対向して洗浄水
の給水ライン13が配備されており、該給水ライ
ン13の先端ノズルよりベルト搬送されてきた汚
泥に洗浄水を撒布して汚泥を水洗し、これにより
汚泥に含まれている電導度の高い間隙水の電解質
濃度を薄めて低電導度の汚泥に改質する。さらに
す水洗された汚泥は低圧加圧脱水装置4でプレ脱
水した後に電気浸透脱水装置5へ送りこまれ、こ
こで電気浸透脱水処理されて低含水率の脱水ケー
キBとして回収される。上記の脱水工程をフロー
チヤートで示すと第2図のごとくである。 すなわち上記のように電気浸透脱水工程の前処
理工程として、まず生汚泥に凝集剤を添加してス
ラツジの凝集を行うことによりスラツジと濾液と
の分離性が高まる。したがつて次段の重力濾過脱
水工程で濾液を分離脱水として汚泥の濃度を容易
に高めることができ、かつ汚泥の量が大幅に減容
するようになる。これにより次の水洗工程におけ
る洗浄負荷が第3図に示した従来方式の水洗工程
に比べて大幅に軽減され、少ない洗浄推移の給水
量で汚泥を効率よく水洗して低電導度に調整改質
することが可能となる。なお前記した水洗工程は
図示例のように洗浄水を汚泥に撒布する方式に限
定されるものではないが、この洗浄水撒布方式に
よれば、第3図に示した従来方式のような洗浄水
槽、撹拌装置等が省略できて設備を簡略化できる
利点が得られる。また水洗工程の後段で行われて
いる低圧加圧脱水工程は場合によつては省略して
もよい。このように前処理工程により汚泥を低電
導度に調整改質した状態で次に電気浸透脱水工程
に導入することにより、電気浸透脱水装置5では
少ない消費電力量で効率よく電気浸透脱水を行う
ことができるようになる。
FIG. 1 is a block diagram of a sludge dewatering apparatus according to an embodiment of the present invention, and FIG. 2 is a flowchart of FIG. 1. In FIG. 1, the same members as in FIG. There is. That is, according to the illustrated embodiment, raw sludge A is first introduced into the flocculating mixer 2 as a first pretreatment step, and a polymer flocculant 21 is added thereto to flocculate and concentrate the sludge.
Next, the sludge is sent to a belt conveyor-type gravity filtration and dehydration device 3, and gravity filtration and dewatering is performed in the process of conveying it on a filter cloth belt. On the other hand, a cleaning water supply line 13 is arranged opposite to the downstream area of the gravity filtration and dehydration area on the filter cloth belt, and a nozzle at the tip of the water supply line 13 sprays cleaning water onto the sludge conveyed by the belt. The sludge is then washed with water, thereby diluting the electrolyte concentration of the highly conductive pore water contained in the sludge and reforming it into sludge with low conductivity. The washed sludge is pre-dehydrated in a low-pressure dehydrator 4 and then sent to an electroosmotic dehydrator 5, where it is subjected to electroosmotic dehydration and recovered as a dehydrated cake B with a low water content. The above dehydration process is shown in a flowchart as shown in Figure 2. That is, as described above, as a pretreatment step for the electroosmotic dewatering step, a flocculant is first added to the raw sludge to flocculate the sludge, thereby increasing the separability between the sludge and the filtrate. Therefore, the concentration of sludge can be easily increased by separating and dewatering the filtrate in the next step of gravity filtration and dehydration, and the volume of sludge can be significantly reduced. As a result, the cleaning load in the next water washing process is significantly reduced compared to the conventional water washing process shown in Figure 3, and the sludge is efficiently washed with water and adjusted to a low conductivity with a small amount of water supplied during the washing process. It becomes possible to do so. Note that the above-mentioned washing process is not limited to the method of spraying washing water onto the sludge as shown in the illustrated example, but according to this washing water spraying method, a washing water tank like the conventional method shown in Fig. 3 can be used. This has the advantage that a stirring device and the like can be omitted and the equipment can be simplified. Further, the low-pressure dehydration step performed after the water washing step may be omitted depending on the case. By introducing the sludge into the electroosmotic dewatering process after adjusting and reforming the sludge to have a low conductivity through the pretreatment process, the electroosmotic dewatering device 5 can efficiently perform electroosmotic dewatering with less power consumption. You will be able to do this.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、生汚泥に
凝集剤を添加する凝集混和工程、重力濾過脱水工
程、および汚泥の水洗工程の各前処理工程を前記
の順序で行つて汚泥を低電導度に調整改質した後
に、この汚泥を電気浸透脱水工程へ導入して電気
浸透脱水処理することにより、まず最初の凝集混
和工程における凝集剤の作用で生汚泥のスラツジ
と濾液の分離性が向上し、したがつて次段の重力
濾過脱水工程では容易に汚泥が減容されることに
なる。これにより次の工程で行われる水洗工程で
の洗浄負荷が軽減され、小量の洗浄水で効率よく
汚泥を水洗してその電導度を低値に調整改質でき
るようになり、従来方式と比べて設備費、運転コ
ストを軽減できる。しかも最終段での電気浸透脱
水工程では前記の前処理により少ない消費電力量
で高効率な電気浸透脱水が達成できる。
As described above, according to the present invention, the pretreatment steps of the coagulation mixing step of adding a flocculant to raw sludge, the gravity filtration dewatering step, and the sludge washing step are performed in the above order to reduce the electrical conductivity of the sludge. After adjusting and reforming the sludge, this sludge is introduced into the electroosmotic dehydration process and subjected to electroosmotic dehydration treatment.The action of the flocculant in the first flocculation and mixing process improves the separation of raw sludge sludge and filtrate. Therefore, the volume of sludge is easily reduced in the next step of gravity filtration and dewatering. This reduces the cleaning load in the next washing process, and makes it possible to efficiently wash sludge with a small amount of washing water and adjust and improve its conductivity to a low value, compared to conventional methods. equipment costs and operating costs can be reduced. Furthermore, in the electroosmotic dehydration step at the final stage, highly efficient electroosmotic dehydration can be achieved with less power consumption due to the above-mentioned pretreatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による汚泥の脱水処
理設備の系統図、第2図は第1図における脱水工
程のフローチヤート、第3図は従来における脱水
処理設備の系統図である。図において、 A:生汚泥、B:脱水ケーキ、2:凝集混和装
置、21:凝集剤、3:重力濾過脱水装置、1
3:水洗用の洗浄水供給ライン、4:低圧加圧脱
水装置、5:電気浸透脱水装置。
FIG. 1 is a system diagram of a sludge dewatering facility according to an embodiment of the present invention, FIG. 2 is a flowchart of the dewatering process in FIG. 1, and FIG. 3 is a system diagram of a conventional dewatering facility. In the figure, A: Raw sludge, B: Dehydrated cake, 2: Coagulation-mixing device, 21: Flocculant, 3: Gravity filtration dehydration device, 1
3: Washing water supply line for washing, 4: Low pressure dehydration device, 5: Electroosmotic dehydration device.

Claims (1)

【特許請求の範囲】 1 下水処理場等で発生する汚泥を脱水してケー
キ化する汚泥の脱水処理方式であつて、生汚泥に
凝集剤を添加する凝集混和工程、重力濾過脱水工
程、および汚泥の水洗工程の名前処理工程を前記
の順序で行つて汚泥を低電導度に調整改質した後
に、この汚泥を電気浸透脱水工程へ導入して電気
浸透脱水処理することを特徴とする汚泥の脱水処
理方式。 2 特許請求の範囲第1項記載の脱水処理方式に
おいて、汚泥の水洗工程と電気浸透脱水工程との
間に低圧加圧脱水工程が組込まれていることを特
徴とする汚泥の脱水処理方式。
[Scope of Claims] 1. A sludge dewatering treatment method in which sludge generated in a sewage treatment plant, etc. is dehydrated and turned into a cake, which includes a coagulation-mixing process in which a flocculant is added to raw sludge, a gravity filtration dewatering process, and sludge. Dewatering of sludge characterized by carrying out the treatment steps in the above order to adjust and reform the sludge to a low conductivity, and then introducing the sludge into an electroosmotic dewatering step for electroosmotic dehydration treatment. Processing method. 2. A sludge dewatering method according to claim 1, characterized in that a low pressure dehydration step is incorporated between the sludge washing step and the electroosmotic dehydration step.
JP60101960A 1985-05-14 1985-05-14 System for dehydration treatment of sludge Granted JPS61259800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60101960A JPS61259800A (en) 1985-05-14 1985-05-14 System for dehydration treatment of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101960A JPS61259800A (en) 1985-05-14 1985-05-14 System for dehydration treatment of sludge

Publications (2)

Publication Number Publication Date
JPS61259800A JPS61259800A (en) 1986-11-18
JPH0326120B2 true JPH0326120B2 (en) 1991-04-09

Family

ID=14314431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101960A Granted JPS61259800A (en) 1985-05-14 1985-05-14 System for dehydration treatment of sludge

Country Status (1)

Country Link
JP (1) JPS61259800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016935A1 (en) * 2007-07-27 2009-02-05 Kurita Water Industries Ltd. Sludge dewatering method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203810B2 (en) * 2003-12-08 2009-01-07 富士電機ホールディングス株式会社 Organic waste treatment method and system
JP4651045B2 (en) * 2007-08-22 2011-03-16 アタカ大機株式会社 Sludge dewatering equipment
JP5402157B2 (en) * 2009-03-30 2014-01-29 栗田工業株式会社 Sludge dewatering method
CN102361829B (en) * 2009-03-30 2013-07-24 栗田工业株式会社 Method for dewatering sludge and method and device for electroosmotic dewatering
JP5945949B2 (en) * 2012-08-30 2016-07-05 住友大阪セメント株式会社 Dehydration equipment and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016935A1 (en) * 2007-07-27 2009-02-05 Kurita Water Industries Ltd. Sludge dewatering method
JP2009028663A (en) * 2007-07-27 2009-02-12 Kurita Water Ind Ltd Sludge dewatering method

Also Published As

Publication number Publication date
JPS61259800A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
KR101251904B1 (en) Improvement in/or relating to a method of treating sludges
WO2018034300A1 (en) Combined dehydration device
JPS60114315A (en) Dehydrating method of organic sludge
JP4253353B1 (en) Sludge dewatering method and system
JPH0326120B2 (en)
JPS6025597A (en) Electroosmotic-type dehydrator
JP2009045587A (en) Sludge dehydrator
JPH11511068A (en) Sludge dewatering
JPS6097012A (en) Dehydration treatment system of sludge
JPH0685845B2 (en) Electro-osmotic dehydrator
JPS6068017A (en) Electroosmostic dehydrator
JPS61136500A (en) Dehydration of sludge by electroosmosis
JPS6097011A (en) Dehydration treatment system of sludge
JPS58122085A (en) Dehydrating method
JPS61188000A (en) Dehydration treatment of organic sewage
JPH06343999A (en) Dehydration process for sludge
JP2009090240A (en) Sludge treatment method and system therefor
JPS5936507A (en) Continuous electroosmosis dehydrating equipment for sludge by beltconveying system
JPS6068020A (en) Electroosmotic dehydrator
JPH05317896A (en) Dehydration treatment of sewage
JPH07115873A (en) Method for treating microcystis in lake, marsh, pond or the like and device
JPH0321398A (en) Treatment of organic sludge
JPH02115012A (en) Sludge dehydration apparatus
JP2012135736A (en) Sludge dehydration system and sludge dehydration method
JPS61216799A (en) Filtering dehydration of purified sludge