JPS6025597A - Electroosmotic-type dehydrator - Google Patents

Electroosmotic-type dehydrator

Info

Publication number
JPS6025597A
JPS6025597A JP58133148A JP13314883A JPS6025597A JP S6025597 A JPS6025597 A JP S6025597A JP 58133148 A JP58133148 A JP 58133148A JP 13314883 A JP13314883 A JP 13314883A JP S6025597 A JPS6025597 A JP S6025597A
Authority
JP
Japan
Prior art keywords
slurry
passage
belt
electroosmotic
squeezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58133148A
Other languages
Japanese (ja)
Other versions
JPS642405B2 (en
Inventor
Mikimasa Yamaguchi
山口 幹昌
Taizo Shinohara
篠原 泰三
Takayuki Morioka
崇行 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58133148A priority Critical patent/JPS6025597A/en
Publication of JPS6025597A publication Critical patent/JPS6025597A/en
Publication of JPS642405B2 publication Critical patent/JPS642405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To perform effective electroosmotic dehydration while providing a favorable current-passing property, by a method wherein a slurry sqeezing passage is defined between an anode-side electrode and a cathode-side electrode, and a slurry supplied is fed toward an outlet while impressing a voltage between the electrodes. CONSTITUTION:The slurry 10 such as a sludge supplied from a hopper 7 into the slurry squeezing passage 3 is fed toward the outlet side while being clamped between a press belt 1 and a filter belt 2. In the feeding prosess, electroosmosis by an electric field is effected in addition to the squeezing force, whereby dehydration proceeds. As the dehydration proceeds, the water content of the slurry 10 is lowered, electric resistance thereof is increased, and the volume thereof is reduced. In this case, since the passage gap between the belts 1, 2 is gradually reduced and the intensity of the electric field is gradually increased in the direction toward the outlet, a strong squeezing force and a strong electric field are applied from the belt side to the slurry 10 making close contact with the belts 1, 2, so that a favorable current-passing property is maintained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は下水処理場あるいはし尿処理場等の処理工程
で生じた汚泥等の泥漿を脱水処理する電気浸透式脱水機
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an electroosmotic dewatering machine for dewatering slurry such as sludge produced in a treatment process at a sewage treatment plant or human waste treatment plant.

〔従来技術とその問題点〕[Prior art and its problems]

頭記処理場で発生する汚泥は、環境汚染の問題もあって
そのまま河川などに廃棄することなく、脱水処理してケ
ーキ化した上で埋立、焼却ないしはコンポスト化して肥
料に再利用するようにしている。この場合に汚泥脱水ケ
ーキの含水率が50チ以下であれば、焼2却炉での自然
焼却が可能であるし、またコンポスト化プロセスにおけ
る汚泥含水率の調整が容易となることから、脱水機の性
能としては脱水処理後のケーキの含水率を50条程度ま
で低下させることが一応の目標とされている。
Due to the problem of environmental pollution, the sludge generated at the above treatment plant is not disposed of directly into rivers, etc., but instead is dehydrated and turned into a cake, then landfilled, incinerated, or composted for reuse as fertilizer. There is. In this case, if the water content of the sludge dewatered cake is 50 cm or less, natural incineration in an incinerator is possible, and the sludge water content can be easily adjusted in the composting process, so it is possible to use a dewatering machine. As for performance, the tentative goal is to reduce the moisture content of the cake after dehydration treatment to about 50 fibers.

しかして、有機物が主成分である前記汚泥は水との結び
伺が強く脱水が困難であって、既存の機械式脱水機では
、例えば消石灰などの多血の凝集剤を用いて濃縮処理を
行っても高々脱水ケーキの含水率60%程度が脱水限界
であシ、それ以上に脱水率を高めることは実用的困難で
あるとされている0このために脱水性能の向上策として
電気浸透法を利用した脱水機が一部で開発されるように
なっている。その−例として既存のベルトプレス式脱水
機のプレスベルトとフィルタベルトを対向電極として両
者間に電圧を印加し、ベルト間に供給される汚泥に機械
的な圧搾力を加えつつ電場を作用させることによシミ気
浸透脱水を行うようにしたものが知られている。
However, the sludge, which is mainly composed of organic matter, has a strong bond with water and is difficult to dewater, and existing mechanical dehydrators use a blood-rich flocculant such as slaked lime to concentrate the sludge. However, the moisture content of the dehydrated cake is at most 60%, which is the dehydration limit, and it is said that it is practically difficult to increase the dehydration rate beyond that.0For this reason, electroosmosis is used as a measure to improve dehydration performance. Some dehydrators are now being developed. An example of this is to apply a voltage between the press belt and filter belt of an existing belt press dehydrator as opposed electrodes, and apply an electric field to the sludge supplied between the belts while applying mechanical squeezing force. A device that performs air infiltration dehydration is known.

次にかかる電気浸透式脱水機の従来例を第1図に示す。Next, a conventional example of such an electroosmotic dehydrator is shown in FIG.

図において、1.2はそれぞれ左右一対のスブロケツ)
 la、 lbおよび2a、、2bの間に架は渡したプ
レスベルトおよびフィルタベルトであシ、両ベルトは相
互間に間隔を隔てて相対向するように平行配置されてお
シ、両者間に泥漿圧搾通路3を画成している。またフィ
ルタベルト21ハ駆動モ・−夕4によシ矢印A方向に駆
動され、かつその下方には系外の排水路に通じる炉水受
皿5が設置しである。一方、前記の各ベルト1,2は正
極を兼ねるように導電性材から作られておシ、スプロケ
ットを介してn源装置6の陽極側がプレスベルト1へ、
陰極側がフィルタベルト2へそれぞれ接続配線されてい
る。また泥漿圧搾通路3はその左端を入口、右端を出口
として、入口側には泥漿供給ホッパ7が、出口側にはシ
ュート8を介して脱水ケーキ受は容器9が配備しである
In the figure, 1.2 is a pair of left and right subrockets)
The frame is a press belt and a filter belt passed between la, lb and 2a, 2b, and both belts are arranged parallel to each other so as to face each other with a gap between them. A compression passage 3 is defined. Further, the filter belt 21 is driven in the direction of arrow A by a drive motor 4, and a reactor water receiving tray 5 is installed below the filter belt 21, which communicates with a drainage channel outside the system. On the other hand, each of the belts 1 and 2 is made of a conductive material so as to serve as a positive electrode, and the anode side of the n-source device 6 is connected to the press belt 1 via a sprocket.
The cathode side is connected and wired to the filter belt 2, respectively. The slurry squeezing passage 3 has an inlet at its left end and an outlet at its right end, with a slurry supply hopper 7 on the inlet side and a container 9 for receiving dewatered cake via a chute 8 on the outlet side.

上記構成において、プレスペル)1とフィルタベルト2
との間に電圧を印加しつつホッパ7よシ供給した高含水
率の泥漿10を泥漿圧搾通路3に沿い、ベルト間にサン
ドウィッチ状に挾んで矢印P方向へベルト搬送すれば、
泥漿10には機械的な圧搾力に加えて電場が作用し、泥
漿中の水には正に荷電されて陰極側のフィルタベルト2
の方へ向けて流動して放電し、ここからフィルタベルト
2を透過して炉水受皿5に滴下して系外に排出される、
いわゆる電気浸透脱水が行われる。これに対し脱水され
た泥漿はケーキ化され脱水ケーキ10/となって通路3
の出口よシ送夛出され、シュート8を経て容器9へ回収
される〇 一方、上記脱水方式における電気浸透による濾過効果は
電極間の印加電圧を一定とすれば、電場の強さおよび泥
漿の通電性が高い程その効果は太きい0ところで第1図
のように入口から出口へ向けて泥漿圧搾通路内を搬送さ
れる泥漿10は搬送過程で次第と脱水が進行し、これに
伴って泥漿の含水率も変化する。つまシ入ロ側に近い領
域では泥漿の含水率が高く通電性も高いが、出口側へ進
むにしたがって含水率が低下してその電気抵抗が増大し
、通電性が悪化する。この結果、泥漿圧搾通路3の全域
で十分な脱水効果を得ることができない。勿論印加電圧
をあらかじめ十分高く設定しておけば、ある程度の解決
も可能であるが、この方法では消費電力が増して経済運
転が望めない。
In the above configuration, pressel) 1 and filter belt 2
If the high moisture content slurry 10 supplied from the hopper 7 is conveyed along the slurry squeezing passage 3 in the direction of arrow P by sandwiching it between the belts while applying a voltage between the belts,
In addition to the mechanical squeezing force, an electric field acts on the slurry 10, and the water in the slurry is positively charged and the filter belt 2 on the cathode side
It flows towards the direction of discharge, passes through the filter belt 2, drips into the reactor water tray 5, and is discharged outside the system.
So-called electroosmotic dehydration is performed. On the other hand, the dehydrated slurry is turned into a cake and becomes a dehydrated cake 10/ in the passage 3.
On the other hand, the filtration effect due to electroosmosis in the dehydration method described above depends on the strength of the electric field and the slurry, assuming the voltage applied between the electrodes is constant. The higher the conductivity of the slurry, the greater the effect.As shown in Fig. 1, the slurry 10 being conveyed through the slurry squeezing passage from the inlet to the outlet gradually becomes dehydrated during the conveyance process, and as a result, The moisture content of the slurry also changes. The water content of the slurry is high in the region close to the pick-up side and the current conductivity is high, but as it advances toward the exit side, the water content decreases and its electrical resistance increases, deteriorating the current conductivity. As a result, a sufficient dewatering effect cannot be obtained in the entire area of the slurry squeezing passage 3. Of course, it is possible to solve the problem to some extent by setting the applied voltage sufficiently high in advance, but this method increases power consumption and does not allow for economical operation.

このための解決策として、第2図に示すように陽極側電
極を兼ねたプレスベルトを泥漿圧搾通路3に沿ってベル
トフィルタ2と平行な複数段のプレスペル) IA、 
IB、 ICに分割し、各分割プレスペル) IA、I
B、ICごとにそれぞれ異なった電圧Vl、 V2. 
VB (Vl<V2<VB )を印加するようにした方
式が従来知られている。この方式によれば脱水の進行状
況に合わせて印加電圧が段階的に焉く設定されているの
で、脱水進行に伴う電気抵抗の増大分を補償して電場が
強化され、これによって余分な電力消費を押えつつ泥漿
圧搾通路の全域で効果的な電気浸透脱水を行うことが可
能となるOしかしながら、上記方式を採用するにはプレ
スベルトを独立的に複数分割しなけれはならず、給電回
路を含めて構造が複雑となシ製作費が高くなる難点があ
る。さらに加えて、上記構成のままでは、実験の結果期
待した脱水性能が得られないことが判明した。その主た
る理由は次記の点にある。
As a solution to this problem, as shown in FIG. 2, a press belt that also serves as an anode side electrode is placed along the slurry squeezing passage 3 in multiple stages parallel to the belt filter 2 (Prespel IA).
Divided into IB, IC, each divided prespell) IA, I
B, different voltages Vl and V2 for each IC.
A system in which VB (Vl<V2<VB) is applied is conventionally known. According to this method, the applied voltage is set to decrease in stages according to the progress of dehydration, so the electric field is strengthened by compensating for the increase in electrical resistance that occurs as dehydration progresses, thereby reducing excess power consumption. However, in order to use the above method, the press belt must be independently divided into multiple parts, including the power supply circuit. However, the structure is complicated and the manufacturing cost is high. In addition, it was found through experiments that the expected dehydration performance could not be obtained with the above configuration. The main reasons for this are as follows.

すなわち泥漿は脱水の進行に伴って含水率が減少すると
、その体積が減容する。このために平行配置のプレスベ
ルトとフィルタベルトとの間にサンドウィッチ状に挾ま
れたまま搬送される泥漿は、出口側へ近づくにしたがっ
て減容するので電極と泥漿との密着性が悪化する。この
結果泥漿への通電性低下は勿論のこと、機械的な圧搾力
も十分に加わらなくなシ、期待通シの脱水性能が発揮で
きなくなる〇 〔発明の目的〕 この発明は上記の点にかんがみなされたものであシ、上
記従来機で述べた印加電圧の分割化を行うような複雑手
段を講じることなしに、その入口から出口に至る泥漿圧
搾通路の全域にわたシ脱水の進行に合わせて効果的に電
気浸透作用および機械的圧搾力を泥漿に加えることがで
きるように巧みに構成した高脱水性能の電気浸透式脱水
機を提供することを目的とする。
That is, as the water content of the slurry decreases as dehydration progresses, its volume decreases. For this reason, the volume of the slurry conveyed sandwiched between the press belt and the filter belt, which are arranged in parallel, decreases as it approaches the outlet side, resulting in poor adhesion between the electrodes and the slurry. As a result, not only does the electrical conductivity of the slurry decrease, but also sufficient mechanical squeezing force is not applied, making it impossible to achieve the expected dewatering performance. [Object of the Invention] This invention has been made in view of the above points. However, without having to take complicated measures such as dividing the applied voltage as mentioned in the case of the conventional machine, the slurry can be effectively applied to the entire area of the slurry squeezing passage from the inlet to the outlet as dewatering progresses. An object of the present invention is to provide an electroosmotic dehydrator with high dewatering performance that is skillfully constructed so that electroosmotic action and mechanical squeezing force can be applied to slurry.

〔発明の要点〕[Key points of the invention]

上記目的を達成するために、この発明は陽梗側電極と陰
極側電極との間に画成された泥漿圧搾通路に泥漿を送シ
込み、この通路内での搬送過程で泥漿を電気浸透脱水す
る脱水機において、対向75゜極間の泥漿圧搾通路間隙
を該通路の入口から出口へ向けて次第に縮小して構成し
たことにより、脱水の進行に伴う泥漿の減客分を補償し
て通路全域にわたシ泥漿を電極に密着させて良好な通電
性と強い圧搾力を与えられるようにし、−脱水性能の向
上を図るようにしたものでおる。
In order to achieve the above object, the present invention delivers slurry to a slurry squeezing passage defined between an anode side electrode and a cathode side electrode, and dehydrates the slurry by electroosmosis during the conveyance process within this passage. In this dewatering machine, the gap between the slurry pressing passages between opposing 75° poles is gradually reduced from the entrance to the exit of the passage, thereby compensating for the loss of slurry as dehydration progresses and reducing the volume of slurry throughout the passage. The chicken slurry is brought into close contact with the electrode to provide good electrical conductivity and strong squeezing force, thereby improving dewatering performance.

〔発明の実施例〕[Embodiments of the invention]

第3図、第4図および第5図はそれぞれ異なるこの発明
の実施例を示すものである。このうち第3図の実施例は
、第1図と同様なプレスベルト1とフィルタベルト2と
を組合わせたベルトプレス方式の実施例であシ、電源装
置6の陽極側輻、給電ロー211を介して導電性のプレ
スベルト1に接続され、一方の陰極側は泥漿圧搾通路3
に沿ってフィルタベルト2の背面に密着するように配置
された電極板12に接続されている。さらにプレスペル
)1に対向して泥漿搬送領域の背後には、油圧シリンダ
13.調整ボルト14等を介してプレスペル)1を通路
3へ向けて加圧するプレス装置15が配備されている0
かかる構成において、この発明によシブレスベルト1は
陰極側電極12を含むフィルタベルト2と相対的に傾斜
配置されておシ、かつその傾きはプレスベルト1とフィ
ルタベルト2との対向面間に画成されている泥漿圧搾通
路3の入口側で電極間の通路間隙D1が大、出口側での
通路間隙D2が小となる向きに定めである。
3, 4 and 5 each show a different embodiment of the invention. Of these, the embodiment shown in FIG. 3 is an embodiment of a belt press system in which a press belt 1 and a filter belt 2 similar to those shown in FIG. 1 are combined. It is connected to a conductive press belt 1 through a slurry pressing passage 3 on one cathode side.
The filter belt 2 is connected to an electrode plate 12 disposed in close contact with the back surface of the filter belt 2 along the filter belt 2 . Further, behind the slurry conveying area, opposite to the pressel 1, there is a hydraulic cylinder 13. A press device 15 is provided which presses the press 1 toward the passage 3 via an adjustment bolt 14 etc.
In such a configuration, according to the present invention, the press belt 1 is inclined relative to the filter belt 2 including the cathode side electrode 12, and the inclination is between the opposing surfaces of the press belt 1 and the filter belt 2. The passage gap D1 between the electrodes is set to be large on the entrance side of the defined slurry squeezing passage 3, and the passage gap D2 is set to be small on the exit side.

これによシ、通路3はその上下方向の幅寸法が入口から
出口へ向けて漸次縮小する形状になる。これによシ泥漿
圧搾通路3の各位置における電位傾度、つまシミ場の強
さは入口から出口へ向けて漸増する。
As a result, the passage 3 has a shape in which the width in the vertical direction gradually decreases from the inlet to the outlet. As a result, the potential gradient at each position in the slurry squeezing passage 3 and the strength of the stain field gradually increase from the inlet to the outlet.

上記構成によシ、ホッパ7よシ泥漿圧搾通路3へ供給さ
れた汚泥等の泥漿10はプレスベルト1とフィルタベル
ト2との間に挾まれて出口側へ向けてベルト搬送される
。この搬送過程で機械的な圧搾力に加えて電場による電
気浸透が作用し、脱水が進行する。この場合に、脱水の
進行に伴って泥漿10は含水率が減少して電気抵抗の増
大および体積の減容化が進むが、一方ではプレスベルト
1とフィルタ烙ルト2との間の通路間隙が出口へ向けて
次第に縮小し、一方電場の強さは漸増しているので、泥
漿は体積の減容分および電気抵抗増加分を補償してベル
ト1と2の間に密着しつつベルト側から強力な圧搾力と
強い電場が加わシ良好な通電性が維持される。かくして
泥漿圧搾通路3の全行程域にわたり、効果的な電気浸透
脱水を行わせることができ、これによ勺従米機では到達
し得なかった低含水率まで泥漿を脱水することが++J
能となる。
According to the above structure, the slurry 10 such as sludge supplied from the hopper 7 to the slurry pressing passage 3 is sandwiched between the press belt 1 and the filter belt 2 and conveyed by the belt toward the outlet side. During this conveyance process, in addition to mechanical squeezing force, electroosmosis caused by an electric field acts, and dehydration progresses. In this case, as dehydration progresses, the water content of the slurry 10 decreases, increasing the electrical resistance and decreasing the volume, but on the other hand, the passage gap between the press belt 1 and the filter heating belt 2 As the electric field gradually decreases toward the exit, and the electric field strength gradually increases, the slurry compensates for the volume reduction and the increase in electrical resistance, and adheres tightly between belts 1 and 2, while being strong from the belt side. Good electrical conductivity is maintained by applying a strong squeezing force and a strong electric field. In this way, effective electroosmotic dewatering can be carried out over the entire stroke area of the slurry squeezing passage 3, and this makes it possible to dehydrate the slurry to a low water content that could not be achieved with the conventional machine.
Becomes Noh.

第4図の実施例は、第3図の実施例におけるプレスベル
トの代シに陽極側電極として4知性の回転ドラム16を
用い、この回転ドラム160周域一部を取シ巻くように
フィルタベルト2と重ね合わせた陰極側の金属製プレス
コンベア17を対向配置し、回転ドラム16との対向面
間に泥漿圧搾通路3を画成したものである。なおプレス
コンベア17はスプロケット17a〜17dの間に張架
され、かつその泥漿圧搾通路域に対向して背面側には第
3図で述べたと同様なプレス装置15が配備されている
。また電源装置6の陽極側は刷子を介して回転ドラム1
6の回転軸16aへ、陰極側はプレスコンベア17のス
ズロケット軸へそれぞれ接続され、回転ドラム16.プ
レスコンベア17を陽極。
The embodiment shown in FIG. 4 uses a four-way rotary drum 16 as an anode side electrode in place of the press belt in the embodiment shown in FIG. A metal press conveyor 17 on the cathode side which is overlapped with 2 is disposed facing each other, and a slurry compression passage 3 is defined between the surfaces facing the rotating drum 16. The press conveyor 17 is stretched between sprockets 17a to 17d, and a press device 15 similar to that described in FIG. 3 is disposed on the back side facing the slurry squeezing passage area. In addition, the anode side of the power supply device 6 is connected to the rotating drum 1 via a brush.
The cathode side is connected to the rotating shaft 16a of the rotating drum 16.6, and the cathode side is connected to the tin rocket shaft of the press conveyor 17, respectively. Press conveyor 17 is anode.

陰極側電極として両%極間に電圧を印加する。力・かる
構成において、この発明によ多回転ドラム16とこれに
対面するプレスベルト17の円弧領域部とを相対的に偏
心して対向させ、両者間に画成された泥漿圧搾通路3は
、その入口側の電極間通路間隙piが大、出口側の通路
間隙D2が小となるように構成されている。したがって
第3図で述べたと同様に、入口から出口へ向けて通路間
隙がpiからD2へ漸次縮小する泥漿圧搾通路3が画成
されることになる。これによシ第3図の実施例と同様に
入口から出口に至る泥漿圧搾通路3の全行程域で効果的
な電気浸透脱水が達成できる。
A voltage is applied between both electrodes as the cathode side electrode. In this structure, the multi-rotating drum 16 and the arc region of the press belt 17 facing the multi-rotating drum 16 are relatively eccentrically opposed to each other, and the slurry squeezing passage 3 defined between them is The structure is such that the inter-electrode passage gap pi on the inlet side is large and the passage gap D2 on the outlet side is small. Therefore, as described in FIG. 3, a slurry squeezing passage 3 is defined in which the passage gap gradually decreases from pi to D2 from the inlet to the outlet. As a result, effective electroosmotic dewatering can be achieved in the entire range of the slurry squeezing passage 3 from the inlet to the outlet, similar to the embodiment shown in FIG.

第5図の実施例は、先の各実施例とは異なり、ベルトを
採用しない方式である。すなわちこの実施例では、陽極
側御よび陰極側の各電極に両端を開放した導電性の円筒
体18と円筒体の中に挿入配備された中棋回転軸19が
それぞれ対応し、泥漿圧搾通路3が前記円筒体18と中
空回転軸19の外周との間に画成されている0このうち
円筒体18はその右端を入口としてここに絶縁物で作ら
れた泥漿供給ホッパ7が連結され、かつ左端の出口に対
向して脱水ケーキ分離ガイド20が設置しである。また
中空回転軸19はその周面に多数の炉水透過孔19aを
穿孔してフィルタ面となし、かつその内方空間を炉水搬
路として系外の排水パイプ21と連通配管されておシ、
軸受22を介して円筒体18の軸中心に沿うように挿入
配置され、かつ軸端が減速歯車機構23を介して駆動モ
ータ4に伝導連結されている。更に中空回転軸19の外
周にはスクリュー羽根として々る泥漿搬送羽根24が取
付けである0かかる円筒体18と中間回転軸19は互に
電気的に絶縁され、それぞれに電源装置6の陽極側と陰
極側が配線接続されている。
The embodiment shown in FIG. 5 differs from the previous embodiments in that it does not use a belt. That is, in this embodiment, a conductive cylindrical body 18 with both ends open and a Chugi rotating shaft 19 inserted into the cylindrical body correspond to the electrodes on the anode side and the cathode side, respectively, and the slurry squeezing passage 3 is defined between the cylindrical body 18 and the outer periphery of the hollow rotating shaft 19. The cylindrical body 18 has its right end as an inlet, and a slurry supply hopper 7 made of an insulating material is connected thereto. A dehydrated cake separation guide 20 is installed opposite the left end outlet. The hollow rotating shaft 19 has a large number of reactor water permeation holes 19a formed on its circumferential surface to serve as a filter surface, and its inner space is used as a reactor water conveyance path to communicate with a drainage pipe 21 outside the system. ,
It is inserted through a bearing 22 along the axial center of the cylindrical body 18 , and its shaft end is conductively connected to the drive motor 4 through a reduction gear mechanism 23 . Furthermore, slurry conveying blades 24, which serve as screw blades, are attached to the outer periphery of the hollow rotating shaft 19.The cylindrical body 18 and the intermediate rotating shaft 19 are electrically insulated from each other, and are connected to the anode side of the power supply device 6, respectively. The cathode side is connected by wiring.

泥漿10はホッパ7から円筒体内部の泥漿圧搾通路3へ
供給され、搬送羽根24の回転駆動によシ出口へ向けて
通路内に押込み搬送される″。この搬送過程で機械的碌
圧搾力とともに電場の作用で電気浸透脱水が行われ、正
に荷電して陰極側電極である中空回転軸19の周面に流
動して来た泥漿の含有水は回転軸19に放電した上で透
過孔19aを透過して軸内の炉水搬出路に集シ、ここか
ら排水パイプ21を通じて系外へ排出される。なお系外
の排水ラインには必要に応じて炉水の吸引ポンプが接続
しである。一方、通路3の出口からは泥漿の脱水ケーキ
10′がガイド20により軸方向から半径方向に向きを
転じて排出される。ここでこの発明によ勺、前記の中空
円筒軸19は右端が小径、左端が大径であるテーパー形
軸構造であシ、これによって円筒体19との間に電極間
の通路間隙が入口側の間隙D1から出口側の間隙D2 
(DI)])2)まで漸次縮小するような泥漿圧搾通路
3を画成している。したがってこの実施例によっても、
先の各実施例と同様に効果的々電気浸透脱水が達成され
ることになる。
The slurry 10 is supplied from the hopper 7 to the slurry squeezing passage 3 inside the cylindrical body, and is pushed into the passage and conveyed toward the outlet by the rotational drive of the conveying blades 24. In this conveying process, the slurry is compressed along with the mechanical squeezing force. Electroosmotic dehydration is performed under the action of an electric field, and the water contained in the slurry that is positively charged and flows around the circumferential surface of the hollow rotating shaft 19, which is the cathode side electrode, is discharged to the rotating shaft 19 and then flows through the permeation hole 19a. The reactor water passes through and collects in the reactor water discharge path inside the shaft, from where it is discharged outside the system through the drain pipe 21.A reactor water suction pump is connected to the drain line outside the system as necessary. On the other hand, from the outlet of the passage 3, the dehydrated slurry cake 10' is discharged by the guide 20, with the direction changed from the axial direction to the radial direction. It has a tapered shaft structure with a small diameter and a large diameter at the left end, so that the passage gap between the electrodes and the cylindrical body 19 changes from the gap D1 on the inlet side to the gap D2 on the outlet side.
(DI)]) A slurry squeezing passage 3 is defined which gradually reduces to 2). Therefore, according to this embodiment,
Electroosmotic dehydration is effectively achieved in the same manner as in the previous embodiments.

なお、上記各実施例に示した脱水機を用い、下水処理場
の消化汚泥、混合汚泥、浄水場の沈澱池から採取した汚
泥等を試料として、脱水処理を行った実験結果によれば
、いずれも脱水ケーキの含水率をは埋50チまで脱水で
きることが確認されたO 〔発明の効果〕 以上述べたようにこの発明によれば、陽極側電極と陰極
側電極との対向面間に画成された泥漿圧搾通路の通路間
隙を通路入口から出口へ向けて漸次縮小するように構成
したことによシ、泥漿圧搾通路内における搬送過程での
脱水の進行に伴う泥漿の電気抵抗増加および泥漿体積の
減容分を袖(Itし、通路内金域で十分に強い圧搾力と
良好な通電性を与えて効果釣力電気浸透脱水を行うこと
ができる0しかも第2図に示した従来機のように電極。
Furthermore, according to the results of experiments in which samples such as digested sludge from a sewage treatment plant, mixed sludge, and sludge collected from a settling tank of a water treatment plant were dehydrated using the dehydrator shown in each of the above examples, It has been confirmed that the moisture content of the dehydrated cake can be reduced to 50% by weight. [Effects of the Invention] As described above, according to the present invention, the water content of the dehydrated cake can be reduced to 50 cm. By configuring the passage gap of the slurry pressing passage to gradually decrease from the passage entrance to the exit, the electrical resistance of the slurry increases and the volume of the slurry decreases as dehydration progresses during the conveyance process in the slurry pressing passage. The reduced volume can be reduced by the sleeve (It), and a sufficiently strong squeezing force and good electrical conductivity can be applied to the inner metal area of the passage to perform effective fishing force electroosmotic dewatering. like an electrode.

印加電圧を分割するような複雑な手段を講じる必要もな
く、頭記した下水処理場等で発生する汚泥の脱水処理用
として好適な脱水性能の優れた電気浸透式脱水装置を提
供することができる。
There is no need to take complicated measures such as dividing the applied voltage, and it is possible to provide an electroosmotic dewatering device with excellent dewatering performance suitable for dehydrating sludge generated in the above-mentioned sewage treatment plants, etc. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来における電気浸透式
脱水機の略示構成図、第3図ないし第5図はそれぞれ異
なるこの発明の実施例の構成図である。 1・・・・・・プレスベルト、2・・・・・・フィルタ
ベルト、3・・・・・・泥漿圧搾通路、4・・・・・・
駆動モータ、5・・・・・・p水受皿、6・・・・・・
電源装置、7・・・・・・泥漿供給ホッパ、10・・・
・・・泥漿、10′・・・・・・脱水ケーキ、16・・
・・・・回転トラム、17・・・・・・プレスコンベア
、18・・・・・・円筒体、19・・・・・・中空回転
軸、24・・・・・・泥漿搬送羽根、P・・・・・・泥
漿の通路内搬送方向、Dl・・・・・・通路入口側の通
路間隙、D2・・・・・・通路出口側の通路間隙〇 体1閏 す 才2r1:I
FIGS. 1 and 2 are schematic diagrams of a conventional electroosmotic dehydrator, and FIGS. 3 to 5 are diagrams of different embodiments of the present invention. 1...Press belt, 2...Filter belt, 3...Sludge compression passage, 4...
Drive motor, 5...p water tray, 6...
Power supply device, 7... Slurry supply hopper, 10...
... Sludge, 10' ... Dehydrated cake, 16...
... Rotating tram, 17 ... Press conveyor, 18 ... Cylindrical body, 19 ... Hollow rotating shaft, 24 ... Slime conveying blade, P ...Transportation direction of the slurry in the passage, Dl... Passage gap on the passage entrance side, D2... Passage gap on the passage exit side

Claims (1)

【特許請求の範囲】 1)相対向して配置された陽極側電極と陰極側電極との
間に泥漿圧搾通路を画成し、前記電極間に電圧を印加し
つつ泥漿圧搾通路の入口へ供給された泥漿を出口へ向け
て搬送するととによシ、電気浸透作用で泥漿の含有水を
一方の電極側へ集め、ここから沖過部材を透過して系外
へ分離排出するようにした電気浸透式脱水機において、
前記対向電極間の泥漿圧搾通路間隙を該通路の入口から
出口へ向けて漸次縮小して構成したことを特徴とする電
気浸透式脱水機。 2、特許請求の範囲第1項、記載の脱水機において、泥
漿圧搾通路が陽極側のプレスベルトと、該プレスベルト
に対し相対的に傾斜して対向する陰極側のフィルタベル
トとの間に画成されていることを特徴とする電気浸透式
脱水機@ 3)特許請求の範囲第1項記載の脱水機において、泥漿
圧搾通路が陽極側の回転ドラムと、談回転ドラムの周域
一部を偏心的に取シ巻いて構成された陰極側のフィルベ
ルト付きプレスコンベアトノ間に画成されていることを
特徴とする電気浸透式脱水機。 4)特許請求の範囲第1項記載の脱水機において、泥漿
圧搾通路が陽極側の円筒体と、周面をフィルタ面として
その内方11Cv5水搬出路が画成され、かつその外周
に設けた泥漿搬送羽根とともに前記円筒体の内部に挿入
配置された陰極側のテーパー形中空回転軸の周面との間
に画成されていることを特徴とする電気浸透式脱水機。
[Claims] 1) A slurry squeezing passage is defined between an anode side electrode and a cathode side electrode that are arranged to face each other, and a voltage is applied between the electrodes while supplying the slurry to the entrance of the slurry squeezing passage. When the slurry is conveyed toward the outlet, the water contained in the slurry is collected by electroosmotic action to one electrode side, and from there it is separated and discharged out of the system through the offshore passage member. In the osmotic dehydrator,
An electroosmotic dewatering machine characterized in that the gap between the slurry squeezing passages between the opposing electrodes is gradually reduced from the entrance to the exit of the passage. 2. In the dewatering machine as set forth in claim 1, the slurry squeezing passage is defined between a press belt on the anode side and a filter belt on the cathode side that faces relatively inclined with respect to the press belt. 3) In the dehydrator according to claim 1, the slurry squeezing passage covers the rotating drum on the anode side and a part of the circumferential area of the rotating drum. An electroosmotic dewatering machine characterized in that it is defined between a press conveyor tonneau with a fill belt on the cathode side which is eccentrically wound around the cathode side. 4) In the dewatering machine according to claim 1, the slurry compression passage is defined by a cylindrical body on the anode side and an inner 11Cv5 water discharge passage with the peripheral surface as a filter surface, and is provided on the outer periphery thereof. An electroosmotic dehydrator characterized in that the slurry conveying blade is defined between the circumferential surface of a tapered hollow rotary shaft on the cathode side which is inserted into the cylindrical body.
JP58133148A 1983-07-21 1983-07-21 Electroosmotic-type dehydrator Granted JPS6025597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133148A JPS6025597A (en) 1983-07-21 1983-07-21 Electroosmotic-type dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133148A JPS6025597A (en) 1983-07-21 1983-07-21 Electroosmotic-type dehydrator

Publications (2)

Publication Number Publication Date
JPS6025597A true JPS6025597A (en) 1985-02-08
JPS642405B2 JPS642405B2 (en) 1989-01-17

Family

ID=15097839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133148A Granted JPS6025597A (en) 1983-07-21 1983-07-21 Electroosmotic-type dehydrator

Country Status (1)

Country Link
JP (1) JPS6025597A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115528A (en) * 1978-02-28 1979-09-08 Dainippon Printing Co Ltd Making of door panel from metal
JPS61259711A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Electroosmotic dehydration apparatus
JPS63256113A (en) * 1987-04-13 1988-10-24 Fuji Electric Co Ltd Electroosmotic dehydrator
JPH01297111A (en) * 1988-05-24 1989-11-30 Nippon Filcon Co Ltd Belt press-type electroendosmotic dehydration device
JPH02115012A (en) * 1988-10-25 1990-04-27 Sanki Eng Co Ltd Sludge dehydration apparatus
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer
US5401375A (en) * 1991-05-09 1995-03-28 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
US5695650A (en) * 1995-11-02 1997-12-09 Held; Jeffery S. Method for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
US5893979A (en) * 1995-11-02 1999-04-13 Held; Jeffery S. Method for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
US6030538A (en) * 1995-11-02 2000-02-29 Held; Jeffery S. Method and apparatus for dewatering previously-dewatered municipal waste-water sludges using high electrical voltages
US7001520B2 (en) 1995-11-02 2006-02-21 Opencel Llc. Method for treating waste-activated sludge using elecroporation
US7507341B2 (en) 1999-01-13 2009-03-24 Opencel Llc Method of and apparatus for converting biological materials into energy resources
US7572369B2 (en) 2007-02-16 2009-08-11 Opencel Llc System for supporting denitrification
JP2015508333A (en) * 2012-01-27 2015-03-19 ファイン インコーポレイテッドFine Inc. Electrophoretic electroosmotic dehydrator that can smoothly add sludge according to fluidity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316376A (en) * 1976-07-30 1978-02-15 Hitachi Plant Eng & Constr Co Ltd Electric dehydration apparatus
JPS5660603A (en) * 1979-10-22 1981-05-25 Kurita Water Ind Ltd Sludge dehydrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316376A (en) * 1976-07-30 1978-02-15 Hitachi Plant Eng & Constr Co Ltd Electric dehydration apparatus
JPS5660603A (en) * 1979-10-22 1981-05-25 Kurita Water Ind Ltd Sludge dehydrator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622104B2 (en) * 1978-02-28 1987-01-17 Dainippon Insatsu Kk
JPS54115528A (en) * 1978-02-28 1979-09-08 Dainippon Printing Co Ltd Making of door panel from metal
JPH0346166B2 (en) * 1985-05-14 1991-07-15 Fuji Electric Co Ltd
JPS61259711A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Electroosmotic dehydration apparatus
JPS63256113A (en) * 1987-04-13 1988-10-24 Fuji Electric Co Ltd Electroosmotic dehydrator
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer
JPH01297111A (en) * 1988-05-24 1989-11-30 Nippon Filcon Co Ltd Belt press-type electroendosmotic dehydration device
JPH0468964B2 (en) * 1988-10-25 1992-11-04 Sanki Eng Co Ltd
JPH02115012A (en) * 1988-10-25 1990-04-27 Sanki Eng Co Ltd Sludge dehydration apparatus
US5401375A (en) * 1991-05-09 1995-03-28 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
US5695650A (en) * 1995-11-02 1997-12-09 Held; Jeffery S. Method for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
US5893979A (en) * 1995-11-02 1999-04-13 Held; Jeffery S. Method for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
US6030538A (en) * 1995-11-02 2000-02-29 Held; Jeffery S. Method and apparatus for dewatering previously-dewatered municipal waste-water sludges using high electrical voltages
US7001520B2 (en) 1995-11-02 2006-02-21 Opencel Llc. Method for treating waste-activated sludge using elecroporation
US7645382B2 (en) 1995-11-02 2010-01-12 Opencell Llc Apparatus for converting biological materials into energy resources
US7507341B2 (en) 1999-01-13 2009-03-24 Opencel Llc Method of and apparatus for converting biological materials into energy resources
US7572369B2 (en) 2007-02-16 2009-08-11 Opencel Llc System for supporting denitrification
US7695621B2 (en) 2007-02-16 2010-04-13 Opencel Llc Method of supporting denitrification
JP2015508333A (en) * 2012-01-27 2015-03-19 ファイン インコーポレイテッドFine Inc. Electrophoretic electroosmotic dehydrator that can smoothly add sludge according to fluidity

Also Published As

Publication number Publication date
JPS642405B2 (en) 1989-01-17

Similar Documents

Publication Publication Date Title
JPS6025597A (en) Electroosmotic-type dehydrator
JPS60114315A (en) Dehydrating method of organic sludge
JP4651045B2 (en) Sludge dewatering equipment
KR100452145B1 (en) Electrodewareting Belt Press equipped with Anode Electric Drum
JPH11511068A (en) Sludge dewatering
JPH0685845B2 (en) Electro-osmotic dehydrator
CN101423319B (en) Novel dehydration system
JPS6097012A (en) Dehydration treatment system of sludge
CN216273694U (en) Efficient sludge dewatering mummification integrated device
JPH0413003B2 (en)
JPS61259800A (en) System for dehydration treatment of sludge
KR100574677B1 (en) Dehydration a method using electric infiltration
KR970006504B1 (en) Sludge dehydration apparatus
CN112851058A (en) Alternating-current voltage auxiliary belt type filter pressing equipment and sludge high-dryness dewatering method
KR100755028B1 (en) Electro-penetrative typed device for dehydrating sludge
JPH0346166B2 (en)
JPS58122085A (en) Dehydrating method
CN210085229U (en) Cathode and pressing belt integrated sludge electroosmosis belt type filter pressing device
KR100378673B1 (en) Electro-dewatering system of filter press
JPH042286B2 (en)
JPS6068020A (en) Electroosmotic dehydrator
JPS63256113A (en) Electroosmotic dehydrator
CN207828082U (en) A kind of electro-osmosis sludge dehydration device
JPS6345604B2 (en)
JPH04126507A (en) Sludge dehydrator