WO2014119599A1 - Electroosmotic dewatering method and electroosmotic dewatering apparatus - Google Patents

Electroosmotic dewatering method and electroosmotic dewatering apparatus Download PDF

Info

Publication number
WO2014119599A1
WO2014119599A1 PCT/JP2014/051906 JP2014051906W WO2014119599A1 WO 2014119599 A1 WO2014119599 A1 WO 2014119599A1 JP 2014051906 W JP2014051906 W JP 2014051906W WO 2014119599 A1 WO2014119599 A1 WO 2014119599A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
water
treated
electroosmotic
anode
Prior art date
Application number
PCT/JP2014/051906
Other languages
French (fr)
Japanese (ja)
Inventor
清也 日名
春夫 田極
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2014119599A1 publication Critical patent/WO2014119599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4698Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electro-osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/56Electro-osmotic dewatering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/123Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using belt or band filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves

Definitions

  • the electroosmotic dewatering device of Patent Document 3 supplies sludge onto a conveyor belt that rotates endlessly, and sandwiches a hydrated material between a cathode plate below the conveyor belt and an anode unit above the conveyor belt.
  • the electroosmosis dehydration is performed by passing an electric current.
  • a plurality of anode units are arranged in the conveyor moving direction.
  • a horizontal anode plate is installed on the bottom surface of each anode unit. The anode plate can be pushed down by an air cylinder and can be pulled up by a spring.
  • the conveyor moves the hydrated material by one span (anode unit installation interval) with the anode plate raised.
  • Chlorine gas is highly corrosive and corrodes the anode and equipment details.
  • chlorine gas dissolves in water vapor dew condensation water to form low pH dew condensation water, and also dissolves as chlorine gas.
  • the generation of halogen gas at the anode is prevented by adding a reducing agent to the water to be treated.
  • the reducing agent is sodium bisulfite
  • NaHSO 3 + Cl 2 + H 2 O ⁇ H 2 SO 4 + NaCl + HCl Reaction proceeds, and generation of halogen gas such as chlorine gas is prevented.
  • the reducing agent is sodium thiosulfate
  • Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ⁇ 2NaCl + 2H 2 SO 4 + 6HCl Reaction proceeds, and generation of halogen gas such as chlorine gas is prevented.
  • the air having the same pressure may be supplied to the air cylinders of the anode units 21 to 25, or the supply air pressure may be increased or decreased as the anode unit on the downstream side.
  • Chloride ion concentration in sludge 1000 mg-Cl / kg-sludge
  • Reducing substance concentration in sludge Iodine consumption as 1000 mg-I / kg
  • Chlorine atomic weight 35.5 and iodine atomic weight is 127
  • Patent Document 5 Patent No. 3576269
  • Non-Patent Document 1 Water Treatment Management Handbook P.340, Tables 8 and 6
  • the present invention can also be applied to a pressure-squeezing type electroosmotic dehydration apparatus that sandwiches sludge through a pressing membrane and an electrode.
  • This test apparatus 70 includes a cylinder 71 having an inner diameter of 100 mm with the cylinder axis direction being the vertical direction, a bottom end 72 attached to the bottom of the cylinder 71, and a space between the bottom surface of the cylinder 71 and the top surface of the bottom end 72.
  • a cathode 73 made of mesh sandwiched between the cylinders 71 and stretched along the bottom surface of the cylinder 71, a piston 74 in the cylinder 71, an anode 75 made of mesh attached to the lower surface of the piston 74, and an upper surface of the cylinder 71
  • a top seal 76 provided on the surface.
  • the sludge S is pressurized in a state where current is applied between the cathode 73 and the anode 75, and the chlorine gas concentration in the atmosphere in the space below the top seal 76 is detected by the Cl 2 detector 77.
  • this sludge F is filled in the apparatus shown in FIG. 4, and sodium bisulfite is sprayed on the upper surface thereof at a rate of 500 or 1500 mg / kg (4.8 or 14.4 mol / kg). Then, the amount of chlorine gas generated was measured (No. 11, 12). The results are shown in Table 3 and FIG. In addition, FIG. 5 shows No. 10 of no addition of sodium hydrogen sulfite, No. 12 of 1500 mg / kg application
  • the amount of chlorine gas generated decreases as the amount of sodium bisulfite added increases. Even in the case of the same addition amount, the amount of chlorine generated is smaller when sprayed than when sodium bisulfite is mixed, and the amount of chlorine gas generated when 3000 mg / kg sodium bisulfite is mixed and 1500 mg / kg is sprayed. Were found to be approximately equivalent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Urology & Nephrology (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

[Problem] To provide an electroosmotic dewatering method and an electroosmotic dewatering apparatus, each of which enables the dewatering of a water-containing material of interest without generating a halogen gas. [Solution] A conveyer belt (1) made from a filter cloth is endlessly bridged between rollers (2, 3), and can endlessly rotate along the upper surface of a cathode (4). Anode units (21 - 25) are arranged in the conveying direction of the conveyer belt (1). A reducing agent such as sodium hydrogen sulfite and/or sodium thiosulfate is added to a water-containing material of interest.

Description

電気浸透脱水方法及び装置Electroosmotic dehydration method and apparatus
 本発明は、排水の生物処理汚泥、上水汚泥などの含水物を脱水するための電気浸透脱水方法及び装置に関するものであり、特に陽極(アノード)でのハロゲンガスの発生を防止するようにした電気浸透脱水方法及び装置に関する。 The present invention relates to an electroosmotic dehydration method and apparatus for dewatering water-containing materials such as biologically treated sludge and sewage sludge from wastewater, and in particular, the generation of halogen gas at the anode (anode) is prevented. The present invention relates to an electroosmotic dehydration method and apparatus.
 排水の生物処理過程で発生する汚泥などの含水物を脱水処理する方法として、電気浸透脱水が周知である(特許文献1~6、非特許文献1)。この電気浸透脱水処理では、被処理含水物に通電して、マイナスに荷電した汚泥を陽極側に引き寄せ、一方、汚泥の間隙水を陰極側に移動させて分離させながら加圧力をかけて脱水するため、機械的脱水処理の場合に比べて、脱水効率が高く、汚泥の含水率を更に低減することが可能である。 Electro-osmotic dehydration is well known as a method for dehydrating hydrated materials such as sludge generated during biological treatment of wastewater (Patent Documents 1 to 6, Non-Patent Document 1). In this electroosmosis dehydration treatment, the water to be treated is energized to attract the negatively charged sludge to the anode side, while dewatering by applying pressure while moving the sludge pore water to the cathode side for separation. Therefore, compared with the case of mechanical dehydration processing, dewatering efficiency is high, and it is possible to further reduce the moisture content of sludge.
 特許文献1の電気浸透脱水装置は、無端回動する下側フィルタベルト(陰極)と無端回動する上側プレスベルト(陽極)との間で汚泥を電気浸透脱水処理するように構成したものである。 The electroosmotic dewatering device of Patent Document 1 is configured to electrolyze and dewater sludge between an endless rotating lower filter belt (cathode) and an endless rotating upper press belt (anode). .
 特許文献2の電気浸透脱水装置は、上側プレスベルトとは別個に陽極としての電極ドラムを配置し、この電極ドラムによって上下のベルトを挟圧するように構成している。 The electroosmotic dewatering device of Patent Document 2 is configured such that an electrode drum as an anode is disposed separately from the upper press belt, and the upper and lower belts are clamped by this electrode drum.
 特許文献3の電気浸透脱水装置は、無端回動するコンベヤベルトの上に汚泥を供給し、コンベヤベルトの下側の陰極板とコンベヤベルトの上方の陽極ユニットとの間で含水物を挟圧すると共に電流を通電して電気浸透脱水するように構成したものである。陽極ユニットはコンベヤ移動方向に複数個配設されている。各陽極ユニットの底面部には水平な陽極板が設置されている。この陽極板はエアシリンダによって押し下げ可能とされると共に、スプリングによって引き上げ可能とされている。コンベヤは、陽極板を上昇させた状態で、1スパン(陽極ユニットの設置間隔)分だけ含水物を移動させる。 The electroosmotic dewatering device of Patent Document 3 supplies sludge onto a conveyor belt that rotates endlessly, and sandwiches a hydrated material between a cathode plate below the conveyor belt and an anode unit above the conveyor belt. The electroosmosis dehydration is performed by passing an electric current. A plurality of anode units are arranged in the conveyor moving direction. A horizontal anode plate is installed on the bottom surface of each anode unit. The anode plate can be pushed down by an air cylinder and can be pulled up by a spring. The conveyor moves the hydrated material by one span (anode unit installation interval) with the anode plate raised.
 特許文献4,5の電気浸透脱水装置は、両極を有した左右1対の濾板の間に2葉の濾布を配置している。濾布同士の間に汚泥を供給し、濾布を介して汚泥を挟圧すると共に、電極間に通電することにより、汚泥が電気浸透脱水処理される。処理後は、濾板を離反させ、次いで濾布同士を離反させて脱水物を取り出す。 In the electroosmotic dehydration apparatus of Patent Documents 4 and 5, a two-leaf filter cloth is disposed between a pair of left and right filter plates having both poles. Sludge is supplied between the filter cloths, sandwiched between the filter cloths, and energized between the electrodes, whereby the sludge is subjected to electroosmotic dehydration. After the treatment, the filter plate is separated, and then the filter cloths are separated from each other to remove the dehydrated product.
 このような電気浸透脱水方法では、陽極(アノード)の表面で2Cl→Cl+2eなどの反応により塩素ガス等のハロゲンガスが発生する。脱水促進剤として被処理含水物に食塩を添加することがある。この食塩の添加によりアノードでの塩素ガスの発生量が多くなる。 In such an electroosmotic dehydration method, a halogen gas such as chlorine gas is generated on the surface of the anode (anode) by a reaction such as 2Cl → Cl 2 + 2e . Salt may be added to the water to be treated as a dehydration accelerator. By adding this salt, the amount of chlorine gas generated at the anode increases.
 塩素ガスは、腐食性が高く、アノードや装置細部を腐食させる。特に、塩素ガスが水蒸気の結露水に溶解して低pHの結露水となり、また塩素ガスとしても溶解するので、結露部分での腐食が起きやすい。 Chlorine gas is highly corrosive and corrodes the anode and equipment details. In particular, chlorine gas dissolves in water vapor dew condensation water to form low pH dew condensation water, and also dissolves as chlorine gas.
 発生した塩素ガスによる腐食をできるだけ防ぐための対策として、電気浸透脱水装置付近を換気することも考えられるが、塩素ガスの発生量が多いと、排ガス処理(塩素ガス除去処理)が必要になる。 As a measure to prevent corrosion by generated chlorine gas as much as possible, it is conceivable to ventilate the vicinity of the electroosmosis dehydrator, but if the amount of generated chlorine gas is large, exhaust gas treatment (chlorine gas removal treatment) is required.
 特許文献6には、陽極側に生じたガスを排除するために、陽極側電極部材に孔や溝を設けることが記載されているが、ガス発生を防止することは記載されていない。 Patent Document 6 describes that a hole or groove is provided in the anode-side electrode member in order to exclude gas generated on the anode side, but does not describe prevention of gas generation.
特開平1-189311JP-A-1-189311 特開平6-154797JP-A-6-154797 WO2007/143840WO2007 / 143840 特公平7-73646JP 7-73646 特許第3576269Japanese Patent No. 3576269 特公昭63-45605Shoko 63-45605
 本発明は、アノードでのハロゲンガスの発生を防止(抑制を包含する。)することができる電気浸透脱水方法及び装置を提供することを目的とする。 An object of the present invention is to provide an electroosmotic dehydration method and apparatus capable of preventing (including suppressing) the generation of halogen gas at the anode.
 本発明の電気浸透脱水方法は、陽極と陰極との間で被処理含水物を挟み、圧搾しながら両極間に通電して脱水する電気浸透脱水方法において、還元剤を被処理含水物に添加することを特徴とするものである。 The electroosmotic dehydration method of the present invention is the electroosmotic dehydration method in which the water to be treated is sandwiched between the anode and the cathode and dehydrated by energizing both electrodes while pressing and adding a reducing agent to the water to be treated. It is characterized by this.
 還元剤としては、亜硫酸水素ナトリウム及び/又はチオ硫酸ナトリウムが好適である。 As the reducing agent, sodium bisulfite and / or sodium thiosulfate is preferable.
 本発明の電気浸透脱水方法の一態様では、被処理含水物に還元剤を添加して混合する。この場合、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の1~1.5倍の量の還元剤を添加することが好ましい。 In one aspect of the electroosmotic dehydration method of the present invention, a reducing agent is added to and mixed with the water to be treated. In this case, the halide ion concentration and the reducing substance concentration in the water to be treated are measured, the required reducing agent equivalent is calculated from the difference between the two, and the reducing agent in an amount 1 to 1.5 times the required reducing agent equivalent is added. It is preferable to add.
 本発明の電気浸透脱水方法の別の一態様では、被処理含水物のうち陽極と接触する面に還元剤を散布する。この場合、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の0.5~1倍量の還元剤を散布することが好ましい。 In another aspect of the electroosmotic dehydration method of the present invention, a reducing agent is sprayed on the surface of the hydrated material to be treated that is in contact with the anode. In this case, measure the halide ion concentration and the reducing substance concentration in the treated water-containing material, calculate the required reducing agent equivalent from the difference between the two, and spray the reducing agent in an amount 0.5 to 1 times the required reducing agent equivalent. It is preferable to do.
 本発明の電気浸透脱水装置は、対向配置された電極と、対向する電極間に通電する通電手段と、対向する電極同士の間に配置された濾材と、該濾材同士の間又は濾材と一方の電極との間で被処理含水物を挟圧するための挟圧手段とを有する電気浸透脱水装置において、還元剤を被処理含水物に添加する還元剤添加手段を備えたことを特徴とするものである。 The electroosmotic dehydration apparatus of the present invention includes an electrode disposed opposite to each other, an energizing means for energizing between the opposed electrodes, a filter medium disposed between the opposed electrodes, and between the filter mediums or one of the filter medium and the filter medium. An electroosmotic dehydration apparatus having a clamping means for clamping a treated water-containing material between electrodes, comprising a reducing agent adding means for adding a reducing agent to the treated water-containing material. is there.
 本発明では、被処理含水物に還元剤を添加することにより、陽極でのハロゲンガスの発生を防止する。還元剤が亜硫酸水素ナトリウムである場合、陽極界面付近では
  NaHSO+Cl+HO→HSO+NaCl+HCl
等の反応が進行し、塩素ガスなどのハロゲンガスの発生が防止される。還元剤がチオ硫酸ナトリウムである場合には、
  Na+4Cl+5HO→2NaCl+2HSO+6HCl
等の反応が進行し、塩素ガスなどのハロゲンガスの発生が防止される。
In the present invention, the generation of halogen gas at the anode is prevented by adding a reducing agent to the water to be treated. When the reducing agent is sodium bisulfite, near the anode interface, NaHSO 3 + Cl 2 + H 2 O → H 2 SO 4 + NaCl + HCl
Reaction proceeds, and generation of halogen gas such as chlorine gas is prevented. When the reducing agent is sodium thiosulfate,
Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O → 2NaCl + 2H 2 SO 4 + 6HCl
Reaction proceeds, and generation of halogen gas such as chlorine gas is prevented.
 還元剤は、被処理含水物に添加されて混合されてもよく、被処理含水物のうち陽極と接触する面に散布されてもよい。このように被処理含水物のうち陽極と接触する面に還元剤を散布する場合には、還元剤を被処理含水物に添加して混合する場合よりも還元剤の量を少なくしてもハロゲンガスの発生を防止することができる。 The reducing agent may be added to and mixed with the water to be treated, or may be dispersed on the surface of the water to be treated that contacts the anode. Thus, when the reducing agent is sprayed on the surface of the hydrated material to be treated that comes into contact with the anode, the amount of the reducing agent can be reduced even if the amount of the reducing agent is smaller than when the reducing agent is added to the hydrated material to be treated and mixed. Generation of gas can be prevented.
図1aは実施の形態に係る電気浸透脱水装置のプレス脱水時の概略的な縦断面図、図1bは図1aのIb-Ib線に沿う断面図である。FIG. 1a is a schematic longitudinal sectional view at the time of press dehydration of the electroosmotic dehydrator according to the embodiment, and FIG. 1b is a sectional view taken along line Ib-Ib of FIG. 1a. 実施の形態に係る電気浸透脱水装置のベルト送り工程における概略的な縦断面図である。It is a schematic longitudinal cross-sectional view in the belt feeding process of the electroosmosis dehydration apparatus which concerns on embodiment. 別の実施の形態に係る電気浸透脱水装置の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the electroosmosis dehydration apparatus which concerns on another embodiment. 実施例で用いた実験装置の縦断面図である。It is a longitudinal cross-sectional view of the experimental apparatus used in the Example. 実験結果を示すグラフである。It is a graph which shows an experimental result.
 以下、図1a,1b及び図2を参照して第1の実施の形態について説明する。なお、図2は図1a,1bの電気浸透脱水装置のベルト送り工程の様子を示している。 Hereinafter, the first embodiment will be described with reference to FIGS. 1a and 1b and FIG. FIG. 2 shows the belt feeding process of the electroosmotic dehydrator of FIGS. 1a and 1b.
 濾布よりなるコンベヤベルト1がローラ2,3間にエンドレスに架け渡されており、無端回動可能とされている。 The conveyor belt 1 made of filter cloth is stretched between the rollers 2 and 3 in an endless manner and can be rotated endlessly.
 このコンベヤベルト1の上面側が被処理含水物の搬送側となっており、下面側が戻り側となっている。コンベヤベルト1の搬送側の下面に板状の陰極4が配置されている。この陰極4は金属などの導電材よりなる板状部材であり、上下方向に貫通する多数の孔を有している。陰極4はローラ2の直近からローラ3の直近まで延在している。 The upper surface side of the conveyor belt 1 is the transport side of the water to be treated, and the lower surface side is the return side. A plate-like cathode 4 is disposed on the lower surface of the conveyor belt 1 on the conveyance side. The cathode 4 is a plate-like member made of a conductive material such as metal and has a large number of holes penetrating in the vertical direction. The cathode 4 extends from the immediate vicinity of the roller 2 to the immediate vicinity of the roller 3.
 このコンベヤベルト1の上面の搬送方向上流部に被処理含水物(この実施の形態では汚泥S)を供給するようにホッパー5が設けられている。 A hopper 5 is provided so as to supply water to be treated (sludge S in this embodiment) to the upstream portion of the conveyor belt 1 in the transport direction.
 コンベヤベルト1の搬送部の上方に陽極ユニット21~25が設置されている。図1bの通り、コンベヤベルト1の搬送部の両サイドに電気絶縁性材料よりなる側壁板20が立設されており、コンベヤベルト1上の汚泥が側方へはみ出ないように構成されている。陽極ユニット21~25は側壁板20,20間に配置されている。 Anode units 21 to 25 are installed above the conveying section of the conveyor belt 1. As shown in FIG. 1b, side wall plates 20 made of an electrically insulating material are erected on both sides of the conveyor unit of the conveyor belt 1 so that sludge on the conveyor belt 1 does not protrude sideways. The anode units 21 to 25 are disposed between the side wall plates 20 and 20.
 この実施の形態では陽極ユニットがコンベヤベルト搬送方向に5個配置されているが、これに限定されない。陽極ユニットは、コンベヤベルト搬送方向に通常は2~5個程度配置されていればよい。 In this embodiment, five anode units are arranged in the conveyor belt conveying direction, but the present invention is not limited to this. Usually, about 2 to 5 anode units may be arranged in the conveying direction of the conveyor belt.
 各陽極ユニット21~25は、下面に陽極板30を備えている。陽極ユニット21~25は、エアシリンダ(図示略)によって昇降可能とされている。エアシリンダの上端は電気浸透脱水装置の本体であるビーム(図示略)に取り付けられている。このビームは、コンベヤベルト1の上方に固定設置されている。 Each anode unit 21 to 25 has an anode plate 30 on the lower surface. The anode units 21 to 25 can be moved up and down by an air cylinder (not shown). The upper end of the air cylinder is attached to a beam (not shown) which is the main body of the electroosmotic dehydrator. This beam is fixedly installed above the conveyor belt 1.
 各陽極ユニット21~25の陽極板30と陰極4との間に、直流電源装置(図示略)から直流電圧が印加され、直流電流が通電される。 Between the anode plate 30 and the cathode 4 of each anode unit 21 to 25, a DC voltage is applied from a DC power supply device (not shown), and a DC current is applied.
 汚泥に還元剤を添加するための機構として、還元剤水溶液の貯槽及び薬注ポンプよりなる還元剤供給機10と、スプレーノズル11,12が設けられている。スプレーノズル11は、還元剤をホッパー5内の汚泥に添加するものである。ホッパー5内に添加された還元剤は、汚泥がホッパー5を通る際に汚泥と混合される。ホッパー5に撹拌機を設けて混合を促進するようにしてもよい。ホッパー5の前段にミキサーを設置し、このミキサーに還元剤を添加し、汚泥と還元剤とを添加してから汚泥をホッパー5に導入してもよい。 As a mechanism for adding the reducing agent to the sludge, there are provided a reducing agent feeder 10 including a storage tank of a reducing agent aqueous solution and a chemical injection pump, and spray nozzles 11 and 12. The spray nozzle 11 is for adding a reducing agent to the sludge in the hopper 5. The reducing agent added into the hopper 5 is mixed with the sludge when the sludge passes through the hopper 5. The hopper 5 may be provided with a stirrer to promote mixing. A mixer may be installed in front of the hopper 5, a reducing agent may be added to the mixer, and sludge and reducing agent may be added before introducing the sludge into the hopper 5.
 スプレーノズル12は、汚泥Sの陽極と接する面、すなわちホッパー5からコンベヤ1上に送り出された汚泥の上面に還元剤水溶液を散布するためのものである。スプレーノズル12は、コンベヤ1の幅方向に複数個配置されてもよく、コンベヤ1の幅方向に延在した1個のスプレーノズルを設けてもよい。 The spray nozzle 12 is for spraying the reducing agent aqueous solution on the surface of the sludge S in contact with the anode, that is, on the top surface of the sludge sent from the hopper 5 onto the conveyor 1. A plurality of spray nozzles 12 may be arranged in the width direction of the conveyor 1, and one spray nozzle extending in the width direction of the conveyor 1 may be provided.
 この実施の形態では、スプレーノズル11,12の双方が設けられているが、いずれか一方のみでもよい。スプレーノズル11,12の双方を設置した場合、還元剤をスプレーノズル11,12に択一的に供給するように切替弁を設けてもよい。 In this embodiment, both the spray nozzles 11 and 12 are provided, but only one of them may be provided. When both the spray nozzles 11 and 12 are installed, a switching valve may be provided so as to selectively supply the reducing agent to the spray nozzles 11 and 12.
 図示は省略するが、コンベヤ1の送り方向途中の陽極ユニット同士の間、例えば陽極ユニット23,24の間にも還元剤散布用スプレーノズルを設けてもよい。 Although not shown, a reducing agent spraying spray nozzle may be provided between the anode units in the middle of the conveying direction of the conveyor 1, for example, between the anode units 23 and 24.
 還元剤としては亜硫酸水素ナトリウム及び/又はチオ硫酸ナトリウムが好ましいが、これに限定されるものではなく、塩化第一鉄、ヒドラジンなども用いることができる。還元剤は水溶液として用いられることが好ましく、その濃度は、飽和濃度又はそれに近い濃度(例えば飽和溶解度の90%以上)であることが好ましい。このように高濃度の水溶液を用いると、還元剤添加に伴って被処理含水物に加えられる水量が少なく、脱水効率が良好となる。ただし、還元剤は粉末として添加されてもよい。 As the reducing agent, sodium bisulfite and / or sodium thiosulfate is preferable, but the reducing agent is not limited to this, and ferrous chloride, hydrazine and the like can also be used. The reducing agent is preferably used as an aqueous solution, and the concentration is preferably a saturated concentration or a concentration close thereto (for example, 90% or more of the saturation solubility). When a high-concentration aqueous solution is used in this way, the amount of water added to the water to be treated with the addition of the reducing agent is small, and the dehydration efficiency is improved. However, the reducing agent may be added as a powder.
 このように構成された電気浸透脱水装置によって汚泥の脱水処理を行うには、ホッパー5内に供給された汚泥Sをコンベヤベルト1上に送り出し、各陽極ユニット21~25と陰極4との間に直流電流を通電すると共に、エアシリンダにエアを供給し、この汚泥を陽極ユニット21~25の陽極板30で上方から押圧する。スプレーノズル11からホッパー5内に還元剤を添加するか、又はスプレーノズル12から還元剤をコンベヤ1上の汚泥の上面に散布する。 In order to perform the sludge dewatering process by the electroosmotic dewatering device configured as described above, the sludge S supplied into the hopper 5 is sent out onto the conveyor belt 1 and between the anode units 21 to 25 and the cathode 4. While direct current is applied, air is supplied to the air cylinder, and this sludge is pressed from above by the anode plates 30 of the anode units 21 to 25. The reducing agent is added into the hopper 5 from the spray nozzle 11 or the reducing agent is sprayed from the spray nozzle 12 onto the upper surface of the sludge on the conveyor 1.
 各陽極ユニット21~25に対し同一の電圧を印加するのが装置の運転管理を容易とする点からして好適であるが、搬送方向下流側ほど電圧を高くしたり、逆に低くしたりしてもよい。各陽極ユニットの電流値が同一となるように通電制御してもよい。 Although it is preferable to apply the same voltage to each of the anode units 21 to 25 from the viewpoint of facilitating operation management of the apparatus, the voltage is increased or decreased on the downstream side in the transport direction. May be. You may control electricity supply so that the electric current value of each anode unit may become the same.
 各陽極ユニット21~25のエアシリンダに対し同一の圧力のエアを供給してもよく、下流側の陽極ユニットほど供給エア圧を大きく又は小さくするようにしてもよい。 The air having the same pressure may be supplied to the air cylinders of the anode units 21 to 25, or the supply air pressure may be increased or decreased as the anode unit on the downstream side.
 このように陽極ユニット21~25と陰極板4との間に通電すると共に陽極ユニット21~25の陽極板30で汚泥をプレスすることにより、汚泥が電気浸透脱水される。脱水濾液がコンベヤベルト1を透過し、陰極板4の孔を通過してトレー6上に落下し、排水ライン7に流出する。 In this way, by energizing between the anode units 21 to 25 and the cathode plate 4 and pressing the sludge with the anode plate 30 of the anode units 21 to 25, the sludge is electroosmotic dehydrated. The dehydrated filtrate passes through the conveyor belt 1, passes through the holes of the cathode plate 4, falls on the tray 6, and flows out to the drain line 7.
 図1a,1bのように各陽極ユニット21~25に通電する共に、陽極ユニット21~25によって汚泥をプレスするときには、コンベヤベルト1は停止している。陽極ユニット21~25によって所定時間プレス及び通電を行った後、エアシリンダからエアを排出し、図2の通り、陽極ユニット21~25を上昇させる。コンベヤベルト1を陽極ユニット21~25の配列ピッチの1ピッチ分だけ移動させる。これにより、陽極ユニット25の下側に位置していた汚泥は、脱水汚泥として送り出され、各陽極ユニット21~24の下側に位置していた汚泥はそれぞれ1段だけ下流側の陽極ユニット22~25の下側に移動する。ホッパー5から未脱水処理汚泥が陽極ユニット21の下側に導入される。 As shown in FIGS. 1a and 1b, each of the anode units 21 to 25 is energized, and when the sludge is pressed by the anode units 21 to 25, the conveyor belt 1 is stopped. After pressing and energizing the anode units 21 to 25 for a predetermined time, air is discharged from the air cylinder, and the anode units 21 to 25 are raised as shown in FIG. The conveyor belt 1 is moved by one pitch of the arrangement pitch of the anode units 21 to 25. As a result, the sludge located on the lower side of the anode unit 25 is sent out as dehydrated sludge, and the sludge located on the lower side of each of the anode units 21 to 24 is each one stage downstream of the anode units 22 to Move to the bottom of 25. Undehydrated sludge is introduced from the hopper 5 to the lower side of the anode unit 21.
 還元剤を汚泥Sの上面に散布する場合には、このように陽極ユニット21~25を上昇させ、コンベヤベルト1を1ピッチ分だけ送り移動させている間にスプレーノズル12からコンベヤベルト1上の汚泥Sの上面に散布するのが好ましい。 When spraying the reducing agent on the upper surface of the sludge S, the anode units 21 to 25 are lifted in this way, and while the conveyor belt 1 is fed and moved by one pitch, the spray nozzle 12 moves onto the conveyor belt 1. It is preferable to spread on the upper surface of the sludge S.
 コンベヤベルト1が1ピッチ分だけ送り移動した後、各陽極ユニット21~25を押し下げると共に各陽極ユニット21~25と陰極4との間に通電し、汚泥の電気浸透脱水処理を行う。以下、この工程を繰り返すことにより、汚泥を電気浸透脱水処理する。 After the conveyor belt 1 is moved by one pitch, the anode units 21 to 25 are pushed down and energized between the anode units 21 to 25 and the cathode 4 to perform electroosmotic dehydration treatment of sludge. Thereafter, the sludge is electroosmotic dehydrated by repeating this process.
 汚泥Sに還元剤を添加することにより、塩素ガス等のハロゲンガスの発生が防止され、機器の腐食が防止される。 By adding a reducing agent to the sludge S, generation of halogen gas such as chlorine gas is prevented, and corrosion of equipment is prevented.
 還元剤の添加量は、汚泥中のハロゲン化物イオン(特に塩化物イオン)濃度及び還元物質濃度に応じて定めるのが好ましい。還元剤をホッパー5に添加する場合は、汚泥中に含まれる塩化物イオン濃度及び還元物質濃度に基づいて、次のようにして必要添加量を決定するのが好ましい。 The amount of reducing agent added is preferably determined according to the halide ion (especially chloride ion) concentration and reducing substance concentration in the sludge. When adding a reducing agent to the hopper 5, it is preferable to determine a required addition amount as follows based on the chloride ion concentration and reducing substance concentration which are contained in sludge.
 即ち、まず塩素ガスの発生量を次の(1)式で決定する。 
  塩素ガス発生量の当量=汚泥中の塩化物イオンの当量-汚泥中の還元物質の当量        ・・・(1)
 この(1)式で予測される発生量の塩素ガスを還元できる当量以上の還元剤を添加すればよい。
That is, first, the amount of chlorine gas generated is determined by the following equation (1).
Equivalent amount of chlorine gas generated = Equivalent amount of chloride ion in sludge-Equivalent amount of reducing substance in sludge (1)
What is necessary is just to add the reducing agent more than the equivalent which can reduce | restore the generation amount chlorine gas estimated by this (1) Formula.
 汚泥中の還元物質濃度はヨウ素消費量で確認することができる。塩化物イオン濃度は直接測定することができる。 The concentration of reducing substances in sludge can be confirmed by iodine consumption. Chloride ion concentration can be measured directly.
 還元剤として、亜硫酸水素ナトリウムを用いる場合、その添加量の計算の一例を次に示す。 
 汚泥中の塩化物イオン濃度:1000mg-Cl/kg-汚泥
 汚泥中の還元物質濃度:ヨウ素消費量として1000mg-I/kgとした場合
 塩素の原子量は35.5、ヨウ素の原子量は127であるので、
 汚泥1kgからの塩素ガス発生量(mol/kg)=1000/35.5-1000/127=20.3mol/kg-汚泥
 亜硫酸水素ナトリウムと塩素ガスの反応式は
 NaHSO+Cl+HO→HSO+NaCl+HClであり、
 亜硫酸水素ナトリウムの分子量は104であるので、
 必要な亜硫酸水素ナトリウムの添加量(mg/kg)={塩化物イオン濃度/塩素原子量-ヨウ素消費量/ヨウ素原子量}×亜硫酸水素ナトリウムの原子量={1000/35.5-1000/127}×104=2110mg-NaHSO/kg-汚泥
 したがって、亜硫酸水素ナトリウムを2110mg/kg-汚泥以上添加することが好ましい。
When sodium bisulfite is used as the reducing agent, an example of calculating the amount added is shown below.
Chloride ion concentration in sludge: 1000 mg-Cl / kg-sludge Reducing substance concentration in sludge: Iodine consumption as 1000 mg-I / kg Chlorine atomic weight is 35.5 and iodine atomic weight is 127 ,
Chlorine gas generation from 1 kg of sludge (mol / kg) = 1000 / 35.5-1000 / 127 = 20.3 mol / kg-sludge The reaction formula of sodium hydrogen sulfite and chlorine gas is NaHSO 3 + Cl 2 + H 2 O → H 2 SO 4 + NaCl + HCl,
Since the molecular weight of sodium bisulfite is 104,
Necessary addition amount of sodium bisulfite (mg / kg) = {chloride ion concentration / chlorine atom amount−iodine consumption / iodine atom amount} × sodium hydrogen sulfite atomic weight = {1000 / 35.5-1000 / 127} × 104 = 2110 mg-NaHSO 3 / kg-sludge Therefore, it is preferable to add 2110 mg / kg-sludge or more of sodium hydrogen sulfite.
 通常は、この還元剤当量(この場合は2110mg/kg-汚泥)の1~1.5倍、特に1~1.2倍添加することが好ましい。 Usually, it is preferable to add 1 to 1.5 times, particularly 1 to 1.2 times the reducing agent equivalent (2110 mg / kg-sludge in this case).
 還元剤をスプレーノズル12から汚泥Sの上面に散布する場合は、散布された還元剤の多くがコンベヤ1上の汚泥Sの上面付近にとどまるので、上記の還元剤当量以下でよく、具体的には還元剤当量の0.5~1倍特に0.5~0.6倍程度とすることが好ましい。 When the reducing agent is sprayed from the spray nozzle 12 onto the upper surface of the sludge S, most of the sprayed reducing agent stays in the vicinity of the upper surface of the sludge S on the conveyor 1. Is preferably about 0.5 to 1 times, particularly 0.5 to 0.6 times the reducing agent equivalent.
 上記実施の形態では、陽極ユニット21~25とコンベヤベルト1及び陰極4によって汚泥を電気浸透脱水するようにしているが、本発明は別型式の電気浸透脱水装置にも適用可能である。例えば、図3のように、陽極ドラム61と、陰極を兼ねるコンベヤベルト62との間で汚泥Sを挟圧する電気浸透脱水装置にも本発明を適用できる。また、図示は省略するが、濾材同士の間で被処理含水物を挟圧する形式の電気浸透脱水装置にも適用することができる。例えば、前記特許文献4(特公平7-73646)、特許文献5(特許第3576269)、非特許文献1(水処理管理便覧P.340表8・6)のように1対の濾板間で圧搾膜及び電極を介して汚泥を挟圧する加圧圧搾型電気浸透脱水装置にも適用することができる。 In the above embodiment, the sludge is electroosmotically dehydrated by the anode units 21 to 25, the conveyor belt 1 and the cathode 4, but the present invention can also be applied to another type of electroosmotic dehydrator. For example, as shown in FIG. 3, the present invention can also be applied to an electroosmotic dehydrator that sandwiches sludge S between an anode drum 61 and a conveyor belt 62 that also serves as a cathode. Moreover, although illustration is abbreviate | omitted, it can apply also to the electroosmosis dehydration device of the type which clamps a to-be-processed hydrated material between filter media. For example, as described in Patent Document 4 (Japanese Patent Publication No. 7-73646), Patent Document 5 (Patent No. 3576269), Non-Patent Document 1 (Water Treatment Management Handbook P.340, Tables 8 and 6), The present invention can also be applied to a pressure-squeezing type electroosmotic dehydration apparatus that sandwiches sludge through a pressing membrane and an electrode.
 以下、実験例について説明する。 Hereinafter, experimental examples will be described.
[実験例1]
 塩化物イオン濃度が500mg/kg(14.1モル/kg)であり、ヨウ素消費量が表1の通り1000,1200,1500,2100又は3000mg/kg(7.9,9.4,11.8,16.5又は23.6モル/kg)である汚泥A~Eに亜硫酸水素ナトリウムを0,200,500,800又は1000mg/kg(0,1.9,4.8,7.7又は9.6モル/kg)の割合で添加(0mg/kgの場合は無添加)して混合し、図4に示す試験装置70に充填し、ピストンにて加圧し、塩素ガス発生量の経時変化を測定した。なお、亜硫酸水素ナトリウムは10wt%の水溶液として添加した。後述の実験例2でも同様である。
[Experimental Example 1]
The chloride ion concentration is 500 mg / kg (14.1 mol / kg), and the iodine consumption is 1000, 1200, 1500, 2100 or 3000 mg / kg (7.9, 9.4, 11.8) as shown in Table 1. , 16.5 or 23.6 mol / kg), sodium bisulfite at 0, 200, 500, 800 or 1000 mg / kg (0, 1.9, 4.8, 7.7 or 9). .6 mol / kg) (no addition in the case of 0 mg / kg) and mixed, filled in the test apparatus 70 shown in FIG. It was measured. Sodium bisulfite was added as a 10 wt% aqueous solution. The same applies to Experimental Example 2 described later.
 この試験装置70は、筒軸心方向を上下方向とした内径100mmのシリンダ71と、該シリンダ71の底部に装着されたボトムエンド72と、該シリンダ71の底面とボトムエンド72の上面との間に挟持されてシリンダ71の底面に沿って張設されたメッシュよりなる陰極73と、シリンダ71内のピストン74と、該ピストン74の下面に装着されたメッシュよりなる陽極75と、シリンダ71の上面に設けられたトップシール76とを有している。陰極73と陽極75との間に通電した状態で汚泥Sを加圧し、トップシール76の下側のスペース内の雰囲気中の塩素ガス濃度をCl検出器77で検出する。 This test apparatus 70 includes a cylinder 71 having an inner diameter of 100 mm with the cylinder axis direction being the vertical direction, a bottom end 72 attached to the bottom of the cylinder 71, and a space between the bottom surface of the cylinder 71 and the top surface of the bottom end 72. A cathode 73 made of mesh sandwiched between the cylinders 71 and stretched along the bottom surface of the cylinder 71, a piston 74 in the cylinder 71, an anode 75 made of mesh attached to the lower surface of the piston 74, and an upper surface of the cylinder 71 And a top seal 76 provided on the surface. The sludge S is pressurized in a state where current is applied between the cathode 73 and the anode 75, and the chlorine gas concentration in the atmosphere in the space below the top seal 76 is detected by the Cl 2 detector 77.
 汚泥充填量170g、印加電圧60V、最大電流値5.1A、ピストンの加圧圧力P=0.2kg/cmとしたときの塩素ガス濃度の経時変化を表1に示す。 Table 1 shows the changes over time in the chlorine gas concentration when the sludge filling amount is 170 g, the applied voltage is 60 V, the maximum current value is 5.1 A, and the piston pressure is P = 0.2 kg / cm 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1のNo.1,6~9の通り、汚泥中の塩化物イオン濃度(モル)がヨウ素消費量(モル)よりも多い汚泥Aの場合、亜硫酸水素ナトリウムを添加すると塩素ガス発生量が低下する。そして、亜硫酸水素ナトリウム添加量(モル)と汚泥中のヨウ素消費量(モル)との合計量が汚泥中の塩化物イオン濃度(モル)よりも多くなると、塩素ガスが発生しなくなる。 No. in Table 1. As shown in 1, 6 to 9, in the case of sludge A in which the chloride ion concentration (mol) in the sludge is higher than the iodine consumption (mol), the addition of sodium bisulfite reduces the chlorine gas generation amount. When the total amount of sodium bisulfite added (mol) and iodine consumption (mol) in the sludge exceeds the chloride ion concentration (mol) in the sludge, chlorine gas is not generated.
 亜硫酸水素ナトリウムを添加しないNo.1~5の場合であっても、汚泥中の塩化物イオン濃度(モル)とヨウ素消費量濃度(モル)との差が小さくなるほど、塩素ガス発生量が減少し(No.2,3)、ヨウ素消費量濃度(モル)が塩化物イオン濃度(モル)よりも多くなると、塩素ガスが発生しなくなる(No.4,5)。 No. No sodium bisulfite added Even in the case of 1 to 5, as the difference between the chloride ion concentration (mol) and the iodine consumption concentration (mol) in the sludge becomes smaller, the chlorine gas generation amount decreases (No. 2, 3), When the iodine consumption concentration (mol) is higher than the chloride ion concentration (mol), chlorine gas is not generated (No. 4, 5).
 この実験例1より、還元剤の添加が陽極での塩素ガス発生防止に効果的であることが認められた。 From Experimental Example 1, it was confirmed that the addition of the reducing agent was effective in preventing the generation of chlorine gas at the anode.
[実験例2]
 表2の通り、塩化物イオン濃度1400mg/kg(39.4モル/kg)、ヨウ素消費量200mg/kg(1.6モル/kg)の汚泥Fに対し、亜硫酸水素ナトリウムを全く添加しないか、又は1500,2000もしくは3000mg/kg(14.4,19.2又は28.8モル/kg)添加して混合し、図4の試験装置に充填し、同様にして塩素ガス発生量を測定した(No.10,13~15)。
[Experiment 2]
As shown in Table 2, sodium bisulfite is not added to sludge F with a chloride ion concentration of 1400 mg / kg (39.4 mol / kg) and iodine consumption of 200 mg / kg (1.6 mol / kg). Alternatively, 1500, 2000, or 3000 mg / kg (14.4, 19.2, or 28.8 mol / kg) was added and mixed, filled in the test apparatus of FIG. 4, and the amount of chlorine gas generated was measured in the same manner ( No. 10, 13-15).
 これとは別に、この汚泥Fを図4の装置に充填し、その上面に亜硫酸水素ナトリウムを500又は1500mg/kg(4.8又は14.4モル/kg)の割合で散布し、同様にプレスして塩素ガス発生量を測定した(No.11,12)。その結果を表3及び図5に示す。なお、図5は、表3のデータのうち、亜硫酸水素ナトリウム無添加のNo.10、1500mg/kg散布のNo.12、及び1500mg/kg混合のNo.13のみを図示している。 Separately, this sludge F is filled in the apparatus shown in FIG. 4, and sodium bisulfite is sprayed on the upper surface thereof at a rate of 500 or 1500 mg / kg (4.8 or 14.4 mol / kg). Then, the amount of chlorine gas generated was measured (No. 11, 12). The results are shown in Table 3 and FIG. In addition, FIG. 5 shows No. 10 of no addition of sodium hydrogen sulfite, No. 12 of 1500 mg / kg application | coating, and No. 12 of 1500 mg / kg mixing among the data of Table 3. Only 13 is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図5の通り、亜硫酸水素ナトリウムの添加量が多くなるほど塩素ガスの発生量が少なくなる。同一添加量の場合でも、亜硫酸水素ナトリウムを混合するよりも散布した場合の方が塩素発生量が少ないこと、及び、亜硫酸水素ナトリウム3000mg/kg混合時と1500mg/kg散布時とで塩素ガス発生量がほぼ同等であることが認められた。 As shown in Table 3 and FIG. 5, the amount of chlorine gas generated decreases as the amount of sodium bisulfite added increases. Even in the case of the same addition amount, the amount of chlorine generated is smaller when sprayed than when sodium bisulfite is mixed, and the amount of chlorine gas generated when 3000 mg / kg sodium bisulfite is mixed and 1500 mg / kg is sprayed. Were found to be approximately equivalent.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年1月29日付で出願された日本特許出願2013-014522に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-014522 filed on January 29, 2013, which is incorporated by reference in its entirety.
 1 コンベヤベルト
 2,3 ローラ
 4 陰極
 5 ホッパー
 10 還元剤供給機
 11,12 スプレーノズル
 21~25 陽極ユニット
 30 陽極板
 60 陽極ドラム
 62 コンベヤベルト
 70 試験装置
 71 シリンダ
 73 陰極
 74 ピストン
 75 陽極
DESCRIPTION OF SYMBOLS 1 Conveyor belt 2,3 Roller 4 Cathode 5 Hopper 10 Reducing agent supply machine 11,12 Spray nozzle 21-25 Anode unit 30 Anode plate 60 Anode drum 62 Conveyor belt 70 Test apparatus 71 Cylinder 73 Cathode 74 Piston 75 Anode

Claims (12)

  1.  陽極と陰極との間で被処理含水物を挟み、圧搾しながら両極間に通電して脱水する電気浸透脱水方法において、
     還元剤を被処理含水物に添加することを特徴とする電気浸透脱水方法。
    In the electroosmotic dehydration method of sandwiching the water to be treated between the anode and the cathode and dehydrating by energizing both electrodes while pressing,
    An electroosmotic dehydration method comprising adding a reducing agent to a treated water-containing material.
  2.  請求項1において、還元剤が亜硫酸水素ナトリウム及び/又はチオ硫酸ナトリウムであることを特徴とする電気浸透脱水方法。 2. The electroosmotic dehydration method according to claim 1, wherein the reducing agent is sodium bisulfite and / or sodium thiosulfate.
  3.  請求項1又は2において、還元剤を被処理含水物に添加して混合することを特徴とする電気浸透脱水方法。 3. The electroosmotic dehydration method according to claim 1 or 2, wherein a reducing agent is added to the water to be treated and mixed.
  4.  請求項3において、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の1~1.5倍の量の還元剤を添加することを特徴とする電気浸透脱水方法。 4. The halide ion concentration and the reducing substance concentration in the water to be treated are measured in claim 3, the required reducing agent equivalent is calculated from the difference between the two, and the amount of reduction is 1 to 1.5 times the required reducing agent equivalent. An electroosmotic dehydration method comprising adding an agent.
  5.  請求項1又は2において、還元剤を被処理含水物の陽極と接触する面に散布することを特徴とする電気浸透脱水方法。 3. The electroosmotic dehydration method according to claim 1 or 2, wherein the reducing agent is sprayed on the surface of the water to be treated which is in contact with the anode.
  6.  請求項5において、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の0.5~1倍の量の還元剤を散布することを特徴とする電気浸透脱水方法。 6. In claim 5, the halide ion concentration and the reducing substance concentration in the water to be treated are measured, the required reducing agent equivalent is calculated from the difference therebetween, and the amount of reduction is 0.5 to 1 times the required reducing agent equivalent. An electroosmotic dehydration method characterized by spraying an agent.
  7.  対向配置された電極と、
     対向する電極間に通電する通電手段と、
     対向する電極同士の間に配置された濾材と、
     該濾材同士の間又は濾材と一方の電極との間で被処理含水物を挟圧するための挟圧手段と、
    を有する電気浸透脱水装置において、
     還元剤を被処理含水物に添加する還元剤添加手段を備えたことを特徴とする電気浸透脱水装置。
    Oppositely arranged electrodes;
    Energizing means for energizing between the opposing electrodes;
    A filter medium disposed between the opposing electrodes;
    A clamping means for clamping the water to be treated between the filter media or between the filter media and one of the electrodes;
    In an electroosmotic dehydrator having
    An electroosmotic dehydration apparatus comprising a reducing agent adding means for adding a reducing agent to a water to be treated.
  8.  請求項7において、還元剤が亜硫酸水素ナトリウム及び/又はチオ硫酸ナトリウムであることを特徴とする電気浸透脱水装置。 The electroosmotic dehydration apparatus according to claim 7, wherein the reducing agent is sodium bisulfite and / or sodium thiosulfate.
  9.  請求項7又は8において、前記還元剤添加手段は、還元剤を被処理含水物に添加して混合することを特徴とする電気浸透脱水装置。 9. The electroosmotic dehydration apparatus according to claim 7 or 8, wherein the reducing agent adding means adds and mixes the reducing agent to the water to be treated.
  10.  請求項9において、前記還元剤添加手段は、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の1~1.5倍の量の還元剤を添加することを特徴とする電気浸透脱水装置。 10. The reducing agent addition means according to claim 9, wherein the reducing agent addition means measures a halide ion concentration and a reducing substance concentration in the water to be treated, calculates a necessary reducing agent equivalent from the difference between the two, and 1 to 1 of the necessary reducing agent equivalent. An electroosmotic dehydrator characterized by adding a reducing agent in an amount five times as large.
  11.  請求項7又は8において、前記還元剤添加手段は、還元剤を被処理含水物の陽極と接触する面に散布することを特徴とする電気浸透脱水装置。 9. The electroosmotic dehydration apparatus according to claim 7 or 8, wherein the reducing agent adding means sprays the reducing agent on a surface of the treated water-containing material that contacts the anode.
  12.  請求項11において、前記還元剤添加手段は、被処理含水物中のハロゲン化物イオン濃度及び還元物質濃度を計測し、両者の差から必要還元剤当量を算出し、必要還元剤当量の0.5~1倍の量の還元剤を散布することを特徴とする電気浸透脱水装置。 In Claim 11, the said reducing agent addition means measures the halide ion density | concentration in a to-be-processed hydrate, and a reducing substance density | concentration, calculates a required reducing agent equivalent from the difference of both, 0.5 of required reducing agent equivalent An electroosmotic dehydrator characterized by spraying a reducing agent in an amount of 1 times.
PCT/JP2014/051906 2013-01-29 2014-01-29 Electroosmotic dewatering method and electroosmotic dewatering apparatus WO2014119599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-014522 2013-01-29
JP2013014522A JP2014144429A (en) 2013-01-29 2013-01-29 Electroosmotic dewatering method and electroosmotic dewatering apparatus

Publications (1)

Publication Number Publication Date
WO2014119599A1 true WO2014119599A1 (en) 2014-08-07

Family

ID=51262312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051906 WO2014119599A1 (en) 2013-01-29 2014-01-29 Electroosmotic dewatering method and electroosmotic dewatering apparatus

Country Status (2)

Country Link
JP (1) JP2014144429A (en)
WO (1) WO2014119599A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765399A (en) * 1980-10-08 1982-04-20 Asahi Chem Ind Co Ltd Method and apparatus for treatment of excretion
JPS61136500A (en) * 1984-12-05 1986-06-24 Shinko Fuaudoraa Kk Dehydration of sludge by electroosmosis
JPH0356107A (en) * 1989-07-21 1991-03-11 Fuji Electric Co Ltd Electroosmotic dehydrator
JPH10202020A (en) * 1997-01-16 1998-08-04 Hitachi Plant Eng & Constr Co Ltd Electroendosmosis dehydrator
JP2012509170A (en) * 2008-11-19 2012-04-19 セバーン トレント デ ノラ,エルエルシー Marine sewage treatment
JP2012179572A (en) * 2011-03-02 2012-09-20 Kurita Water Ind Ltd Electro-osmotic dewatering method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765399A (en) * 1980-10-08 1982-04-20 Asahi Chem Ind Co Ltd Method and apparatus for treatment of excretion
JPS61136500A (en) * 1984-12-05 1986-06-24 Shinko Fuaudoraa Kk Dehydration of sludge by electroosmosis
JPH0356107A (en) * 1989-07-21 1991-03-11 Fuji Electric Co Ltd Electroosmotic dehydrator
JPH10202020A (en) * 1997-01-16 1998-08-04 Hitachi Plant Eng & Constr Co Ltd Electroendosmosis dehydrator
JP2012509170A (en) * 2008-11-19 2012-04-19 セバーン トレント デ ノラ,エルエルシー Marine sewage treatment
JP2012179572A (en) * 2011-03-02 2012-09-20 Kurita Water Ind Ltd Electro-osmotic dewatering method and apparatus

Also Published As

Publication number Publication date
JP2014144429A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
Ferrer et al. Formic acid regeneration by electromembrane processes
TWI534100B (en) Sludge dewatering method, electrical infiltration dewatering method and device
WO2010067340A1 (en) Method and apparatus for increasing the efficiency of electro-dewatering
EP0111920A2 (en) Apparatus and method for the electrolytic production of chlorine water
AU2004277456B2 (en) Dewatering treatment system and method
JP5736659B2 (en) Electroosmotic dehydration method and apparatus
JP2011072863A (en) Electroosmotic dewatering apparatus
JP5617240B2 (en) Electroosmotic dehydration method and apparatus
Dermentzis et al. Continuous capacitive deionization–electrodialysis reversal through electrostatic shielding for desalination and deionization of water
JP2011173058A (en) Ballast water treatment apparatus
WO2014119599A1 (en) Electroosmotic dewatering method and electroosmotic dewatering apparatus
JP2015202481A (en) Electroosmotic dehydrator
JP2012179572A (en) Electro-osmotic dewatering method and apparatus
RU2110483C1 (en) Electrochemical water treatment apparatus
US20210094845A1 (en) Wastewater treatment method
JPH01189311A (en) Electroosmotic dehydrator
JP2011212587A (en) Electro-osmotic dewatering method
CN113620629B (en) Sea sand ionization device and sea sand ionization treatment desalination system
JP2012176387A (en) Electro-osmotic dewatering method and apparatus
JP2008161795A (en) Ozone water generator
JP2011189274A (en) Method and device for electro-osmotic dewatering
KR20180009941A (en) electroosmotic dehydrator for power saving and preventing bad smell
JP2012176358A (en) Cleaning method of electro-osmotic dewatering device
JPS6328420A (en) Continuous separation of powdery charged solid substance by electrophoresis and electroosmosis
JP2014188504A (en) Method for detecting calcium scale deposition of electroosmosis dewatering device, and method for cleaning the device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745955

Country of ref document: EP

Kind code of ref document: A1