JPH0356107A - Electroosmotic dehydrator - Google Patents

Electroosmotic dehydrator

Info

Publication number
JPH0356107A
JPH0356107A JP1189861A JP18986189A JPH0356107A JP H0356107 A JPH0356107 A JP H0356107A JP 1189861 A JP1189861 A JP 1189861A JP 18986189 A JP18986189 A JP 18986189A JP H0356107 A JPH0356107 A JP H0356107A
Authority
JP
Japan
Prior art keywords
sludge
electrode
electroosmotic
electrode plate
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1189861A
Other languages
Japanese (ja)
Other versions
JPH0720528B2 (en
Inventor
Mikimasa Yamaguchi
山口 幹昌
Hiroshi Imanishi
浩 今西
Masataka Yoshida
吉田 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1189861A priority Critical patent/JPH0720528B2/en
Publication of JPH0356107A publication Critical patent/JPH0356107A/en
Publication of JPH0720528B2 publication Critical patent/JPH0720528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To carry out electroosmotic dehydration efficiently by using an upper electrode installed in the sludge supply side as a permeable porous electrode plate and installing a sludge storing chamber which is led to a sludge supply inlet in the rear side of the electrode plate. CONSTITUTION:A pair of up side and down side electrodes 4,5 facing each other are installed in a treatment container 1 having a sludge supply inlet 11 in upper side and a filtered water discharge outlet 12 in the bottom, and water in sludge is collected to the down side electrode 5 by applying d.c. voltage between the electrodes 4,5 while the sludge is supplied and discharged outside of the system through a filter 7. The upper side electrode 4 installed in the sludge supply side is used as a permeable porous electrode plate to allow the sludge and a gas to permeate and a sludge storing chamber 10 which is connected to a sludge supply inlet 11 is installed in the rear side of the electrode plate. As a result, the sludge is prevented from being partially dried and electrolytically decomposed gases are prevented from staying and thus electroosmotic dehydration can be carried out efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、下水汚泥,産業廃液の汚泥などを対象に脱水
処理する電気浸透式脱水機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroosmotic dehydrator for dewatering sewage sludge, industrial waste sludge, and the like.

〔従来の技術] 頭記した電気浸透式脱水機として、バッチ処理方式のフ
ィルタプレス型電気浸透式脱水機が公知であり、その従
来構成を第4図に示す。図において、1はシリンダ2の
操作で開閉する上下二分割構造の箱形処理容器であり、
該容器の上81≦には汚泥供給口1lが、底部には濾水
排出口12が開口している。また、処理容器内には脱水
処理室l3を挾んでその上下に直流電′a3に接続され
た一幻の電極4.5が対向配備してあり、上部電極4は
処理容器lの上部壁面に、下部電極5は容器内の底部側
に備えた圧搾用ダイアフラム6に拮合して配備されてい
る.なお、14は搬出ダイアフラム6の背後側に通じる
加圧エア導入口である。さらに、下部電極5の電極面を
覆って濾布ヘルト7が布設されている.この濾布ベルト
7は処理容器1の上下分δり面の間を通して内外にまた
がるよう引回してプーりの間に張架したエンドレスヘル
トであり、駆動モーク8により巡回移動操作される。
[Prior Art] As the above-mentioned electroosmotic dehydrator, a filter press type electroosmotic dehydrator using a batch processing method is known, and the conventional configuration thereof is shown in FIG. 4. In the figure, 1 is a box-shaped processing container with an upper and lower structure that can be opened and closed by operating a cylinder 2.
A sludge supply port 11 is opened at the top 81≦ of the container, and a filtrate discharge port 12 is opened at the bottom. Further, inside the processing container, two electrodes 4.5 connected to a DC voltage a3 are arranged facing each other above and below the dehydration processing chamber l3, and the upper electrode 4 is arranged on the upper wall surface of the processing container l. The lower electrode 5 is arranged in conjunction with a squeezing diaphragm 6 provided on the bottom side of the container. Note that 14 is a pressurized air inlet that communicates with the rear side of the delivery diaphragm 6. Furthermore, a filter cloth helt 7 is installed to cover the electrode surface of the lower electrode 5. This filter cloth belt 7 is an endless belt that is stretched between the pulleys by passing between the upper and lower [delta] sides of the processing container 1 so as to span the inside and outside, and is operated to move around by a driving moke 8.

上記i戒による電気浸透式脱水機の動作原理は良く知ら
れており、処理容器1を閉した状態で電極4と5との間
の脱水処理室l3に汚泥供給口11を通して汚泥9 (
下水汚泥の汚泥粒子の界面動電位(ζ一電位)はマイナ
ス電位である)を供給し、ここで電極4,5をそれぞれ
陽極,陰極として電圧を印加すると、汚泥9の含有水は
電気浸透作用により濾布ベルト7を透過して陰極側の下
部電極5の表面に集まり、ここから電極表面に形威した
導水溝を経由して配水口l2より糸外に排出される.ま
た、電気浸透脱水の進行に合わせてダイアフラム6の背
後に加圧エアを導入し、下部電極5.濾布ベルト7を介
して汚泥9に圧搾力を加えることによりさらに脱水が促
進される. そして、1回の脱水処理が終了すると、、シリンダ2の
操作により処理容器1を開放し、容器内にケーキ化され
た状態で残留している汚泥ケーキを排除するとともに、
駆動モータBで濾布ベルト7を巡回移動して汚損面域を
処理容器lの容器外に引出し、代わりに清浄面域を処理
容器lの内部に引き込むようにする.また、濾布ベルト
7の残留付着物は処理容器外に引き出したところで洗浄
して排除する. なお、上記は下水汚泥(汚泥粒子の界面動電位がマイナ
ス)を対象に、汚泥供給側の上部電極4を陽極.集水側
の下部電極5を陰極として汚泥の含有水を下部電極側に
集水するようにしたが、特に産業廃液などのように例え
ば金属酸化物.水酸化物などの粒子を多く含む汚泥では
汚泥粒子の界面動電位(ζ一電位)がマイナスとなるの
で、この場合には前記とは逆に上部電極4を陰極,集水
側の下部電極5を陽極として電圧を印加するようにして
含有水を下部電極5に集水するようにする。
The operating principle of the electroosmotic dehydrator according to the above i-precept is well known, and the sludge 9 (
The interfacial potential (ζ-potential) of sludge particles in sewage sludge is a negative potential), and when a voltage is applied using electrodes 4 and 5 as anode and cathode, respectively, the water contained in sludge 9 undergoes electroosmotic action. The water passes through the filter cloth belt 7 and collects on the surface of the lower electrode 5 on the cathode side, from where it is discharged to the outside of the thread from the water distribution port 12 via the water guide groove formed on the electrode surface. In addition, pressurized air is introduced behind the diaphragm 6 as the electroosmotic dehydration progresses, and the lower electrode 5. By applying squeezing force to the sludge 9 through the filter cloth belt 7, dewatering is further promoted. When one dehydration process is completed, the processing container 1 is opened by operating the cylinder 2, and the sludge cake remaining in the container in a caked state is removed.
The filter cloth belt 7 is rotated by the drive motor B so that the contaminated surface area is drawn out of the processing container 1, and the clean surface area is drawn into the processing container 1 instead. Further, any remaining deposits on the filter cloth belt 7 are removed by cleaning after being pulled out of the processing container. Note that the above is for sewage sludge (the interfacial potential of sludge particles is negative), and the upper electrode 4 on the sludge supply side is used as the anode. The lower electrode 5 on the water collection side is used as a cathode to collect water containing sludge to the lower electrode. In sludge containing many particles such as hydroxide, the interfacial potential (ζ-potential) of the sludge particles becomes negative, so in this case, contrary to the above, the upper electrode 4 is used as the cathode, and the lower electrode 5 on the water collection side By using the electrode as an anode and applying a voltage, the contained water is collected to the lower electrode 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した電気浸透式脱水機の従来構威では、
汚泥を十分な低含水率まで脱水することか困難である他
、汚泥の脱水処理量の割に多量の電力を消費するために
脱水効率(消費電力量と汚泥の脱水処理量との比〉が低
くて経済的な運転が望めない問題があり、その改善策が
大きな課題となっている. そこで、発明者等は電気浸透式脱水の進行に伴う汚泥の
性状変化について調べたところ次記の点が明らかになっ
た.すなわち、第5図は第4図の電気浸透式脱水機によ
る脱水動作の説明図であり、特にこれ以上に電圧印加を
続けても濾水の新たな排出が殆どない脱水進行状態での
機内における汚泥状態分布を表している.この脱水進行
状態で電極4と5との間に挟まれている汚泥9につき、
上層部9a+ 中層部9b,下層部9cに分けて各層の
汚泥性状を調べた.まず、汚泥9の上層部9aは殆ど流
動性を失った乾燥状態にあり、かつ上部電極4と接する
部分には汚泥の滅容に伴って局所的に生じた空隙9d内
には汚泥含有水の電気分解により発生した生戒ガスの閉
し込められているの,が認められた.これに対して中層
部9b,下層部9cは上層部9aに比べて脱水の進行程
度が低く含水率も高い.とりわけ中層部9bは、下層部
9cがダイアフラム6による圧搾力を受けて圧密層を形
威し、かつこの圧密層が中層部9bから下部tei5に
向けて流動する水の透過を阻害しているために、最も含
水率が高く脱水があまり進行していないことが認められ
た.つまり、電気浸透作用による汚泥の含有水は上部電
極4に接している汚泥9の上層から下層へ向け汚泥層内
を流動して下部電極5に集水される。
By the way, in the conventional structure of the electroosmotic dehydrator mentioned above,
In addition to being difficult to dewater sludge to a sufficiently low water content, it also consumes a large amount of electricity relative to the amount of sludge dewatered, so the dewatering efficiency (ratio of power consumption to sludge dewatering amount) is low. There is a problem in that the low temperature and economical operation cannot be expected, and measures to improve this problem have become a major issue.Therefore, the inventors investigated changes in the properties of sludge as electroosmotic dewatering progresses, and found the following points. In other words, Fig. 5 is an explanatory diagram of the dewatering operation by the electroosmotic dehydrator shown in Fig. 4, and is especially suitable for dehydration in which almost no new filtrate is discharged even if the voltage is continued to be applied beyond this point. It shows the sludge state distribution inside the machine in the progressing state.For the sludge 9 sandwiched between the electrodes 4 and 5 in this dehydration progressing state,
The sludge properties in each layer were examined by dividing into upper layer 9a+, middle layer 9b, and lower layer 9c. First, the upper layer 9a of the sludge 9 is in a dry state with almost no fluidity, and in the area in contact with the upper electrode 4, there is water containing sludge in the voids 9d that are locally formed as the sludge is sterilized. It was observed that biogas generated by electrolysis was trapped. On the other hand, the middle layer part 9b and the lower layer part 9c have a lower degree of dehydration and a higher water content than the upper layer part 9a. In particular, in the middle layer part 9b, the lower layer part 9c forms a compacted layer under the compression force of the diaphragm 6, and this compacted layer obstructs the permeation of water flowing from the middle layer part 9b toward the lower part 5. It was observed that the water content was the highest and that dehydration had not progressed much. That is, the water contained in the sludge due to electroosmosis flows through the sludge layer from the upper layer of the sludge 9 in contact with the upper electrode 4 to the lower layer, and is collected at the lower electrode 5.

このために、脱水の進行に伴い最初に上層部9aが脱水
,乾燥してその電気抵抗が増大すると、以降は中層部9
b,下層部9cの含水率が高い状態にあっても電極間に
挟まれた汚泥中に電流が流れ難くなる.また、下水汚泥
のように含有水に硫酸イオン,塩素イオンなどを多く含
んでいる場合には電極間の電圧印加に伴い含有水が電気
分解されて電極表面に酸素,水素などのガスが発生ずる
。この場合に、下部電極側5に発生したガスは濾水と一
猪に濾布ベルト7を透過して系外に排出されるが、上部
電極側4に発生したガスは逃げ場がないため、第5図で
示したようにガスが上部電極5と汚泥9との間に滞留す
るようになる.しかもこの生成ガスは非導電性であるた
め、汚泥への通電をますます悪化させる。
For this reason, as the dehydration progresses, the upper layer 9a first dehydrates and dries and its electrical resistance increases, and then the middle layer 9a
b. Even if the water content of the lower layer 9c is high, it becomes difficult for current to flow into the sludge sandwiched between the electrodes. In addition, if the water contains a lot of sulfate ions, chloride ions, etc., such as sewage sludge, the water will be electrolyzed when voltage is applied between the electrodes, and gases such as oxygen and hydrogen will be generated on the electrode surface. . In this case, the gas generated on the lower electrode side 5 passes through the filter cloth belt 7 along with the filtrate and is discharged out of the system, but the gas generated on the upper electrode side 4 has no place to escape. As shown in Figure 5, gas becomes trapped between the upper electrode 5 and the sludge 9. Moreover, since this generated gas is non-conductive, it further worsens the conduction of electricity to the sludge.

したがって、第5図の汚泥状態分布になると、この状態
から電極間に同じ電圧を印加し続けても電気浸透脱水作
用による汚泥の脱水がこれ以上進まず、さらに脱水を進
めにためには電極間により高い電圧を印加する必要があ
る。しかしながら高電圧を供給するとそれだけ消費電力
量が増大することになり、結果として電気浸透式脱水機
のランニングコトスが嵩み、脱水効率が低下する。
Therefore, when the sludge state distribution shown in Fig. 5 is reached, even if the same voltage is continued to be applied between the electrodes from this state, sludge dewatering due to electroosmotic dehydration will not proceed any further; It is necessary to apply a higher voltage. However, when a high voltage is supplied, the power consumption increases accordingly, and as a result, the running cost of the electroosmotic dehydrator increases, and the dewatering efficiency decreases.

本発明は上記の点にかんがみなされたものであり、前記
したバッチ処理方式の電気浸透式脱水機を対象に、汚泥
供給側に配備した上部電極,並びに汚泥供給部の構造を
改良することにより、汚泥の局部的な乾燥化,電気分解
発生ガスの滞留を防いで電気浸透脱水が効果的に進むよ
うにした脱水効率の高い電気浸透式脱水機を提供するこ
とを目的とする。
The present invention has been made in consideration of the above points, and is aimed at the above-described batch processing type electroosmotic dewatering machine, by improving the structure of the upper electrode disposed on the sludge supply side and the sludge supply section. The purpose of the present invention is to provide an electroosmotic dehydrator with high dewatering efficiency, which prevents local drying of sludge and retention of gas generated by electrolysis, and allows electroosmotic dehydration to proceed effectively.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の電気浸透式脱水機
では、汚泥供給側に配備した上部電極を汚泥およびガス
の透過を許容する透孔電極板となし、かつ該電極板の裏
面側に汚泥供給口に通じる汚泥溜め室を設けて構成する
ものとする。
In order to solve the above problems, in the electroosmotic dehydrator of the present invention, the upper electrode disposed on the sludge supply side is a through-hole electrode plate that allows the permeation of sludge and gas, and the upper electrode is formed on the back side of the electrode plate. It shall be constructed with a sludge sump chamber communicating with the sludge supply port.

〔作用〕[Effect]

上記の構成で、上部電極を構威する透孔電極板は、例え
ば仮の全面域に分散して多数の孔を穿孔したパンチング
板、あるいは金網が採用され、その背後(上面側)に汚
泥溜め室となる空間を残して処理容器の中段位置に配備
されている。
In the above configuration, the perforated electrode plate that serves as the upper electrode is, for example, a punched plate with a large number of holes perforated over the entire temporary area, or a wire mesh, and behind it (on the top side) there is a sludge reservoir. It is placed in the middle of the processing container, leaving a space for the chamber.

ここで上部の汚泥供給口を通して処理容器に汚泥を供給
すると、汚泥はまず容器内の汚泥溜め室に入り、ここか
ら透孔電極板通孔を流下して対向電極の間の脱水処理室
空間を満たすとともに、残りの汚泥がそのまま汚泥溜り
室内に残留している。
When sludge is supplied to the processing container through the sludge supply port at the top, the sludge first enters the sludge chamber inside the container, flows down from there through the through-hole of the perforated electrode plate, and enters the dehydration processing chamber space between the opposing electrodes. The remaining sludge remains in the sludge chamber.

一方、この状態で汚泥粒子の界面動電位(ζ一電位)に
対応して汚泥の含有水が下部電極側に集水されるように
1極の極性を選定して電極間に電圧を印加すれば、電気
浸透作用により汚泥の含有水が下部電極側に集水されて
系外に排出される。
On the other hand, in this state, select one polarity and apply a voltage between the electrodes so that the water contained in the sludge is collected on the lower electrode side in accordance with the interfacial dynamic potential (ζ-potential) of the sludge particles. For example, water contained in sludge is collected on the lower electrode side by electroosmosis and is discharged outside the system.

また、含有水の電気分解により上部電極側に発生したガ
スは透孔電極板を透過して脱水処理室から上方に抜け出
る。さらに、電気浸透脱水の進行に伴って汚泥が滅容す
ると、この減容分によって生した空所を埋めるように未
脱水の汚泥が汚泥溜り室から透孔電極板を透過して脱水
処理室内に補給される。
Further, gas generated on the upper electrode side by electrolysis of the contained water passes through the perforated electrode plate and escapes upward from the dehydration treatment chamber. Furthermore, when the sludge is sterilized as electroosmotic dewatering progresses, undehydrated sludge passes through the perforated electrode plate from the sludge chamber to fill the void created by this volume reduction and enters the dehydration treatment chamber. will be replenished.

したがって、電気浸透脱水の進行中に上部電極と汚泥と
の間に電気分解によって発生したガスだ滞留することが
なく、かつ汚泥溜め室からの未脱水汚泥の捕給により上
部電極と接する汚泥の上層部が湿潤を保って極端に乾燥
状態になることもない。この結果、電極間に挟まれた汚
泥の導電性が保持され、同し印加電圧のままでも電気浸
透作用が継続的に働いて汚泥全体の含水率が十分低下す
るまで電気侵透脱水が効果的に進行するようになる。
Therefore, gas generated by electrolysis does not accumulate between the upper electrode and the sludge during electroosmotic dewatering, and the upper layer of the sludge in contact with the upper electrode prevents undehydrated sludge from being captured from the sludge storage chamber. The area remains moist and does not become extremely dry. As a result, the conductivity of the sludge sandwiched between the electrodes is maintained, and even with the same applied voltage, the electroosmotic action continues to work, making electroosmotic dewatering effective until the water content of the entire sludge is sufficiently reduced. It will progress to.

〔実施例] 第l図ないし第3図は本発明実施例を示し、第4図,第
5図に対応する同一部材には同じ符号が付してある. まず、第l図.第2図において、処理容器lの底面側に
は下部電極5,および濾布ベルト7が、また処理容器1
の中段位置に上部電極4が設置されており、この配置で
処理容器lの内部には上部電極4と下部電Fi5との間
に脱水処理室13が、上部電極4の背後には汚泥供給口
1lに通じる汚泥溜め室10が画威される.また、汚泥
溜め室10に対して処理容器lには頂部に開口する加圧
エア導入口15,および側方に開口する汚泥排出口l6
が設けてある。さらに、上部電極4は、第2図に明示さ
れているように電極板の全面域に分敗して汚泥.ガスの
透過を許容する多数の透過孔4lを穿孔した透孔電極板
として作られたものである。
[Embodiment] FIGS. 1 to 3 show embodiments of the present invention, and the same members corresponding to FIGS. 4 and 5 are given the same reference numerals. First, Figure l. In FIG. 2, a lower electrode 5 and a filter cloth belt 7 are placed on the bottom side of the processing container l, and
The upper electrode 4 is installed in the middle position, and with this arrangement, a dehydration treatment chamber 13 is provided inside the processing vessel l between the upper electrode 4 and the lower electrode Fi5, and a sludge supply port is provided behind the upper electrode 4. The sludge sump room 10 leading to 1l is shown in detail. In addition, the processing vessel l with respect to the sludge storage chamber 10 has a pressurized air inlet 15 that opens at the top, and a sludge discharge port l6 that opens to the side.
is provided. Furthermore, the upper electrode 4 is sludge-covered over the entire area of the electrode plate, as clearly shown in FIG. It is made as a perforated electrode plate having a large number of permeation holes 4l that allow gas to pass through.

次に前記構戒による動作を説明する.I2I示のように
処理室lを閉し、汚泥供給口l1を通して処理室内に汚
泥9を供給すると、汚泥はまず馬泥溜め室IOに溜り、
ここから上部電極4の孔4lを透過して流下し、下部電
極5との間の脱水処理室l3を満たすとともに、残りの
盾泥はそのまま汚泥溜め室lOの中に残留する。なお、
この時点では汚泥排出口16は閉している. 次いで汚泥供給口11を閉し、かつ加圧エア導入口15
より導入した加圧エアで汚泥9を加圧した状態で電極4
と5との間に電?a3より電圧を印加する。これにより
電極4と5との間に挟まれた汚泥9に電気浸透作用が働
き、汚泥9の含有水は下部電極5に向けて汚泥の層内を
流動し、濾布ベルト7をi3遇した後に濾水排出口l2
を通じて系外に排出される。一方、この電気浸透脱水の
進行に伴って汚泥9が減容(濾水の排出により汚泥の体
積が減少する)すると、第3図で表したように、汚泥9
の体積減少分を補うように汚泥溜め室10内に滞留して
いる未脱水汚泥が加圧エアの圧力を受け、上部電極4の
孔4lを透過して脱水処理室l3内に流入(実線矢印)
する.なお、第3図において、9lは電気浸透脱水があ
る程度進んだ下層側の脱水汚泥を、92は汚泥9の減容
に伴って汚泥溜め室10側から新たに汚泥の上層側に補
給された補給汚泥を表している.また、電極間の電圧印
加に伴う電気分解作用により、上部電極4の表面に発生
したガスはそのまま透孔電極板の透孔4lより抜け出て
脱水処理室13から汚泥溜め室10側に排出する (点
線矢印〉.なお、下部電極側に発生したガスは濾水と一
總に抜け出て系外に排気される. 上記の動作説明で明らかなように、電気浸透脱水工程中
には、上部電極4に接する汚泥9の上層部分は汚泥溜め
室lOからの未脱水汚泥の補給を受けるので極端に乾燥
化することなしに導電性を保持し続け、また電気分解で
発生したガスが上部電極4との接触部分に停滞すること
なく排出する.これにより、汚泥内を流れる電流の通電
状態が持続し、脱水処理室13内に供給された汚泥9が
十分低含水率になるまで、電気浸透作用による脱水が継
続的.かつ効果的に進行する. なお、脱水処理後の操作は、まず電源3の電圧印加を停
止し、かつ汚泥排出口16を開放して加圧エアにより汚
泥溜り室lOに残留している流動性の高い未脱水汚泥を
室外に排出した後に、シリンダ2の操作で処理容器1を
開放して脱水処理室13からケーキ化された脱水汚泥を
排除し、さらに濾布ベルト7を巡回移動して汚損面域を
室外に引き出し、これにより1回のバッチ脱水処理工程
が終了する. 次に、前記の電気浸透脱水方式による評価を確認するた
めに本発明者等が行った実機試験結果について述べる。
Next, we will explain the movements based on the above-mentioned Kaikai. When the processing chamber l is closed and the sludge 9 is supplied into the processing chamber through the sludge supply port l1 as shown in I2I, the sludge first accumulates in the sludge storage chamber IO,
From here, it passes through the hole 4l of the upper electrode 4 and flows down, filling the dehydration chamber l3 between it and the lower electrode 5, and the remaining shield mud remains in the sludge reservoir chamber lO. In addition,
At this point, the sludge discharge port 16 is closed. Next, the sludge supply port 11 is closed, and the pressurized air introduction port 15 is closed.
With the sludge 9 pressurized by the pressurized air introduced, the electrode 4
Electricity between and 5? Apply voltage from a3. As a result, an electroosmotic effect acts on the sludge 9 sandwiched between the electrodes 4 and 5, and the water contained in the sludge 9 flows within the layer of sludge toward the lower electrode 5, passing through the filter cloth belt 7. Rear filtrate outlet l2
is discharged from the system through On the other hand, as the electroosmotic dewatering progresses, the volume of the sludge 9 decreases (the volume of the sludge decreases due to the discharge of filtrate), as shown in FIG.
The undehydrated sludge remaining in the sludge storage chamber 10 is subjected to the pressure of the pressurized air to compensate for the volume decrease in the sludge chamber 10, passes through the hole 4l of the upper electrode 4, and flows into the dehydration treatment chamber l3 (as indicated by the solid line arrow). )
do. In addition, in FIG. 3, 9l is the dehydrated sludge on the lower layer side where electroosmotic dehydration has progressed to a certain extent, and 92 is the replenishment newly replenished from the sludge reservoir chamber 10 side to the upper layer side of the sludge as the volume of sludge 9 has been reduced. It represents sludge. Furthermore, gas generated on the surface of the upper electrode 4 due to the electrolytic action accompanying the voltage application between the electrodes escapes as it is through the through holes 4l of the perforated electrode plate and is discharged from the dehydration chamber 13 to the sludge reservoir chamber 10 side. Dotted line arrow〉.The gas generated on the lower electrode side escapes together with the filtrate and is exhausted outside the system.As is clear from the above operation explanation, during the electroosmotic dehydration process, the upper electrode 4 The upper part of the sludge 9 in contact with the sludge 9 is replenished with undehydrated sludge from the sludge storage chamber 1O, so it continues to maintain conductivity without becoming extremely dry, and the gas generated by electrolysis does not interact with the upper electrode 4. The sludge is discharged without stagnation in the contact area.As a result, the current flowing through the sludge is maintained, and the sludge 9 supplied to the dehydration treatment chamber 13 is dehydrated by electroosmosis until its moisture content becomes sufficiently low. The dewatering process proceeds continuously and effectively.The operation after the dewatering process is to first stop the voltage application to the power source 3, open the sludge discharge port 16, and use pressurized air to drain the sludge remaining in the sludge chamber lO. After discharging the non-dehydrated sludge with high fluidity outside the room, the treatment container 1 is opened by operating the cylinder 2, and the caked dehydrated sludge is removed from the dewatering treatment chamber 13, and then the filter cloth belt 7 is circulated. The soiled surface area is moved outside and one batch dehydration process is completed.Next, the results of an actual machine test conducted by the inventors to confirm the evaluation using the electroosmotic dehydration method described above. Let's talk about.

この試験では、下水処理場で発生した余剰汚泥を試料と
し、第1図,第4図に示した電気浸透式脱水機を用いて
次記の条件の下で脱水試験を行った。
In this test, excess sludge generated at a sewage treatment plant was used as a sample, and a dehydration test was conducted under the following conditions using the electroosmotic dehydrator shown in FIGS. 1 and 4.

(試験条件) l,試料濃度:2.2%(含水率97.8%)2.脱水
時間:lO分 3.印加電圧:60v(第l図の脱水機)110V(第
4図の脱水機) 4.加圧エア圧力: 0. 5 Kg/c4 (第1図
)5Kg/cシ(第4図) 5.電極間間隔:30一 上記条件での試験結果によれば、従来の電気浸透式脱水
機(第4図)では、汚泥の含水率は72%までしか低下
せず、かつ消費電力量は脱水汚泥の乾燥固形分1トン分
に換算して1250KWHであった.これに対して本発
明の電気浸透式脱水機(第l図)では、汚泥の含水率が
64%まで低下し、かつ消費電力量は6 2 0 KW
Iであった.つまり、従来の方式と比べて汚泥の含水率
が8%低まり、かつ消費電力量はほぼ半減できることが
確認された. 〔発明の効果〕 本発明による電気浸透式脱水機は、以上説明したように
構威されているので、次記の効果を奏する. すなわち、汚泥供給側に配備した上部1tfiを汚泥お
よびガスの透過を許容する透孔電極板となし、かつ該電
極板の裏面側に汚泥供給口に通じる汚泥溜め室を設けた
ことことにより、 0)電気浸透脱水進行に伴い汚泥が城容すると汚泥溜め
室側から非脱水汚泥が透孔電極仮である上部1t極をi
3if!Lて補給されるので、上部電極と接する汚泥上
層部の極端な乾燥化を防いで汚泥の導電性が保持できる
. (2)上部電極側に発生する電気分解生或ガスは透孔電
極板を透過して直ちに脱水処理室から抜け出るのでガス
の滞留がなくなり、ガス滞留による電極と汚泥との間の
通電性を阻害することがなくなる. (3)シたがって、脱水処理工程中に電極の間に挟まれ
た汚泥へ流れる電流の通電性が持続されて電気浸透作用
が継続かつ有効に働き、これにより少ない消費電力量で
汚泥を低含水率まで効果的に脱水することができ、脱水
効率の大幅な改善が図れる。
(Test conditions) 1. Sample concentration: 2.2% (water content 97.8%)2. Dehydration time: 10 minutes 3. Applied voltage: 60V (dehydrator shown in Figure 1) 110V (dehydrator shown in Figure 4) 4. Pressurized air pressure: 0. 5 Kg/c4 (Fig. 1) 5 Kg/c (Fig. 4) 5. Inter-electrode spacing: 30 - According to the test results under the above conditions, in the conventional electroosmotic dehydrator (Figure 4), the water content of sludge decreased only to 72%, and the power consumption was lower than that of dehydrated sludge. It was 1250KWH in terms of 1 ton of dry solid content. On the other hand, in the electroosmotic dehydrator of the present invention (Figure 1), the water content of sludge is reduced to 64%, and the power consumption is 620 KW.
It was I. In other words, it has been confirmed that the water content of sludge is 8% lower than with the conventional method, and power consumption can be reduced by almost half. [Effects of the Invention] Since the electroosmotic dehydrator according to the present invention is configured as explained above, it has the following effects. That is, by using the upper 1TFI provided on the sludge supply side as a perforated electrode plate that allows permeation of sludge and gas, and by providing a sludge reservoir chamber communicating with the sludge supply port on the back side of the electrode plate, the following results can be achieved. ) As the sludge expands as electroosmotic dewatering progresses, non-dehydrated sludge flows from the sludge reservoir side to the upper 1t electrode, which is a temporary through-hole electrode.
3if! Since the upper layer of the sludge in contact with the upper electrode is prevented from drying out excessively, the conductivity of the sludge can be maintained. (2) The electrolysis product or gas generated on the upper electrode side passes through the perforated electrode plate and immediately escapes from the dehydration treatment chamber, eliminating the accumulation of gas and inhibiting the conductivity between the electrode and the sludge due to gas accumulation. There's nothing to do. (3) Therefore, during the dewatering process, the conductivity of the current flowing to the sludge sandwiched between the electrodes is maintained, and the electroosmotic action continues and works effectively, thereby reducing the sludge with less power consumption. It is possible to effectively dehydrate down to the water content, and the dehydration efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の全体構威図、第2図は第1図に
おける上部電極の平面図、第3図は第1図による電気浸
透脱水の動作説明図、第4図は従来における電気浸透式
脱水機の全体構成図、第5図は第4図による電気浸透脱
水の動作説明図である.図において、 l:処理容器、1l:汚泥供給口、12:濾水排出口、
13:脱水処理室、3:直流電源、4:上部電極、4l
:透過孔、5:下部電極、7:1l布ベルト、9:汚泥
、lO:汚泥溜め室. 第1図 第2図 A7?− 第3図 第4図 第5図
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is a plan view of the upper electrode in Fig. 1, Fig. 3 is an explanatory diagram of the electroosmotic dehydration operation according to Fig. 1, and Fig. 4 is a conventional FIG. 5 is an overall configuration diagram of the electroosmotic dehydrator, and FIG. 5 is an explanatory diagram of the operation of electroosmotic dehydration according to FIG. In the figure, l: processing container, 1l: sludge supply port, 12: filtrate discharge port,
13: Dehydration treatment chamber, 3: DC power supply, 4: Upper electrode, 4l
: Transmission hole, 5: Lower electrode, 7: 1l cloth belt, 9: Sludge, lO: Sludge sump chamber. Figure 1 Figure 2 A7? - Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)上部に汚泥供給口、底部に濾水排出口が開口した処
理容器の内部に上下一対の電極を対向配備し、汚泥を供
給した状態で電極間に直流電圧を印加することにより、
汚泥の含有水を下部電極側に集め、濾過材を通じて系外
へ排出するようにした電気浸透式脱水機において、汚泥
供給側に配備した上部電極を汚泥およびガスの透過を許
容する透孔電極板となし、かつ該電極板の裏面側に汚泥
供給口に通じる汚泥溜め室を設けたことを特徴とする電
気浸透式脱水機。
1) A pair of upper and lower electrodes are placed facing each other inside a treatment container with a sludge supply port at the top and a filtrate discharge port at the bottom, and a DC voltage is applied between the electrodes while sludge is being supplied.
In an electroosmotic dewatering machine in which the water contained in sludge is collected on the lower electrode side and discharged to the outside of the system through a filtration material, the upper electrode placed on the sludge supply side is a perforated electrode plate that allows sludge and gas to permeate. An electroosmotic dewatering machine characterized in that a sludge reservoir chamber communicating with a sludge supply port is provided on the back side of the electrode plate.
JP1189861A 1989-07-21 1989-07-21 Electro-osmotic dehydrator Expired - Lifetime JPH0720528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189861A JPH0720528B2 (en) 1989-07-21 1989-07-21 Electro-osmotic dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189861A JPH0720528B2 (en) 1989-07-21 1989-07-21 Electro-osmotic dehydrator

Publications (2)

Publication Number Publication Date
JPH0356107A true JPH0356107A (en) 1991-03-11
JPH0720528B2 JPH0720528B2 (en) 1995-03-08

Family

ID=16248413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189861A Expired - Lifetime JPH0720528B2 (en) 1989-07-21 1989-07-21 Electro-osmotic dehydrator

Country Status (1)

Country Link
JP (1) JPH0720528B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578182A2 (en) * 1992-07-07 1994-01-12 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
JP2007038105A (en) * 2005-08-02 2007-02-15 Ps Mitsubishi Construction Co Ltd Bag dehydration treatment method
WO2014119599A1 (en) * 2013-01-29 2014-08-07 栗田工業株式会社 Electroosmotic dewatering method and electroosmotic dewatering apparatus
CN109562971A (en) * 2016-08-17 2019-04-02 株式会社爱博 Composite dewatering device
WO2022130489A1 (en) * 2020-12-15 2022-06-23 三菱化工機株式会社 Filtration device
CN114956511A (en) * 2022-05-30 2022-08-30 钱江水利开发股份有限公司 Sludge treatment equipment and method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578182A2 (en) * 1992-07-07 1994-01-12 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
EP0578182A3 (en) * 1992-07-07 1994-02-23 Fuji Electric Co Ltd
JP2007038105A (en) * 2005-08-02 2007-02-15 Ps Mitsubishi Construction Co Ltd Bag dehydration treatment method
WO2014119599A1 (en) * 2013-01-29 2014-08-07 栗田工業株式会社 Electroosmotic dewatering method and electroosmotic dewatering apparatus
JP2014144429A (en) * 2013-01-29 2014-08-14 Kurita Water Ind Ltd Electroosmotic dewatering method and electroosmotic dewatering apparatus
CN109562971A (en) * 2016-08-17 2019-04-02 株式会社爱博 Composite dewatering device
WO2022130489A1 (en) * 2020-12-15 2022-06-23 三菱化工機株式会社 Filtration device
CN114956511A (en) * 2022-05-30 2022-08-30 钱江水利开发股份有限公司 Sludge treatment equipment and method thereof

Also Published As

Publication number Publication date
JPH0720528B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US4367132A (en) Method for removing liquid from chemically-precipitated sludge
JPS621426A (en) Electroosmotic dehydration apparatus
EP1289623B1 (en) Apparatus for electro-dewatering
JPH0356107A (en) Electroosmotic dehydrator
KR0137000B1 (en) Electro-endosmosis type dehydrator
JPH0685845B2 (en) Electro-osmotic dehydrator
US3896013A (en) Process for removing metallic ions from an electrolytic solution
JPH02119906A (en) Electroosmotic dehydrator
JPS63256112A (en) Electroosmotic dehydrator
JPS6159164B2 (en)
JPH042286B2 (en)
KR100441168B1 (en) Electro-dewatering system of filter press
JPH0326120B2 (en)
JPS63287514A (en) Electroosmosis dehydrator
JPS6097012A (en) Dehydration treatment system of sludge
JPS6345605B2 (en)
CN216998123U (en) Electroosmosis sludge dewatering device
CN106477845B (en) A kind of fixed plate electrode propelling movement type electric dehydration purification device
JPH11253924A (en) Purification of soil polluted with heavy metal and electrolytic bath for purification
JPH091199A (en) Electroosmotic sludge dehydration method and device therefor
JP3616882B2 (en) Electroosmotic dehydration electrode plate
SU1161477A1 (en) Electrolyzer for processing waste water sediment
JPS6097011A (en) Dehydration treatment system of sludge
SU1724593A1 (en) Electrolyzer for treating water
CN111138050A (en) Electroosmosis sludge dewatering board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15