JPS6097011A - Dehydration treatment system of sludge - Google Patents

Dehydration treatment system of sludge

Info

Publication number
JPS6097011A
JPS6097011A JP58204478A JP20447883A JPS6097011A JP S6097011 A JPS6097011 A JP S6097011A JP 58204478 A JP58204478 A JP 58204478A JP 20447883 A JP20447883 A JP 20447883A JP S6097011 A JPS6097011 A JP S6097011A
Authority
JP
Japan
Prior art keywords
sludge
conductivity
electroosmotic
dehydration
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204478A
Other languages
Japanese (ja)
Inventor
Takayuki Morioka
崇行 森岡
Mikimasa Yamaguchi
山口 幹昌
Taizo Shinohara
篠原 泰三
Toshitaka Arai
新井 利孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58204478A priority Critical patent/JPS6097011A/en
Publication of JPS6097011A publication Critical patent/JPS6097011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently dehydrate sludge with reduced power consumption, by adjusting the conductivity of raw sludge to a low value to modify the same before subjecting said sludge to electroosmosis dehydration. CONSTITUTION:Raw sludge is charged into a washing tank and mixed with washing water such as tap water sufficiently low in the concn. of an electrolyte under stirring. Sludge interstitial water high in conductivity contained in raw sludge is thinned in the concn. of the electrolyte thereof by this operation and conditioned so as to lower the conductivity thereof and excessive washing waste water is further separated from sludge and drained. Sludge adjusted to low conductivity by this method is sent into an electroosmotic dehydration process and subjected to dehydration treatment by an electroosmotic dehydrator to be recovered as a low moisture cake. Furthermore, pre-concn. due to the addition of a flocculant and pre-dehydration may be performed before sludge adjusted to low conductivity is sent to the electroosmotic dehydration process.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は下水処理場等で活性汚泥処理により生じた余
剰汚泥を被脱水処理物として電気浸透脱水法により脱水
してケーキ化する汚泥の脱水処理方式に関する。 頭記電気浸透脱水を行うに当たっては、できるだけ少な
い電力消費で効率よく汚泥を脱水処理できることが望ま
れる。
The present invention relates to a sludge dewatering method in which excess sludge produced by activated sludge treatment in a sewage treatment plant or the like is dehydrated and turned into a cake by electroosmotic dehydration. When performing electroosmotic dewatering, it is desirable to be able to efficiently dehydrate sludge with as little power consumption as possible.

【従来技術とその問題点】[Prior art and its problems]

従来より電気浸透脱水法を応用して下水処理場等で生じ
た高含水率の汚泥を連続式に脱水処理する電気浸透式脱
水機として、例えば第1図に示すような構成のものが知
られている。第1図において、1は陽極側の電極部材を
兼ねた金属製の回転ドラム、2は前記ドラム1の周面に
対向してスプロケット3に張架された陰極側電極部材を
兼ねた金属製のプレスベルト、4はプレスベルト2に重
ね合わせて張架された濾水透過用のフィルタベルト、5
ばベルト駆動モータであり、前記ドラム1とフィルタベ
ルト4との対向面域に汚泥搬送通路6が画成され、さら
に汚泥搬送通路6の入口側には汚泥供給水ソバ7を設置
し、これ等で脱水機本体を構成している。また前記の陰
極電極を兼ねたプレスベルト2を接地側として相手電極
側の電極ドラム1には直流電源装置9が接続されている
。 なお10は系外へ通じる濾水受皿、11は脱水ケーキ回
収容器である。 上・記第1図の構成で、ホッパ7から汚泥搬送通路6へ
被脱水処理物としての汚泥12を送り込むとともに、一
方では駆動モータ5を運転し、汚泥12を搬送通路内で
ザンドウインチ状に挟んで出口へ向けて矢印I)方向へ
搬送しつつ、電源装置9より給電を行えば、汚泥12に
は機械的な圧搾力に加えて対向電極間に形成された電場
が作用し7、汚泥12に含まれている水は正に帯電され
て陰極側に流動し、この電極部材へ放電するとともに、
フィルタベルト4を透過して脱水されるいわゆる電気浸
透脱水が行われることになる。なおフィルタベルト4を
透過した濾水は濾水受皿10へ滴下し、ここから系外へ
排水される。これに対し脱水された汚泥はケーキ化され
、脱水ケーキ12゛ となって通路6の出口より送り出
され、スクレーパ13を経て回収容器11へ回収される
。これにより含水率の高い汚泥は連続式に脱水処理され
て低含水率の脱水ケーキとなる。この脱水ケーキは焼却
処分ないしはコンポスト化して肥料に再利用される。 
ところで上記電気浸透式脱水機は、その運転に多くの電
力を消費すること、および機構上の制約もあって殆ど液
相に近い含水率の極めて高い生汚泥を直接脱水機に導入
して脱水を行うことはせず通常は第2図あるいは第3図
のように前段工程で生汚泥に凝簗剤を加えて濃縮し、更
に必要により圧搾脱水機等によるプレ脱水工程を経て汚
泥の含水率をできるだけ低めてから電気浸透脱水機へ導
入するような方式が採られている。しかしながら汚泥の
ように親水性の物質を多く含み、かつスラッジを構成す
る固形物の粒径が小さいコロイド領域では固形物の粒子
と粒子の間に介在する間隙水の離脱が困難なこともあっ
て、前記した前濃縮、プレ脱水工程による含水率の低下
分は小さく、電気浸透式脱水機での消費電力の節減化に
さほど大きな効果をもたらしていないのが実態である。  一方、電気浸透については、周知のように既に十分な
研究が進んでその理論も確立しており、泥漿の電気浸透
による単位時間当たりの移動液iVの理論式は次式で表
されることがよく知られている。 ただしζ:界面動電位、D、η、λ:液の誘電率。 粘度、電導度、I:電流である。このように電極間の電
位傾度、iI電電流のほかに、前記した液の物性を表ず
り、η、λなどの因子も電気浸透に影響を及ぼす。この
うち液の電導度λについては、下水処理場に生じる汚泥
には有機質、無機質とともに電解質も含んでいることか
ら、その間隙水の電解質濃度によって電導度が変化する
ものと考えられ、この点に関して汚泥の電導度と電気浸
透脱水との関係を調べるために本発明者は欠配のような
実験を行った。すなわちバッチ式電気浸透式脱水実験装
置を用い、実験条件として、被処理物である汚泥の初期
含水率90%、汚泥量400g、圧搾圧力4 kg /
 cTA、電極間の印加電圧60V、脱水時間20分と
定め、供試汚泥に含まれている汚泥間隙水に手を加えて
その電気伝導度(mS/cm)を様々に調整して得た各
試料について電気浸透脱水を行い、実験に消費した電力
量(W h )および単位消費電力光たりの脱水濾液量
(m 7!/ W h )をめた。 なお脱水後のケーキ含水率はいずれの試料についても5
3〜54%であった。この実験結果を第4図および第5
図に示す。 この実験結果から明らかなように、汚泥の電導度の尺度
となる汚泥間隙水についてその電導度の低い試料の方が
電気浸透脱水に消費する電力量が少なく、かつ単位消費
電力光たりの濾液量が多い。 つまり先記した電気浸透の理論式における移動液量Vと
液の電導度λとの関係と実験結果とが一致することが確
認された。
For example, an electroosmotic dehydrator with a configuration as shown in Figure 1 is known as an electroosmotic dewatering machine that continuously dewaters sludge with a high water content generated in sewage treatment plants by applying the electroosmotic dewatering method. ing. In FIG. 1, 1 is a metal rotating drum that also serves as an anode side electrode member, and 2 is a metal rotating drum that also serves as a cathode side electrode member that is stretched across a sprocket 3 facing the circumferential surface of the drum 1. A press belt 4 is a filter belt for filter water permeation stretched over the press belt 2, 5
A sludge transport passage 6 is defined in the area where the drum 1 and the filter belt 4 face each other, and a sludge supply water tank 7 is installed on the entrance side of the sludge transport passage 6. This makes up the main body of the dehydrator. Further, a DC power supply device 9 is connected to the electrode drum 1 on the opposite electrode side, with the press belt 2 serving as the cathode electrode being on the ground side. Note that 10 is a filtered water receiving tray that communicates with the outside of the system, and 11 is a dehydrated cake collection container. With the configuration shown in FIG. 1 above, the sludge 12 as a material to be dewatered is sent from the hopper 7 to the sludge conveyance passage 6, and at the same time, the drive motor 5 is operated to move the sludge 12 in a sand winch shape within the conveyance passage. If power is supplied from the power supply device 9 while pinching the sludge and transporting it toward the exit in the direction of arrow I), in addition to the mechanical squeezing force, an electric field formed between the opposing electrodes acts on the sludge 12, causing the sludge to The water contained in 12 is positively charged and flows toward the cathode, and is discharged to this electrode member.
So-called electroosmotic dehydration, in which the water passes through the filter belt 4 and is dehydrated, will be performed. The filtrate that has passed through the filter belt 4 drips into the filtrate tray 10, from which it is drained out of the system. On the other hand, the dewatered sludge is turned into a cake and sent out from the outlet of the passage 6 as a dehydrated cake 12', and is collected into the collection container 11 via the scraper 13. As a result, sludge with a high water content is continuously dehydrated to become a dehydrated cake with a low water content. This dehydrated cake is incinerated or composted and reused as fertilizer.
By the way, the above-mentioned electroosmotic dehydrator consumes a lot of electricity to operate, and due to mechanical limitations, raw sludge with an extremely high water content, almost in the liquid phase, is directly introduced into the dehydrator to perform dewatering. Instead, as shown in Figure 2 or Figure 3, a flocculant is added to the raw sludge in the first step to concentrate it, and if necessary, the water content of the sludge is reduced through a pre-dehydration process using a compressor dehydrator, etc. A method is adopted in which the temperature is lowered as much as possible before introduction into the electroosmotic dehydrator. However, in colloidal regions such as sludge, which contain a large amount of hydrophilic substances and have small particle sizes of the solids that make up the sludge, it may be difficult to remove the interstitial water that exists between the solid particles. The actual situation is that the decrease in water content due to the pre-concentration and pre-dehydration steps described above is small, and does not have a significant effect on reducing power consumption in the electroosmotic dehydrator. On the other hand, regarding electroosmosis, as is well known, sufficient research has already progressed and the theory has been established, and the theoretical formula for the liquid iV transferred per unit time due to electroosmosis of slurry can be expressed by the following equation. well known. However, ζ: interfacial potential, D, η, λ: dielectric constant of liquid. Viscosity, electrical conductivity, I: current. In this way, in addition to the potential gradient between the electrodes and the iI current, factors such as η and λ, which represent the physical properties of the liquid described above, also affect electroosmosis. Among these, regarding the electrical conductivity λ of the liquid, since the sludge produced in sewage treatment plants contains electrolytes as well as organic and inorganic substances, it is thought that the electrical conductivity changes depending on the electrolyte concentration of the pore water. In order to investigate the relationship between the electrical conductivity of sludge and electroosmotic dewatering, the present inventor conducted a similar experiment. That is, a batch-type electroosmotic dehydration experimental device was used, and the experimental conditions were: the initial moisture content of the sludge to be treated was 90%, the amount of sludge was 400 g, and the compression pressure was 4 kg/
cTA, the voltage applied between the electrodes was set at 60 V, and the dewatering time was set at 20 minutes. The samples were subjected to electroosmotic dehydration, and the amount of power consumed in the experiment (W h ) and the amount of dehydrated filtrate per unit power consumption (m 7!/W h ) were calculated. The moisture content of the cake after dehydration was 5 for all samples.
It was 3-54%. The experimental results are shown in Figures 4 and 5.
As shown in the figure. As is clear from the results of this experiment, samples with lower conductivity of sludge pore water, which is a measure of the conductivity of sludge, consume less electricity for electroosmotic dehydration, and the amount of filtrate per unit power consumption is lower. There are many. In other words, it was confirmed that the relationship between the amount of moving liquid V and the electrical conductivity λ of the liquid in the theoretical formula for electroosmosis described above coincides with the experimental results.

【発明の目的】[Purpose of the invention]

この発明は上記した実験結果による解析を基にして、少
ない消費電力量で高脱水効率が得られるようにした電気
浸透脱水による汚泥の脱水方式を提供することを目的と
する。
The object of the present invention is to provide a method for dewatering sludge by electroosmotic dewatering, which achieves high dewatering efficiency with low power consumption, based on the analysis of the above-mentioned experimental results.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は被脱水処理物と
しての汚泥を、前処理工程として例えば水洗処理で汚泥
の電解質濃度を低下させることにより汚泥型導度を低減
調整した後に、この汚泥を後段の電気浸透脱水工程へ送
り込んで脱水を行うようにして電気浸透式脱水機の運転
効率の向上を図るようにしたものである。
In order to achieve the above-mentioned object, the present invention reduces the sludge type conductivity of sludge as a material to be dewatered by lowering the electrolyte concentration of the sludge in a pre-treatment process, for example, by washing the sludge with water. The operating efficiency of the electroosmotic dehydrator is improved by sending it to the subsequent electroosmotic dehydration process for dehydration.

【発明の実施例】[Embodiments of the invention]

第6図、第7図、第8図はそれぞれ異なるこの発明の実
施例によるrη泥泥水水処理プロセスを示すものであり
、各実施例において、前処理工程として汚泥の水洗およ
び洗浄水の分離工程を絹合わせた汚泥型導度低減処理工
程が新たに組込まれている。この工程では、電解Ha度
が十分に低い水道水もしくは下水処理場で清浄化された
流出水等を洗浄水として用い、例えば生汚泥を洗浄水槽
に投入し、攪拌しながら上記洗浄水と混合するなどの適
宜な手段により、頭初生汚泥に含まれていた電導度の高
い汚泥間隙水を水洗によって改質し、電解質濃度を薄め
てその電導度を低めるように調整し、さらに余分な洗浄
廃水を汚泥と分離して排水する。このようにして低電導
度に調整された汚泥は第6図のように直接、あるいは第
7図、第8図のように凝集剤添加による前濃縮、プレ脱
水の工程を経て、電気浸透脱水工程へ送り込まれ、ここ
で電気浸透式脱水機により脱水処理されて低含水率のケ
ーキとして回収される。 上記の脱水処理プロセスによれば、汚泥は電導度が低減
された状態で電気浸透式脱水機に導入されることになり
、したがって先記した本発明者の実験結果で述べたよう
に、電気浸透式脱水機を従来方式と比べて少ない消費電
力量で効率よく運転することができる。 【発明の効果J 上述のようにこの発明によれば、汚泥型導度低減処理工
程を経て生汚泥の電導度を低値に調整改質した後に、こ
の汚泥を電気浸透脱水工程へ導入して脱水処理するよう
にしたことにより、少ない消費電力で汚泥の高効率な電
気浸透脱水が達成できる優れた効果が得られる。
FIGS. 6, 7, and 8 show rη mud water treatment processes according to different embodiments of the present invention, and in each embodiment, sludge washing and washing water separation steps are performed as pretreatment steps. A new sludge-type conductivity reduction treatment process is incorporated. In this step, tap water with a sufficiently low electrolytic Ha level or runoff water purified at a sewage treatment plant is used as the cleaning water. For example, raw sludge is put into a cleaning tank and mixed with the cleaning water while stirring. The highly conductive sludge pore water contained in the primary sludge is modified by washing with water, the electrolyte concentration is diluted, and the conductivity is adjusted to lower, and the excess washing wastewater is Separate from sludge and drain. The sludge adjusted to have a low conductivity in this way can be processed directly as shown in Figure 6, or through a pre-concentration and pre-drying process by adding a flocculant as shown in Figures 7 and 8, and then subjected to an electroosmotic dewatering process. There, it is dehydrated using an electroosmotic dehydrator and recovered as a cake with a low moisture content. According to the above dewatering process, the sludge is introduced into the electroosmotic dewatering machine with its electrical conductivity reduced. The dehydrator can be operated efficiently with less power consumption than conventional methods. [Effect of the invention J As described above, according to the present invention, after the conductivity of raw sludge is adjusted and reformed to a low value through the sludge-type conductivity reduction treatment process, this sludge is introduced into the electroosmotic dewatering process. By performing the dewatering process, an excellent effect can be obtained in which highly efficient electroosmotic dewatering of sludge can be achieved with low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気浸透式脱水機の概要構成図、第2図および
第3図はそれぞれ従来における汚泥脱水処理プロセスを
示したフローチャート、第4図。 第5図はそれぞれ電気浸透脱水の実験結果から得た汚泥
間隙水の電導度と消費電力量および単位消費電力当たり
の濾液量との関係を表す特性図、第6図ないし第8図は
それぞれこの発明の実施例に基づく汚泥脱水処理プロセ
スのフローチャートである。 1.2一対向電極部材、4甲フイルタベルト、9−電源
装置、12−汚泥、12’・・−脱水ケーキ。
FIG. 1 is a schematic configuration diagram of an electroosmotic dehydrator, FIGS. 2 and 3 are flow charts showing a conventional sludge dewatering process, and FIG. Figure 5 is a characteristic diagram showing the relationship between the conductivity of sludge pore water, power consumption, and filtrate volume per unit power consumption obtained from electroosmotic dehydration experiment results, and Figures 6 to 8 are each 1 is a flowchart of a sludge dewatering process according to an embodiment of the invention. 1.2 - counter electrode member, 4-upper filter belt, 9 - power supply device, 12 - sludge, 12'... - dehydrated cake.

Claims (1)

【特許請求の範囲】 1)汚泥型導度低減工程を経て被脱水処理物としての生
汚泥の電導度を低値に調整改質した後に、この汚泥を電
気浸透脱水工程へ導入して脱水処理することを特徴とす
る汚泥の脱水処理方式。 2、特許請求の範囲第1項記載の脱水処理方式において
、汚泥型導度低減処理工程が汚泥の水洗工程と洗浄水分
離工程とからなることを特徴とする汚泥の脱水処理方式
[Claims] 1) After the conductivity of raw sludge as a material to be dehydrated is adjusted and modified to a low value through a sludge-type conductivity reduction process, this sludge is introduced into an electroosmotic dewatering process for dewatering. A sludge dewatering treatment method that is characterized by: 2. A sludge dewatering treatment method according to claim 1, wherein the sludge type conductivity reduction treatment step comprises a sludge washing step and a washing water separation step.
JP58204478A 1983-10-31 1983-10-31 Dehydration treatment system of sludge Pending JPS6097011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204478A JPS6097011A (en) 1983-10-31 1983-10-31 Dehydration treatment system of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204478A JPS6097011A (en) 1983-10-31 1983-10-31 Dehydration treatment system of sludge

Publications (1)

Publication Number Publication Date
JPS6097011A true JPS6097011A (en) 1985-05-30

Family

ID=16491186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204478A Pending JPS6097011A (en) 1983-10-31 1983-10-31 Dehydration treatment system of sludge

Country Status (1)

Country Link
JP (1) JPS6097011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer
US5292421A (en) * 1989-08-28 1994-03-08 Nagabhusan Senapati Apparatus and method for removal of liquids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer
US5292421A (en) * 1989-08-28 1994-03-08 Nagabhusan Senapati Apparatus and method for removal of liquids

Similar Documents

Publication Publication Date Title
KR101251904B1 (en) Improvement in/or relating to a method of treating sludges
US4244804A (en) Slime and sludge dewatering
JP4253353B1 (en) Sludge dewatering method and system
JPS60114315A (en) Dehydrating method of organic sludge
JP4651045B2 (en) Sludge dewatering equipment
JPS6025597A (en) Electroosmotic-type dehydrator
JPH11511068A (en) Sludge dewatering
JPS6097012A (en) Dehydration treatment system of sludge
JPS6097011A (en) Dehydration treatment system of sludge
JPH0326120B2 (en)
RU2535048C2 (en) Method of extraction of saponite-containing substances from return water and device for its implementation
JP4129479B1 (en) Sludge treatment method and treatment system
JPH0685845B2 (en) Electro-osmotic dehydrator
JPS6068017A (en) Electroosmostic dehydrator
JPS58122085A (en) Dehydrating method
KR100800528B1 (en) Dehydrating apparatus unit and method of slurry
CN112851058A (en) Alternating-current voltage auxiliary belt type filter pressing equipment and sludge high-dryness dewatering method
CN111875211A (en) Muddy water concentration and separation device and separation method
JPS5936507A (en) Continuous electroosmosis dehydrating equipment for sludge by beltconveying system
JP5481654B2 (en) Sludge treatment method and treatment system
JPH06343999A (en) Dehydration process for sludge
JPH0371200B2 (en)
JPS61216799A (en) Filtering dehydration of purified sludge
JPS61178100A (en) Concentration treatment of sludge
SU1161477A1 (en) Electrolyzer for processing waste water sediment