JPH0722660B2 - Electro-osmotic dehydrator - Google Patents

Electro-osmotic dehydrator

Info

Publication number
JPH0722660B2
JPH0722660B2 JP63271665A JP27166588A JPH0722660B2 JP H0722660 B2 JPH0722660 B2 JP H0722660B2 JP 63271665 A JP63271665 A JP 63271665A JP 27166588 A JP27166588 A JP 27166588A JP H0722660 B2 JPH0722660 B2 JP H0722660B2
Authority
JP
Japan
Prior art keywords
sludge
electrode
passage
gas
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63271665A
Other languages
Japanese (ja)
Other versions
JPH02119906A (en
Inventor
幹昌 山口
英幸 大花森
成徳 鈴木
利孝 新井
克雄 伊波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63271665A priority Critical patent/JPH0722660B2/en
Publication of JPH02119906A publication Critical patent/JPH02119906A/en
Publication of JPH0722660B2 publication Critical patent/JPH0722660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水処理場あるいはし尿処理場での処理工程
で生じた汚泥を対象に、汚泥を脱水処理する電気浸透式
脱水機に関する。
TECHNICAL FIELD The present invention relates to an electroosmotic dehydrator for dehydrating sludge for sludge generated in a treatment process at a sewage treatment plant or a night soil treatment plant.

〔従来の技術〕[Conventional technology]

電気浸透を応用して汚泥を連続式に脱水処理する電気浸
透式脱水機として、第5図,第6図に示す構成のものが
特開昭60−25597などで公知である。
As an electroosmotic dehydrator for continuously dehydrating sludge by applying electroosmosis, the one having a structure shown in FIGS. 5 and 6 is known in JP-A-60-25597.

図において、1は周上に陽極側の電極1aの装備した回転
ドラム、2は回転ドラム1に対向して張り巡らした陰極
側の電極を兼ねたプレスベルト、3はプレスベルト2の
周面上に重ね合わせて敷設した濾布などのフィルタベル
ト、4は陽極側の電極1aと陰極側の電極2との間に電圧
を印加する直流電源であり、前記した回転ドラム1とプ
レスベルト2との間の対向面域に脱水領域となる汚泥通
路が形成されている。
In the figure, 1 is a rotary drum equipped with an electrode 1a on the anode side, 2 is a press belt which also faces the rotary drum 1 and also serves as a cathode electrode, and 3 is on the peripheral surface of the press belt 2. A filter belt 4 such as a filter cloth laid on top of each other is a DC power source for applying a voltage between the electrode 1a on the anode side and the electrode 2 on the cathode side, and is composed of the rotary drum 1 and the press belt 2 described above. A sludge passage, which serves as a dehydration area, is formed in the facing surface area between them.

かかる構成で、プレスベルト2を駆動し、かつ電極間に
電圧を印加した状態でプレ脱水された汚泥5を汚泥通路
へ供給すると、汚泥5は回転ドラム1とプレスベルト2
との間に挟まれてベルト搬送され、この過程で機械的な
圧搾力に加えて対向電極間の電場で電気浸透作用を受け
るようになる。すなわち、汚泥5の粒子(ζ−電位が
負)が負,含有水は正に帯電され、汚泥水は陰極側のプ
レスベルト2の方へ流動し、ここで電極部材に放電する
とともに、フィルタベルト3を透過して汚泥5より分離
脱水される。また、フィルタベルト3を透過した濾水は
プレスベルト2に穿孔した排水穴2a(第6図)より下方
に摘下し、ここから系外に排水される。一方、汚泥5は
脱水されて低含水率のケーキに変わり、プレスベルト2
に沿って搬出,回収される。
With such a configuration, when the press belt 2 is driven and the pre-dehydrated sludge 5 is supplied to the sludge passage in a state where a voltage is applied between the electrodes, the sludge 5 is rotated by the rotary drum 1 and the press belt 2.
It is sandwiched between and and conveyed by a belt, and in this process, in addition to mechanical squeezing force, it is subjected to electroosmotic action by the electric field between the counter electrodes. That is, the particles of the sludge 5 (negative in ζ-potential) are negative, the contained water is positively charged, the sludge water flows toward the press belt 2 on the cathode side, and is discharged to the electrode member there, and at the same time, the filter belt. It permeates through 3 and is separated and dehydrated from sludge 5. Further, the filtered water that has passed through the filter belt 3 is dropped below the drainage hole 2a (FIG. 6) formed in the press belt 2 and drained out of the system from here. On the other hand, the sludge 5 is dehydrated into a cake with a low water content, and the press belt 2
It is carried out along with and collected.

なお、前記は汚泥5の粒子のζ−電位が負であることか
ら回転ドラム1の電極1a(排集水側)の極性を正,プレ
スベルト2の電極(集水側)の極性を負としたが、特に
汚泥粒子のζ−電位が正である場合には、逆に回転ドラ
ム側電極1aの極性を負,プレスベルト2側の極性を正に
して電圧を印加するものとする。
Since the ζ-potential of the particles of the sludge 5 is negative, the polarity of the electrode 1a (discharging water side) of the rotary drum 1 is positive and the polarity of the electrode of the press belt 2 (water collecting side) is negative. However, in particular, when the ζ-potential of the sludge particles is positive, on the contrary, the voltage is applied with the polarity of the rotating drum side electrode 1a being negative and the polarity of the press belt 2 side being positive.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、下水処理場,し尿処理場などで発生する一般
の汚泥は、含有水に硫酸イオン,塩素イオンなどを多く
含んでいる。このために前記の電気浸透過程で汚泥含有
水が電気分解され、陽極側には酸素ガスと塩素ガスが、
また陰極側には水素ガスが発生する。この場合に、陰極
側電極(プレスベルト2)の表面に発生したガスは、汚
泥より分離した濾水と一緒にフィルタベルトを透過して
系外に排除される。これに対して陽極側電極(回転ドラ
ム1)の表面に発生したガスは逃げ場がなく、第6図で
表すように陽極側電1aの表面と汚泥5との間にガスGが
滞留するようになる。しかもこの発生ガスは非導電性で
あるために、結果として電極1aと汚泥5との間の接触面
の電気抵抗を増大させる。
By the way, general sludge generated in sewage treatment plants, human waste treatment plants, etc., contains a large amount of sulfate ions, chlorine ions, etc. in the contained water. For this reason, sludge-containing water is electrolyzed in the electroosmosis process, oxygen gas and chlorine gas on the anode side,
Further, hydrogen gas is generated on the cathode side. In this case, the gas generated on the surface of the cathode side electrode (press belt 2) passes through the filter belt together with the filtered water separated from the sludge and is removed from the system. On the other hand, the gas generated on the surface of the anode side electrode (rotary drum 1) has no escape, so that the gas G stays between the surface of the anode side electrode 1a and the sludge 5 as shown in FIG. Become. Moreover, since the generated gas is non-conductive, as a result, the electric resistance of the contact surface between the electrode 1a and the sludge 5 is increased.

一方、電気浸透作用による水の移動量,つまり脱水能力
は、汚泥中を通流する電流の大きさに比例することか
ら、前記のように電極と汚泥との間にガスが封じ込めら
れた状態になると、導電性を阻害して汚泥に電流が流れ
難くなり、このままでは電気浸透の脱水能力が低下す
る。したがって電気浸透式脱水機で所定の脱水処理能力
を維持するには、残留ガスに起因する電気抵抗の増加分
を補償するよう電極間に印加する電圧を高める必要があ
る。しかして、印加電圧を高めると消費電力量が増大
し、結果として電気浸透式脱水機のランニングコストが
嵩むようになり、消費電力量と汚泥の脱水処理量との比
で表す脱水効率が低下する。
On the other hand, the amount of water transferred by electroosmosis, that is, the dehydration capacity, is proportional to the magnitude of the electric current flowing through the sludge, so that the gas is trapped between the electrode and sludge as described above. In that case, the conductivity is obstructed, and it becomes difficult for an electric current to flow in the sludge, and if it is left as it is, the dehydration ability of the electroosmosis decreases. Therefore, in order to maintain a predetermined dehydration treatment capacity in the electroosmotic dehydrator, it is necessary to increase the voltage applied between the electrodes so as to compensate for the increase in electric resistance caused by the residual gas. Therefore, when the applied voltage is increased, the power consumption increases, resulting in an increase in the running cost of the electroosmotic dehydrator, and the dewatering efficiency represented by the ratio of the power consumption to the sludge dewatering amount decreases.

本発明は上記の点にかんがみなされたものであり、電気
浸透過程の電気分解により、特に濾過部材(フィルタベ
ルト)を装備していない非集水側の電極と汚泥との間に
発生したガスを簡易な手段で系外に排除させることによ
り、ガス滞留に起因する接触電気抵抗の増加を回避し、
少ない消費電力量で効率よく電気浸透脱水できるように
した電気浸透式脱水機を提供することを目的とする。
The present invention has been conceived in view of the above points, in which gas generated between the non-collecting side electrode not equipped with a filter member (filter belt) and the sludge by electrolysis in the electroosmosis process is considered. By eliminating it outside the system by simple means, avoiding an increase in contact electrical resistance due to gas retention,
It is an object of the present invention to provide an electroosmotic dehydrator capable of efficiently performing electroosmotic dehydration with a small amount of power consumption.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、本発明によれば、まず第1
の解決手段として、非集水側の電極に対し、該電極の表
面と汚泥との間にガス抜き通路を形成しその一部が該電
極の表面と当接するストリングを汚泥通路の内外に亙っ
て複数本分散敷設し、電気浸透過程で非集水側電極と汚
泥と間に発生したガスを前記ガス抜き通路を通じて系外
に排除するように構成するものとする。
In order to solve the above problems, according to the present invention, firstly,
As a means for solving the problem, for the electrode on the non-water collecting side, a gas vent passage is formed between the surface of the electrode and the sludge, and a string, a part of which contacts the surface of the electrode, is placed inside and outside the sludge passage. A plurality of them are laid down and dispersed, and the gas generated between the non-water collecting side electrode and the sludge in the electroosmosis process is discharged to the outside of the system through the gas vent passage.

また、第2の解決手段として、汚泥通路を横切るように
対向電極の間にまたがってガス透過性を有するストリン
グを敷設し、電気浸透過程で非集水側電極と汚泥との間
に発生したガスを前記ストリングの内部気孔を経由して
集水側電極に設けた濾過部材へ導き、ここから系外に排
除するよう構成するものとする。
As a second solution, a string having gas permeability is laid across the opposite electrodes so as to traverse the sludge passage, and gas generated between the non-water collecting side electrode and the sludge in the electroosmosis process. Is guided to the filtering member provided on the water collecting side electrode through the internal pores of the string, and is excluded from the system out of the filtering member.

〔作用〕[Action]

まず、前記第1の手段において、ストリングは例えば断
面凸形の合成ゴム製ベルト体であり、幅の狭い端面を非
集水側電極の電極面に当接し、汚泥通路と平行にその内
外に亙って敷設されている。なお、非集水側電極が回転
ドラム形であれば、ストリングを回転ドラムの周面に沿
って敷設する。ここで対向電極間の汚泥通路にプレ脱水
された汚泥(生汚泥に比べて流動性が低い)を供給する
と、前記のストリングが汚泥に食い込み、ストリングの
幅の広い端面の背後にガス抜き通路として機能する大気
側に連通した空隙が残存成形されるようになる。したが
って電気浸透過程における汚泥水の電気分解で非集水側
電極の表面に発生したガスは、前記したガス抜き通路を
経由して大気側に排除される。これにより、発生ガスが
汚泥と電極表面との間に残留することがなくなり、残留
ガスに起因して電極と汚泥との間の接触電気抵抗が増大
するのを回避できる。
First, in the first means, the string is, for example, a synthetic rubber belt body having a convex cross-section, the narrow end surface of which is brought into contact with the electrode surface of the non-water collecting side electrode, and the inside and outside thereof are parallel to the sludge passage. Is laid. If the non-water collecting side electrode is a rotary drum type, the string is laid along the peripheral surface of the rotary drum. Here, when pre-dehydrated sludge (having lower fluidity than raw sludge) is supplied to the sludge passage between the opposing electrodes, the above-mentioned string bites into the sludge and forms a gas vent passage behind the wide end face of the string. Voids that communicate with the functioning atmosphere side are left to be molded. Therefore, the gas generated on the surface of the non-water collecting side electrode due to the electrolysis of the sludge water in the electroosmosis process is removed to the atmosphere side via the gas vent passage. As a result, the generated gas does not remain between the sludge and the electrode surface, and it is possible to prevent the contact electric resistance between the electrode and the sludge from increasing due to the residual gas.

一方、第2の手段において、ストリングは例えば連続気
泡形の気孔を有するスポンジ状の合成ゴムで作られたガ
ス透過性のベルト体であり、その一方端面を非集水側の
電極面に当接し、他方端面を対向電極上に敷設した濾過
部材と当接するようにして敷設されている。したがって
電気浸透過程での汚泥水の電気分解により非集水側電極
の表面に発生したガスは、この部分に滞留することな
く、前記したガス透過性のストリングの内部気孔を拡散
し、されにストリングの他方側端面と接する濾過部材を
経て大気側に排除される。
On the other hand, in the second means, the string is a gas permeable belt body made of, for example, a sponge-like synthetic rubber having open-cell-shaped pores, and one end surface of the string contacts the electrode surface on the non-water collecting side. The other end surface is laid so as to come into contact with the filtering member laid on the counter electrode. Therefore, the gas generated on the surface of the non-collection side electrode due to the electrolysis of sludge water in the electroosmosis process diffuses through the internal pores of the gas-permeable string described above without staying in this portion, and Is removed to the atmosphere side through the filter member that is in contact with the other end face of the.

〔実施例〕〔Example〕

次に第1図,第2図、および第3図,第4図により、前
記した第1の解決手段,第2の解決手段の実施例を説明
する。なお各図において第5図,第6図に対応する同一
部材には同じ符号が付してある。
Next, referring to FIGS. 1 and 2, and FIGS. 3 and 4, an embodiment of the first solving means and the second solving means will be described. In each drawing, the same members corresponding to those in FIGS. 5 and 6 are designated by the same reference numerals.

実施例1:まず第1図,第2図において、6がエンドレス
ベルト体としてなるストリングであり、複数本のストリ
ング6が回転ドラム1の周面を取り巻くように回転ドラ
ムの幅方向に沿って所定ピッチ間隔置きに分散敷設され
ている。また、ストリング6はその断面形状が凸形であ
り、第2図に明示されているように幅の狭い端面を電極
1aの表面に当接した状態で、第1図のごとく回転ドラム
1とプーリ7との間に架け渡して張架されている。
Embodiment 1 First, in FIGS. 1 and 2, 6 is a string which is an endless belt body, and a plurality of strings 6 are arranged along the width direction of the rotary drum 1 so as to surround the peripheral surface of the rotary drum 1. Distributed and laid at pitch intervals. Further, the string 6 has a convex cross-sectional shape, and as shown in FIG.
While being in contact with the surface of 1a, it is stretched over the rotating drum 1 and the pulley 7 as shown in FIG.

ここで、対向電極間の汚泥通路に前段でプレ脱水された
汚泥5を供給すると、第2図のように汚泥5の中にスト
リング6が食い込むようになる。この場合に、汚泥5は
プレ脱水により流動性が低くなっているので横方向に展
延する割合が少なく、したがって前記のようにストリン
グ6が汚泥5に食い込んだ際に、ストリング6の最大幅
範囲で汚泥5が押し除けられ、ストリング6の裏側には
符号6aで示すように電極1aの表面と汚泥5で取り囲まれ
たガス抜き通路として機能する空隙が成形されるように
なる。このガス抜き通路6aは汚泥通路の内外に亙って敷
設されたストリング部材6に沿って形成され、汚泥通路
の入口,出口地点で大気側に開放している。
Here, when the sludge 5 pre-dehydrated in the previous stage is supplied to the sludge passage between the opposing electrodes, the string 6 comes into the sludge 5 as shown in FIG. In this case, since the sludge 5 has low fluidity due to pre-dehydration, the ratio of spreading in the lateral direction is small. Therefore, when the string 6 bites into the sludge 5 as described above, the maximum width range of the string 6 is reached. Thus, the sludge 5 is pushed away, and a void functioning as a gas vent passage surrounded by the surface of the electrode 1a and the sludge 5 is formed on the back side of the string 6 as indicated by reference numeral 6a. The gas vent passage 6a is formed along the string member 6 laid inside and outside the sludge passage, and is open to the atmosphere side at the entrance and exit points of the sludge passage.

したがって、汚泥5の電気浸透過程で汚泥含有水の電気
分解により電極1aの表面に発生したガスは、その近傍に
開口している前記のガス抜き通路6aに移行し、該通路を
通じて大気側に排除される。これにより、回転ドラム1
の電極面と汚泥5との間に発生ガスが残留することな
く、残留ガスに起因する電極1aと汚泥5との間の接触電
気抵抗の増加を回避して高い導電性が確保される。この
結果として印加電圧を必要以上に高めることなしに、汚
泥5に十分な値の電流を流し続けて高い電気浸透脱水能
力が維持できるようになる。
Therefore, the gas generated on the surface of the electrode 1a due to the electrolysis of the sludge-containing water during the electroosmosis process of the sludge 5 moves to the degassing passage 6a which is open in the vicinity thereof, and is discharged to the atmosphere side through the passage. To be done. As a result, the rotating drum 1
The generated gas does not remain between the electrode surface and the sludge 5 and high conductivity is ensured by avoiding an increase in the contact electric resistance between the electrode 1a and the sludge 5 due to the residual gas. As a result, it is possible to maintain a high electro-osmotic dehydration capacity by continuously supplying a sufficient current to the sludge 5 without increasing the applied voltage more than necessary.

次に本発明の効果を確認するために行った実機試験結果
について述べる。この試験では、下水処理場で発生した
生汚泥をロール脱水機により含水率81%にプレ脱水した
汚泥を試料とし、試料を処理速度を90kg/m2・hr(脱水
濾過面積を1m2当たりに換算)で含水率65%まで脱水さ
せてケーキ化することを条件に、汚泥試料を第1図およ
び第5図の電気浸透式脱水機で脱水処理し、この脱水処
理に要した電力量を比較した。
Next, the results of an actual machine test conducted to confirm the effect of the present invention will be described. In this test, raw sludge generated at a sewage treatment plant was pre-dewatered with a roll dehydrator to a water content of 81%, and the sample was treated at a treatment speed of 90 kg / m 2 · hr (dewatering filtration area per 1 m 2 The sludge sample was dehydrated by the electroosmosis dehydrator shown in Fig. 1 and Fig. 5 under the condition that it was dehydrated to a water content of 65% and converted into a cake, and the amount of electricity required for this dehydration treatment was compared. did.

この試験結果によれば、従来の電気浸透式脱水機(第5
図)では、安定した電気浸透脱水を維持するのに印加電
圧75Vが必要であり、消費電力量は0.38KWH/kg(汚泥の
脱水ケーキ)であった。これに対して、回転ドラムの周
囲にストリングを70mm間隔おきに取り付けた電気浸透式
脱水機(第1図)では、印加電圧60Vで安定した電気浸
透脱水が維持でき、消費電力量は0.3KWH/kg(汚泥の脱
水ケーキ)であった。
According to this test result, the conventional electro-osmotic dehydrator (No. 5
In the figure), an applied voltage of 75 V was required to maintain stable electroosmotic dehydration, and the power consumption was 0.38 KWH / kg (dehydrated cake of sludge). On the other hand, in the electroosmotic dehydrator (Fig. 1) in which strings are installed at intervals of 70 mm around the rotating drum, stable electroosmotic dehydration can be maintained at an applied voltage of 60 V, and the power consumption is 0.3 KWH / It was kg (dehydrated cake of sludge).

つまり、従来と比べて印加電圧を15V低めることがで
き、この印加電圧の低下に相応して汚泥の脱水処理に要
する消費電力量も大幅に節減できることが確認された。
また、目視観察でも、脱水処理の過程でストリングのガ
ス抜き通路が汚泥で塞がれることが認められなかった。
さらに脱水処理中には、発熱により発生した水蒸気と一
緒に電気分解で生じたガスがストリングのガス抜き通路
を通じて外部に吹き出ることが確認できた。
In other words, it was confirmed that the applied voltage can be reduced by 15 V compared to the conventional one, and the power consumption required for the sludge dewatering treatment can be significantly reduced in accordance with the decrease in the applied voltage.
In addition, it was not observed by visual observation that the degassing passage of the string was blocked with sludge during the dehydration process.
Further, during the dehydration treatment, it was confirmed that the gas generated by the electrolysis together with the steam generated by the heat generation is blown out through the degassing passage of the string.

実施例2:次に本発明の第2の手段による実施例を第3
図,第4図に示す。この実施例では、ストリング8とし
て、気孔径が50〜100μm程度である合成ゴム製の連続
気泡形スポンジで作られた断面方形状のエンドレスベル
ト体が採用され、回転ドラム1の幅方向に間隔を置いて
並べた複数本のストリング8が回転ドラム1とプーリ7
との間に架け渡し張架されている。また、このストリン
グ8の断面,特にその高さ方向の厚み寸法は、機内への
装荷状態で外側端面が相手側電極のプレスベルト2に重
ねたフィルタベルト3に当接するように、汚泥通路の高
さhよりも大きめに定めてある。なお、ストリング8の
取付け間隔ピッチは70mm程度に選定されている。
Second Embodiment: Next, a third embodiment of the second means of the present invention will be described.
It is shown in Fig. 4 and Fig. 4. In this embodiment, as the string 8, an endless belt body having a rectangular cross section made of an open-cell sponge made of synthetic rubber having a pore diameter of about 50 to 100 μm is adopted, and the space is arranged in the width direction of the rotary drum 1. A plurality of strings 8 arranged side by side include a rotary drum 1 and a pulley 7.
It is stretched over between and. In addition, the cross section of this string 8, especially the thickness dimension in the height direction, has a height of the sludge passage so that the outer end surface of the string 8 contacts the filter belt 3 superposed on the press belt 2 of the opposite electrode when loaded in the machine. It is set to be larger than h. The string 8 is attached at a pitch of about 70 mm.

したがって、汚泥5の電気浸透過程で汚泥含有水の電気
分解により電極1aの表面に発生したガスは、その近傍に
配置されている多孔質のストリング8に移行してストリ
ング8の内部気孔を拡散し、その端面からフィルタベル
ト3を通じて大気側に排除される。これにより、回転ド
ラム1の電極面と汚泥5との間に発生ガスが残留するこ
とがなく、残留ガスに起因する電極1aと汚泥5との間の
接触電気抵抗の増加を回避して高い導電性が確保でき
る。
Therefore, the gas generated on the surface of the electrode 1a due to the electrolysis of the sludge-containing water during the electroosmosis process of the sludge 5 moves to the porous string 8 arranged in the vicinity thereof and diffuses through the internal pores of the string 8. , Through the filter belt 3 from the end surface to the atmosphere side. As a result, the generated gas does not remain between the electrode surface of the rotating drum 1 and the sludge 5, and an increase in the contact electric resistance between the electrode 1a and the sludge 5 caused by the residual gas is avoided and high conductivity is achieved. You can secure the sex.

また、この実施例について、先記実施例(第1図,第2
図)で述べた評価試験と同様な試験を行った結果でも、
印加電圧,消費電力量の面で略同等な効果の得られるこ
とが確認されている。
In addition, regarding this embodiment, the above-mentioned embodiment (Figs. 1 and 2
The result of the same test as the evaluation test described in
It has been confirmed that almost the same effects can be obtained in terms of applied voltage and power consumption.

〔発明の効果〕〔The invention's effect〕

本発明による電気浸透式脱水機は、以上説明したように
構成されているので、次記の効果を奏する。
Since the electroosmotic dehydrator according to the present invention is configured as described above, it has the following effects.

すなわち、対向電極間の汚泥通路内にガス抜き機能を与
えるストリングを敷設し、電気浸透脱水過程での電気分
解作用により汚泥と非集水側電極との間に発生したガス
をその場に残留させることなしに系外へ排除させるよう
にしたことにより、残留ガスに起因する電極と汚泥との
接触面で電気抵抗が増大化するのを回避して高い導電性
を維持することができ、これにより汚泥の脱水処理に要
する消費電力量を節減して高い脱水効率が得られる。
That is, a string that provides a gas releasing function is laid in the sludge passage between the opposing electrodes, and the gas generated between the sludge and the non-water collecting side electrode is left in place by the electrolysis action in the electroosmotic dehydration process. It is possible to avoid the increase in the electrical resistance at the contact surface between the electrode and the sludge due to the residual gas, and to maintain a high electrical conductivity by eliminating it outside the system without any problem. Higher dewatering efficiency can be obtained by reducing the power consumption required for dewatering sludge.

【図面の簡単な説明】 第1図,第3図はそれそれ異なる本発明実施例の全体構
成図、第2図,第4図はそれぞれ第1図,第3図におけ
る汚泥通路部の断面拡大図、第5図は従来における電気
浸透式脱水機の全体構成図、第6図は第5図における汚
泥通路部の断面拡大図である。図において、 1:回転ドラム、1a:電極(非集水側電極)、2:プレスベ
ルト(集水側電極)、3:フィルタベルト(濾過部材)、
4:電源、5:汚泥、6:ストリング、6a:ガス抜き通路、8:
ガス透過性ストリング。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 3 are different overall configuration diagrams of an embodiment of the present invention, and FIGS. 2 and 4 are enlarged sectional views of the sludge passage portion in FIG. 1 and FIG. 3, respectively. FIG. 5 is an overall configuration diagram of a conventional electroosmotic dehydrator, and FIG. 6 is an enlarged cross-sectional view of the sludge passage portion in FIG. In the figure, 1: rotating drum, 1a: electrode (non-water collecting side electrode), 2: press belt (water collecting side electrode), 3: filter belt (filtering member),
4: Power supply, 5: Sludge, 6: String, 6a: Gas vent passage, 8:
Gas permeable string.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 利孝 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 伊波 克雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特公 昭63−45605(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshitaka Arai 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 within Fuji Electric Co., Ltd. (56) References Japanese Patent Publication Sho 63-45605 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】汚泥通路を隔てて対向する陽極,陰極側の
電極間に電圧を印加し、汚泥通路に供給した汚泥の含有
水を電気浸透作用により一方の電極側に集めた上で、濾
過部材を通じて濾水を系外に排水するようにした電気浸
透式脱水機において、非集水側の電極に対し、該電極の
表面と汚泥との間にガス抜き通路を形成しその一部が該
電極の表面と当接するストリングを汚泥通路の内外に亙
って複数本分散敷設し、電気浸透過程で非集水側電極と
汚泥との間に発生したガスを前記ガス抜き通路を通じて
系外に排除するようにしたことを特徴とする電気浸透式
脱水機。
1. A voltage is applied between the electrodes on the anode and cathode sides facing each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmosis and then filtered. In an electroosmotic dehydrator designed to drain filtered water out of the system through a member, a gas vent passage is formed between the surface of the electrode and the sludge with respect to the electrode on the non-water collecting side A plurality of strings that are in contact with the surface of the electrode are distributed and laid inside and outside the sludge passage, and the gas generated between the non-water collecting side electrode and the sludge during the electroosmosis process is removed to the outside of the system through the gas vent passage. An electro-osmotic dehydrator characterized in that
【請求項2】汚泥通路を隔てて対向する陽極,陰極側の
電極間に電圧を印加し、汚泥通路に供給した汚泥の含有
水を電気浸透作用により一方の電極側に集めた上で、電
極面上に設けた濾過部材を通じて濾水を系外に排水する
ようにした電気浸透式脱水機において、汚泥通路を横切
るように対向電極の間にまたがってガス透過性を有する
ストリングを敷設し、電気浸透過程で非集水側電極と汚
泥との間に発生したガスを前記スタリングの内部気孔を
通じて集水側電極に設けた濾過部材へ導き、ここから系
外に排除するようにしたことを特徴とする電気浸透式脱
水機。
2. A voltage is applied between the electrodes on the anode and cathode sides facing each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmosis, and then the electrode is formed. In an electroosmotic dehydrator configured to drain filtered water out of the system through a filtering member provided on the surface, a string having gas permeability is laid across the opposite electrodes across the sludge passage, The gas generated between the non-collecting side electrode and the sludge in the permeation process is guided to the filtering member provided on the collecting side electrode through the internal pores of the Stirling, and is removed from the system out of this. An electro-osmotic dehydrator.
JP63271665A 1988-10-27 1988-10-27 Electro-osmotic dehydrator Expired - Lifetime JPH0722660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63271665A JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63271665A JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Publications (2)

Publication Number Publication Date
JPH02119906A JPH02119906A (en) 1990-05-08
JPH0722660B2 true JPH0722660B2 (en) 1995-03-15

Family

ID=17503182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63271665A Expired - Lifetime JPH0722660B2 (en) 1988-10-27 1988-10-27 Electro-osmotic dehydrator

Country Status (1)

Country Link
JP (1) JPH0722660B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401375A (en) * 1991-05-09 1995-03-28 Fuji Electric Co., Ltd. Electro-endosmosis type dehydrator
JP3141542B2 (en) * 1992-07-07 2001-03-05 富士電機株式会社 Electroosmotic dehydrator
BE1010783A3 (en) * 1996-12-03 1999-01-05 Franki N V Sa Industrial and dredging sludge desiccation method and installation for the implementation of said method
CN105158034A (en) * 2015-07-31 2015-12-16 河海大学 Cohesive soil large-scale triaxial sample consolidating apparatus and consolidating method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345605A (en) * 1986-08-13 1988-02-26 Mitsubishi Electric Corp Composite controller

Also Published As

Publication number Publication date
JPH02119906A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
EP0784501B1 (en) Dewatering process
EP1289623B1 (en) Apparatus for electro-dewatering
JP2010514555A (en) Physical separation device for polar substances
US7828953B2 (en) Process and apparatus for treating sludge by the combined action of electro-osmosis and pressure
JP2007507338A (en) Dehydration system and method
KR0137000B1 (en) Electro-endosmosis type dehydrator
JPH0722660B2 (en) Electro-osmotic dehydrator
JPH0685845B2 (en) Electro-osmotic dehydrator
JPH0356107A (en) Electroosmotic dehydrator
JPH0615706U (en) Belt dehydrator
JPS6344406B2 (en)
JPS6345605B2 (en)
JPH0685844B2 (en) Electro-osmotic dehydrator
JPH0326120B2 (en)
JPS6097012A (en) Dehydration treatment system of sludge
JPH01127012A (en) Electrode of electroosmosis type dehydrator
JPS6344408B2 (en)
JPS61259711A (en) Electroosmotic dehydration apparatus
JP3616882B2 (en) Electroosmotic dehydration electrode plate
CN106477845B (en) A kind of fixed plate electrode propelling movement type electric dehydration purification device
GB2294948A (en) De-watering sludge/slurry by simultaneous mechanical compression and electro-osmosis using conductive belt
GB2065169A (en) Electrocoagulation method and apparatus for dewatering of aqueous sludges
JPS5842798A (en) Electrode cover in electrolytic treating device
SU742394A1 (en) Unit for dehydrating precipitates
AU2001254528B2 (en) Apparatus for electrodewatering

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14