JPH02116157A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH02116157A
JPH02116157A JP63269687A JP26968788A JPH02116157A JP H02116157 A JPH02116157 A JP H02116157A JP 63269687 A JP63269687 A JP 63269687A JP 26968788 A JP26968788 A JP 26968788A JP H02116157 A JPH02116157 A JP H02116157A
Authority
JP
Japan
Prior art keywords
type
potential
circuit
power supply
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63269687A
Other languages
Japanese (ja)
Inventor
Noboru Kiyozuka
清塚 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63269687A priority Critical patent/JPH02116157A/en
Publication of JPH02116157A publication Critical patent/JPH02116157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate keeping a high impedance state when an electric circuit is cut off by a method wherein an N-type semiconductor region in which a P-type channel FET is formed is connected to a high potential side source line through a Schottky junction. CONSTITUTION:An N-type channel MOS transistor TN which is one of FET's constituting a CMOS circuit is formed on a P-type substrate 1 and a P-type channel MOS transistor TP which is the other FET is formed on the N-type well 2. An N-type well contact 7 through which a source potential is applied to the N-type well 2 on which the transistor Tp is formed is composed of a Schottky junction instead of a conventional N<+>-type impurity-doped region. In other words, a Schottky diode DSSD is connected to a parasitic diode D2 in series and newly inserted between an electric source (VDD) line and an output terminal Q. The N-type well 2 is pulled up by a voltage lower than the source voltage VDD by the Schottky diode potential VSBD and a comtinuity potential. Even if the source voltage of the CMOS output circuit is cut off, the high impedance state of the output terminal can be maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特にCMOS回路
を含む集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to an integrated circuit device including a CMOS circuit.

〔従来の技術〕[Conventional technology]

第3図(a)および(b)はそれぞれ従来のCMOS回
路を含む半導体集積回路装置の出力回路部分の断面構造
図およびその等価回路図である。このCMOS回路はイ
ンバータを構成しており、P型シリコン基板1とそのN
ウェル2上に互いに隣接配置されたNチャネルMO9)
−ランジスタTNとPチャネルMOSトランジスタTp
との組合わせ回路から成る。ここで、トランジスタTN
およびTpの各ソース領域は接地電位(GND)および
電源電位(VDD)にそれぞれ接続され、ゲートの共通
接続端子に加わる入力信号をレベル反転してドレインの
共通接続端子Qがら出力するよう機能する。
FIGS. 3(a) and 3(b) are a cross-sectional structural diagram and an equivalent circuit diagram of an output circuit portion of a semiconductor integrated circuit device including a conventional CMOS circuit, respectively. This CMOS circuit constitutes an inverter, and includes a P-type silicon substrate 1 and its N
N-channel MO9 arranged adjacent to each other on well 2)
- Transistor TN and P-channel MOS transistor Tp
It consists of a combination circuit with Here, the transistor TN
The source regions of Tp and Tp are respectively connected to the ground potential (GND) and the power supply potential (VDD), and function to invert the level of an input signal applied to the common connection terminal of the gate and output it from the common connection terminal Q of the drain.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の半導体集積回路装置では
、通常行われるように、基板およびウェルに接地電位(
GND)および電源電位(Voo)をそれぞれ与えてそ
れぞれの電位を安定せしめると、P型基板コンタクト3
とNチャネルMOSトランジスタTNのドレイン領域4
との間およびPチャネルMOSトランジスタTPのドレ
イン領域5とN+トド−ング領域からなるNウェル・コ
ンタクト6との間に寄生ダイオードD1およびD2がそ
れぞれ形成されるようになる。従って、この状態で電源
(VDD)ラインの遮断によりトランジスタTPが動作
不能に陥りトランジスタTpが見掛は上GND論理レベ
ルに落とされた場合には、基板上の他の素子からの電流
がこの寄生ダイオードD2が形成する電流流入パスを経
由して出力端子Qから電源(Voo)ラインに流れ込む
現象が起る。このとき、出力端子Qからの流入電流値が
高ければトランジスタTPを損傷する場合もあり得るが
、他方では出力端子Qの電位がダイオードの導通電位に
相当する高々0.6Vの低電位に保持されることとなる
ので、このCMOSインバータ回路は入力信号のレベル
如何に関わらず実質上書に“L ”レベルを出力するよ
うになる。従来、この問題点に対しては、CMO3回路
には上述の問題が生じ得ることを充分考慮した上で、使
用上の制限項目として使用者側が細心の注意を払うこと
で対処されてきている。
However, in the conventional semiconductor integrated circuit device described above, the substrate and well are connected to the ground potential (
GND) and power supply potential (Voo) to stabilize the respective potentials, the P-type substrate contact 3
and the drain region 4 of the N-channel MOS transistor TN.
Parasitic diodes D1 and D2 are respectively formed between drain region 5 of P channel MOS transistor TP and N well contact 6 consisting of an N+ doping region. Therefore, in this state, if the power supply (VDD) line is cut off and the transistor TP becomes inoperable, and the transistor Tp is apparently lowered to the upper GND logic level, the current from other elements on the board will flow into this parasitic state. A phenomenon occurs in which current flows from the output terminal Q to the power supply (Voo) line via the current inflow path formed by the diode D2. At this time, if the inflow current value from the output terminal Q is high, it may damage the transistor TP, but on the other hand, the potential of the output terminal Q is maintained at a low potential of at most 0.6 V, which corresponds to the conduction potential of the diode. Therefore, this CMOS inverter circuit essentially outputs the "L" level regardless of the level of the input signal. Conventionally, this problem has been dealt with by the user paying close attention as a restriction on use, taking into full consideration that the above-mentioned problem may occur in the CMO3 circuit.

一般に、集積回路装置では、その電源遮断時において出
力端子がハイ・インく−ダンス状態となることが好まし
く、開発時にシステム・ボード上で複数個の集積回路を
動作チエツクを行う際、論理動作範囲を限定した上で一
部の集積回路の電源を遮断して検討される。この時、電
源遮断された集積回路の出力端がハイ・インピーダンス
状態になっているのが最も好ましいとされることは勿論
である。
Generally speaking, it is preferable for the output terminals of integrated circuit devices to be in a high-dance state when the power is turned off. The study will be conducted by limiting the power supply to some integrated circuits and cutting off the power supply. At this time, it is of course most preferable that the output terminal of the integrated circuit whose power is cut off is in a high impedance state.

本発明の目的は、上記の情況に鑑み、基板上のCMO8
出力回路がその電源遮断時において出力端をハイ・イン
ピーダンス状態に設定され得るようにした半導体集積回
路装置を提供することである。
In view of the above circumstances, an object of the present invention is to provide CMO8 on a substrate.
An object of the present invention is to provide a semiconductor integrated circuit device in which an output terminal of an output circuit can be set to a high impedance state when the power is cut off.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、半導体集積回路装置は、Nチャネルお
よびPチャネルの2つの電界効果トランジスタを低電位
側および高電位側の各電源ラインにそれぞれ接続するプ
シュプル回路構成のCMO3出力回路を含み、前記Pチ
ャネル電界効果トランジスタを形成するN型半導体領域
はショットキー接合のコンタクトを介し高電位側電源ラ
インに接続されることを含んで構成される。
According to the present invention, a semiconductor integrated circuit device includes a CMO3 output circuit having a push-pull circuit configuration in which two N-channel and P-channel field effect transistors are respectively connected to power supply lines on a low potential side and a high potential side, The N-type semiconductor region forming the P-channel field effect transistor is connected to a high-potential side power supply line via a Schottky junction contact.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図(a)および(b)はそれぞれ本発明の一実施例
を示す半導体集積回路装置のCMO3回路部分の断面構
造図およびその等価回路図である。本実施例によれば、
CMO3回路を構成する一方のNチャネルMOSトラン
ジスタTNが基板上に形成され、また、他方のPチャネ
ルMOSトランジスタTPがNウェル上に形成された場
合が第3図と符号を共通にして示される。本実施例が従
来の構造と根本的に異なり特徴づけるものは、Pチャネ
ルMO3)ランジスタTpが形成されるNウェル2に電
源電位を与えるNウェル・コンタクト7が、従来のN“
ドーピング領域に代わってショットキー接合面で構成さ
れたことである。すなわち、等価回路〔第1図(b)参
照〕で示すように、ショットキー・ダイオードD se
aが電源(Voo)ラインと出力端子Qとの間に寄生ダ
イオードD2と直列接続されて新たに挿入される。本実
施例によると、Nウェル2は、従来構造が電源電圧(V
DD)によってプル・アップされていたのに対し、電源
電圧VDDからショットキー・ダイオードV 580と
導通電位(0,3〜0.5V)だけ低い電圧でプル・ア
ップされることとなるが、CMO3出力回路の通常動作
に対しては何ら影響を与えることはない。かがる構成を
とると、CMO3出力回路に電源電圧の遮断が生じた場
合であっても、出力端子Qから電源(Voo)ラインに
至る電流径路はショットキー・ダイオードD5B0によ
って遮断されるので、出力端子Qはハイ・インピーダン
ス状態を確保することができる。
FIGS. 1(a) and 1(b) are a cross-sectional structural diagram and an equivalent circuit diagram of a CMO3 circuit portion of a semiconductor integrated circuit device showing one embodiment of the present invention, respectively. According to this embodiment,
The case where one N-channel MOS transistor TN constituting the CMO3 circuit is formed on the substrate and the other P-channel MOS transistor TP is formed on the N well is shown using the same reference numerals as in FIG. This embodiment is fundamentally different from the conventional structure in that the N-well contact 7 which supplies the power supply potential to the N-well 2 in which the P-channel MO transistor Tp is formed is different from the conventional N"
Instead of a doped region, a Schottky junction surface is used. That is, as shown in the equivalent circuit [see FIG. 1(b)], the Schottky diode D se
A is newly inserted between the power supply (Voo) line and the output terminal Q, connected in series with the parasitic diode D2. According to this embodiment, the N-well 2 has a conventional structure with a power supply voltage (V
CMO3 is pulled up at a voltage lower than the power supply voltage VDD by the Schottky diode V580 and conduction potential (0.3 to 0.5 V). There is no effect on the normal operation of the output circuit. With this configuration, even if the power supply voltage is cut off in the CMO3 output circuit, the current path from the output terminal Q to the power supply (Voo) line will be cut off by the Schottky diode D5B0. The output terminal Q can maintain a high impedance state.

第2図(a)および(b)はそれぞれ本発明の他の実施
例を示す半導体集積回路装置のCMO3回路部分の断面
構造図およびその等価回路図である。本実施例によれば
、CMO3回路を構成する一方のPチャネルMO3)ラ
ンジスタTpがN型半導体基板10上に形成され、また
、他方のNチャネルMOSトランジスタTNがPウェル
9上に形成された場合が示される。本実施例においても
、N型基板10はショットキー接合のN型基板コンタク
ト8を介してプル・アップされるので、電源電圧開放時
における出力端子Qのハイ・インピーダンス状態確保の
効果を前実施例と同等に奏し得る。
FIGS. 2(a) and 2(b) are a cross-sectional structural diagram and an equivalent circuit diagram of a CMO3 circuit portion of a semiconductor integrated circuit device showing other embodiments of the present invention, respectively. According to this embodiment, one P-channel MO3) transistor Tp constituting the CMO3 circuit is formed on the N-type semiconductor substrate 10, and the other N-channel MOS transistor TN is formed on the P well 9. is shown. In this embodiment as well, the N-type substrate 10 is pulled up via the Schottky junction N-type substrate contact 8, so the effect of ensuring the high impedance state of the output terminal Q when the power supply voltage is opened is similar to that of the previous embodiment. It can be played equally well.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、Pチャネ
ル電界効果トランジスタが高電位側電源ラインに接続さ
れるプシュプル回路構成のCMO8出力回路は、そのP
チャネル・トランジスタを形成するN型半導体領域がシ
ョットキー接合を介して高電位側電源ラインに接続され
プル・アップされるので、電源ラインが遮断した場合で
も、出力端子をハイ・インピーダンス状態に保持するこ
とが出来る。従って使用上の制限事項が少なく、回路動
作の安定した半導体集積回路装置を得ることが可能であ
る。
As described above in detail, according to the present invention, the CMO8 output circuit having a push-pull circuit configuration in which a P-channel field effect transistor is connected to a high-potential side power supply line has a
The N-type semiconductor region that forms the channel transistor is connected to the high-potential side power supply line via a Schottky junction and pulled up, so even if the power supply line is cut off, the output terminal is maintained in a high impedance state. I can do it. Therefore, it is possible to obtain a semiconductor integrated circuit device with few restrictions on use and stable circuit operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)はそれぞれ本発明の一実施例
を示す半導体集積回路装置のCMO3回路部分の断面構
造図およびその等価回路図、第2図(a)および(b)
はそれぞれ本発明の他の実施例を示す半導体集積回路装
置のCMO3回路部分の断面構造図およびその等価回路
図、第3図(a)および(b)はそれぞれ従来のCMO
3回路を含む半導体集積回路装置の出力回路部分の断面
構造図およびその等価回路図である。 1・・・P型半導体基板、2・・・Nウェル、3・・・
P型基板コンタクト、3′・・・Pウェル・コンタクト
2.4・・・NチャネルMOSトランジスタのトレイン
領域、5・・・PチャネルMOSトランジスタのドレイ
ン領域、7・・・ショットキー接合のNウェル・コンタ
クト、8・・・ショットキー接合のN型基板コンタクト
、9・・・Pウェル、10・・・N型半導体基板、TN
・・・NチャネルMO3)ランジスタ、Tp・・・Pチ
ャネルMOSトランジスタ、D、、D2・・・寄生ダイ
オード、D SBD・・ショットキー・ダイオード、■
・・・入力端子、Q・・・出力端子。
FIGS. 1(a) and (b) are a cross-sectional structural diagram and an equivalent circuit diagram of a CMO3 circuit portion of a semiconductor integrated circuit device showing one embodiment of the present invention, respectively, and FIGS. 2(a) and (b) are
3A and 3B are cross-sectional structural diagrams and equivalent circuit diagrams of a CMO3 circuit portion of a semiconductor integrated circuit device showing other embodiments of the present invention, respectively, and FIGS. 3A and 3B respectively show a conventional CMO
2 is a cross-sectional structural diagram of an output circuit portion of a semiconductor integrated circuit device including three circuits and an equivalent circuit diagram thereof. FIG. 1... P-type semiconductor substrate, 2... N well, 3...
P-type substrate contact, 3'... P-well contact 2.4... Train region of N-channel MOS transistor, 5... Drain region of P-channel MOS transistor, 7... N-well of Schottky junction・Contact, 8... N-type substrate contact of Schottky junction, 9... P well, 10... N-type semiconductor substrate, TN
...N-channel MO3) transistor, Tp...P-channel MOS transistor, D, , D2...parasitic diode, D SBD...Schottky diode, ■
...Input terminal, Q...Output terminal.

Claims (1)

【特許請求の範囲】[Claims] NチャネルおよびPチャネルの2つの電界効果トランジ
スタを低電位側および高電位側の各電源ラインにそれぞ
れ接続するプシュプル回路構成のCMOS出力回路を含
み、前記Pチャネル電界効果トランジスタを形成するN
型半導体領域はショットキー接合のコンタクトを介し高
電位側電源ラインに接続されることを特徴とする半導体
集積回路装置。
It includes a CMOS output circuit with a push-pull circuit configuration that connects two N-channel and P-channel field-effect transistors to each power supply line on the low-potential side and high-potential side, respectively, and includes an N-channel field-effect transistor forming the P-channel field-effect transistor.
1. A semiconductor integrated circuit device, wherein a type semiconductor region is connected to a high-potential side power supply line via a Schottky junction contact.
JP63269687A 1988-10-25 1988-10-25 Semiconductor integrated circuit device Pending JPH02116157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269687A JPH02116157A (en) 1988-10-25 1988-10-25 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269687A JPH02116157A (en) 1988-10-25 1988-10-25 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH02116157A true JPH02116157A (en) 1990-04-27

Family

ID=17475791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269687A Pending JPH02116157A (en) 1988-10-25 1988-10-25 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02116157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859456A1 (en) * 1997-02-14 1998-08-19 Koninklijke Philips Electronics N.V. Control circuit for an electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859456A1 (en) * 1997-02-14 1998-08-19 Koninklijke Philips Electronics N.V. Control circuit for an electric motor
US6002223A (en) * 1997-02-14 1999-12-14 U.S. Philips Corporation Control circuit for an electric motor

Similar Documents

Publication Publication Date Title
EP0305937B1 (en) Mos i/o protection using switched body circuit design
JPH0412649B2 (en)
JPH04349661A (en) Semiconductor device
JPS62272620A (en) Logic circuit
JPS6325714B2 (en)
JPH0691200B2 (en) Bidirectional input / output cell
JPH02116157A (en) Semiconductor integrated circuit device
JPS58197870A (en) Semiconductor device
JP2001086641A (en) Input protecting circuit and semiconductor integrated circuit
JPS6232722A (en) Push-pull output circuit
KR960039345A (en) Input protection circuit and manufacturing method of semiconductor integrated circuit
JP2555046Y2 (en) Output buffer circuit
JP2979716B2 (en) CMOS integrated circuit
JPH043974A (en) Semiconductor integrated circuit
JPH0532908B2 (en)
JPS6085623A (en) Cmos integrated circuit device
JPH0257345B2 (en)
US5723988A (en) CMOS with parasitic bipolar transistor
EP0248834A1 (en) Electronic interface circuit
JPS61285751A (en) Cmos type semiconductor device
JP2738277B2 (en) Interface circuit
JPH06314964A (en) Semiconductor signal output circuit
JP2821294B2 (en) Latch-up prevention circuit
JPH02256268A (en) Cmos output buffer for semiconductor integrated circuit
JPH04103128A (en) Power supply line wiring process of semiconductor integrated circuit