JPH02116123A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02116123A
JPH02116123A JP26975288A JP26975288A JPH02116123A JP H02116123 A JPH02116123 A JP H02116123A JP 26975288 A JP26975288 A JP 26975288A JP 26975288 A JP26975288 A JP 26975288A JP H02116123 A JPH02116123 A JP H02116123A
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
forming
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26975288A
Other languages
Japanese (ja)
Inventor
Kimimaro Yoshikawa
吉川 公磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26975288A priority Critical patent/JPH02116123A/en
Publication of JPH02116123A publication Critical patent/JPH02116123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent outer diffusion of a substrate Si and contact failure due to Si deposition by forming a laminated film on an insulation film after forming the insulation film on a substrate. CONSTITUTION:A LOCOS oxide film 2 is formed selectively on a p-type Si substrate 1, a mask is eliminated, and a gate oxide film is formed. Then, a gate poly is allowed to grow by thermal decomposition, phosphor is diffused, and then patterning is made to form a gate electrode 3. Then, after forming a source, an n-type drain diffusion layer 4, and then a CVD oxide film 5, a contact hole 6 is opened, a polycrystal Si film 7 is formed on the substrate surface, a Ti thin film 8 is formed on the film 7, and then an Al film 9 is formed continuously on the film 8. Then, the film 9 is subjected to patterning and an electrode wiring 10 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に、半導体基板と配線金
属とのコンタクトの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device, and more particularly to a contact structure between a semiconductor substrate and a wiring metal.

〔従来の技術〕[Conventional technology]

従来、半導体装置における半導体基板(Si)と配線金
属(AQ)とのコンタクト構造は、熱処理時において基
板中のSiがAQ中に拡散することによりAQがAi基
板中に異常拡散するアロイスパイクと呼ばれる不良を防
ぐため、AQ中に1%程度Siを予め混合させたスパッ
タターゲットを用いでにDCマグネトロンスパッタ法に
よりSi基板表面に配線金属をスパッタする方法や、S
i基板表面にCVD法により多結晶Si薄膜を成長させ
、さらにその上に純粋のAQをスパッタする方法等があ
る。さらには、バリアメタルとしてチタン等の膜をAQ
と基板シリコンとの間にはさむ方法もある。
Conventionally, the contact structure between a semiconductor substrate (Si) and wiring metal (AQ) in a semiconductor device is called an alloy spike, in which Si in the substrate diffuses into AQ during heat treatment, and AQ abnormally diffuses into the Ai substrate. In order to prevent defects, there is a method in which wiring metal is sputtered onto the surface of the Si substrate by DC magnetron sputtering using a sputtering target in which about 1% Si is pre-mixed in AQ.
There is a method of growing a polycrystalline Si thin film on the surface of an i-substrate by CVD and then sputtering pure AQ thereon. Furthermore, AQ films such as titanium are used as barrier metals.
There is also a method of sandwiching it between the substrate and the silicon substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように従来の予めSiを過剰にいれる構造では
、アロイスパイクの防止には効果があるものの、近年半
導体集積回路装置の高集積化に伴うコンタクト孔の微細
化のために、Siノジュールと呼ばれるSLの析出によ
ってコンタクト孔がふさがれてしまう不良モードが発生
している。また、Tiのバリアメタルは、AQとの反応
でTiA(13ができると、70イスパイクが生じる(
例えば、AppliedPhysics Letter
s vol、23. NO,2,15July 197
3゜ρ、99)。
As mentioned above, the conventional structure in which Si is added excessively in advance is effective in preventing alloy spikes, but due to the miniaturization of contact holes in recent years as semiconductor integrated circuit devices become more highly integrated, A failure mode occurs in which the contact hole is blocked by SL precipitation. In addition, when Ti barrier metal reacts with AQ, TiA (13 is formed, 70 ispike is generated (
For example, Applied Physics Letter
s vol, 23. NO, 2, 15July 197
3゜ρ, 99).

本発明の目的は前記課題を解決した半導体装置を提供す
ることにある。
An object of the present invention is to provide a semiconductor device that solves the above problems.

〔aMを解決するための手段〕[Means to solve aM]

上記目的を達成するため、本発明に係る半導体装置にお
いては、一導電型半導体基板の一主面に絶縁膜のコンタ
クト開口部が形成され、該開口部を含む前記基板一主面
の絶縁膜上に形成された配線用金属膜と前記基板との間
に半導体薄膜及びチタン薄膜の積層膜を介装したもので
ある。
In order to achieve the above object, in a semiconductor device according to the present invention, a contact opening of an insulating film is formed on one main surface of a semiconductor substrate of one conductivity type, and a contact opening of an insulating film on one main surface of the substrate including the opening is formed. A laminated film of a semiconductor thin film and a titanium thin film is interposed between the wiring metal film formed on the substrate and the substrate.

〔作用〕[Effect]

本発明の半導体装置は、Si基板表面にCVD法により
多結晶Si薄膜を成長させ、さらにその上に純粋のAQ
をスパッタする前にTi等の高融点金属薄膜をスパッタ
することにより、多結晶Si、 Ti、 A(1のサン
ドイッチ構造を形成したものである。
In the semiconductor device of the present invention, a polycrystalline Si thin film is grown on the surface of a Si substrate by the CVD method, and pure AQ
A sandwich structure of polycrystalline Si, Ti, and A(1) was formed by sputtering a thin film of a high-melting point metal such as Ti before sputtering.

本発明の構造により、TiはSiのAQへの拡散を抑制
する効果(例えば、Applied Physics 
Lettersvol、28. NO,5,I Mar
ch 1976) 、 SiはTiの拡散を抑制する効
果(例えば、Applied Physics Let
ters。
Due to the structure of the present invention, Ti has the effect of suppressing the diffusion of Si into AQ (for example, Applied Physics
Lettersvol, 28. NO, 5, I Mar
ch 1976), Si has the effect of suppressing the diffusion of Ti (for example, Applied Physics Let
ters.

50(3)、 19 January 1987. p
、130)を利用して、基板Siが外方拡散するのを防
ぎ、Ti又はAQによるアロイスパイクを防ぎ、Si析
出によるコンタクトの不良を防ぐことができる。
50(3), 19 January 1987. p
, 130) can be used to prevent outward diffusion of the substrate Si, prevent alloy spikes due to Ti or AQ, and prevent contact failure due to Si precipitation.

〔実施例〕〔Example〕

次に本発明を図面を用いて説明する。 Next, the present invention will be explained using the drawings.

(実施例1) 第1図(a)〜(d)は本発明の実施例1であるnチャ
ネルMoSトランジスタの製造工程の断面図を示す。
(Example 1) FIGS. 1(a) to 1(d) show cross-sectional views of the manufacturing process of an n-channel MoS transistor, which is Example 1 of the present invention.

第1図(a)に示すように、p型シリコン基板1の表面
を選択的にLOCO5酸化膜2 (Local 0xi
dationof 5ilicon)を形成し、マスク
となったシリコン窒化膜を除去しく図示せず)、ゲート
酸化膜を約300人形成し、ゲートポリシリコンを60
00人、低圧CVD(化学気相成長)によりシランガス
を熱分解して成長させ、900℃において、リンを拡散
した(図示せず)のち、フォトリングラフィにより、パ
ターニングして、フォトレジストをマスクにCF4+ 
O□ガスを用いて反応性イオンエツチングしゲート電極
3を形成する。
As shown in FIG. 1(a), the surface of the p-type silicon substrate 1 is selectively coated with a LOCO5 oxide film 2 (Local Oxide film 2).
The silicon nitride film used as a mask was removed (not shown), a gate oxide film was formed by about 300 layers, and gate polysilicon was deposited by about 60 layers.
00 people, grown by thermally decomposing silane gas by low-pressure CVD (chemical vapor deposition), diffusing phosphorus at 900°C (not shown), patterning by photolithography, and using photoresist as a mask. CF4+
A gate electrode 3 is formed by reactive ion etching using O□ gas.

さらに、フォトリソグラフィにより、レジスト及びゲー
トポリシリコンをマスクに70K e Vのエネルギー
でAsをl X 10” (cm−1)イオン注入し、
ソース、n型ドレイン拡散層4を形成する。次に、40
0℃において常圧CVD法により、4モル%濃度のCV
D酸化膜(リンガラス層)5を約1ミクロン形成する。
Furthermore, As was ion-implanted by photolithography at an energy of 70 K e V using the resist and gate polysilicon as masks to a depth of 1×10” (cm−1).
Source and n-type drain diffusion layers 4 are formed. Next, 40
CVD with a concentration of 4 mol% was carried out at 0°C by atmospheric pressure CVD method.
A D oxide film (phosphorus glass layer) 5 is formed to a thickness of about 1 micron.

フォトリソグラフィにより、コンタクト孔6をフォトレ
ジストをマスクにCF、とH2の混合ガスを用いて反応
性イオンエツチングにより開口する。
By photolithography, contact holes 6 are opened by reactive ion etching using a mixed gas of CF and H2 using a photoresist as a mask.

第1図(b)に示すように基板表面に低圧CVD法によ
り、厚さ200人の多結晶シリコン膜7を600℃で形
成する。ここで、多結晶シリコン膜7の代りに。
As shown in FIG. 1(b), a polycrystalline silicon film 7 having a thickness of 200 nm is formed at 600° C. on the surface of the substrate by low pressure CVD. Here, instead of the polycrystalline silicon film 7.

DCマグネトロンスパッタにより、シリコンターゲット
をアルゴンガスでスパッタし、厚さ200人のアモルフ
ァスシリコン膜を室温で形成してもよい。
An amorphous silicon film with a thickness of 200 nm may be formed at room temperature by sputtering a silicon target with argon gas by DC magnetron sputtering.

さらに、前記シリコン膜7上にTi薄膜8をDCマグネ
トロンスパッタにより、厚さ200人形成する。
Furthermore, a Ti thin film 8 with a thickness of 200 mm is formed on the silicon film 7 by DC magnetron sputtering.

さらに同一スパッタ装置内において、Ti薄膜8上に連
続的にアルミニウム膜9を1ミクロン、DCマグネトロ
ンスパッタで形成する(第1図(c))−次に、フォト
リングラフィ技術によりアルミニウム膜9(配線)をパ
ターニングし、CCQ4ガスを用いて反応性イオンエツ
チングにより、電極配線1oを形成する(第1図)、な
お、パターニング後、シリコン基板と配線金属とのコン
タクトをとるため、450℃。
Furthermore, in the same sputtering apparatus, an aluminum film 9 of 1 micron thickness is continuously formed on the Ti thin film 8 by DC magnetron sputtering (FIG. 1(c)).Next, the aluminum film 9 (wiring ) is patterned, and electrode wiring 1o is formed by reactive ion etching using CCQ4 gas (Fig. 1). After patterning, the temperature is 450°C in order to make contact between the silicon substrate and the wiring metal.

30分間のリンタリングを行っている。Lintering is done for 30 minutes.

(実施例2) 第2図(a)〜(d)は本発明の実施例2であるpチャ
ネルMOSトランジスタの製造工程断面図を示す。
(Embodiment 2) FIGS. 2(a) to 2(d) show cross-sectional views of the manufacturing process of a p-channel MOS transistor which is Embodiment 2 of the present invention.

第2図(a)に示すように、n型シリコン基板11の表
面を選択的にLOCO5酸化膜12(Local 0x
idation ofSilicon)を形成し、マス
クとなったシリコン窒化膜を除去しく図示せず)、ゲー
ト酸化膜を約300人形成し、ゲートポリシリコンを6
000人、600℃ノ低圧CVD (化学気相成長)に
より成長させ、900℃においてリンを拡散したのち、
フォトリソグラフィによりパターニングして、フォトレ
ジストをマスクにドライエツチングし、ゲート電極13
を形成する。
As shown in FIG. 2(a), the surface of the n-type silicon substrate 11 is selectively coated with a LOCO5 oxide film 12 (Local 0x
The silicon nitride film that served as a mask was removed (not shown), a gate oxide film was formed by about 300 layers, and the gate polysilicon was
000 people, grown by low pressure CVD (chemical vapor deposition) at 600℃, and after diffusing phosphorus at 900℃,
The gate electrode 13 is patterned by photolithography and dry etched using the photoresist as a mask.
form.

さらに、フォトリングラフィにより、レジスト及びゲー
トポリシリコンをマスクにIOK e Vのエネルギー
でBF2をlXl0”(C11−’)イオン注入し、ソ
ース、p型ドレイン拡散層14を形成する。
Furthermore, by photolithography, BF2 is ion-implanted using resist and gate polysilicon as a mask with an energy of IOK e V to form source and p-type drain diffusion layers 14.

次に、400℃において常圧CVD法により、4モル%
濃度のCVD酸化膜(リンガラス層)15を約1ミクロ
ン形成する。フォトリソグラフィにより、コンタクト孔
16をフォトレジストをマスクにドライエツチングし開
口する。基板表面にDCマグネトロンスパッタリングに
より、Ti(チタン)薄膜17を厚さ200人の室温で
形成する。同一スパッタ装置内においてSiターゲット
をアルゴンガスでスパッタしアモルファスSi薄膜18
を厚さ200人室温で形成し。
Next, 4 mol%
A CVD oxide film (phosphorus glass layer) 15 with a density of about 1 micron is formed. By photolithography, contact holes 16 are opened by dry etching using a photoresist as a mask. A Ti (titanium) thin film 17 with a thickness of 200 mm is formed on the surface of the substrate by DC magnetron sputtering at room temperature. In the same sputtering device, a Si target is sputtered with argon gas to form an amorphous Si thin film 18.
Formed to a thickness of 200 people at room temperature.

続けてアルミニウム膜19を1ミクロン、DCマグネト
ロンスパッタで形成する(第2図(c) )、フォトリ
ングラフィにより、アルミニウム膜(配線)19をパタ
ーニングし、続いてレジストをマスクにドライエッチを
行い、電極配線20を形成する(第2図(d) )。
Subsequently, an aluminum film 19 of 1 micron thickness is formed by DC magnetron sputtering (FIG. 2(c)), the aluminum film (wiring) 19 is patterned by photolithography, and then dry etching is performed using a resist as a mask. Electrode wiring 20 is formed (FIG. 2(d)).

なお、バターニング後、シリコン基板と配線金属とのコ
ンタクトをとるため、450℃、30分間のリングリン
グを行っている。
After buttering, ringing was performed at 450° C. for 30 minutes in order to establish contact between the silicon substrate and the wiring metal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明は近年の半導体装置の高集
積化に伴うコンタクト孔の微細化のために、SLノジュ
ールとよばれるSLの析出によってコンタクト孔がふさ
がれてしまう不良モードに対し、半導体基板一主面上の
絶縁膜に開口部を形成したあと、多結晶又は非晶質半導
体薄膜及びチタン薄膜アルミニウム膜の積層膜を前記開
口部を含む絶縁膜上に形成することにより、TiはSL
の八〇への拡散を抑制し、 SiはTiの拡散を抑制す
る効果を利用して、基板Siが外方拡散するのを防ぎ、
Tis AQによるアロイスパイクを防ぎ、Si析出に
よるコンタクトの不良を防ぐことができ、半導体集積回
路の製造における歩留り改善に著しい効果がある。
As explained above, one aspect of the present invention is to prevent a failure mode in which contact holes are blocked by precipitation of SL called SL nodules due to the miniaturization of contact holes accompanying the recent increase in the degree of integration of semiconductor devices. After forming an opening in the insulating film on one main surface of the substrate, a laminated film of a polycrystalline or amorphous semiconductor thin film and a titanium thin film and an aluminum film is formed on the insulating film including the opening.
By using the effect of suppressing the diffusion of Ti, Si prevents the substrate Si from diffusing outward.
It is possible to prevent alloy spikes caused by Tis AQ and contact defects caused by Si precipitation, and has a significant effect on improving yields in the production of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜((1)は本発明の実施例1であるnチ
ャネルMOSトランジスタの製造工程断面図、第2図(
a)〜(d)は本発明の実施例2であるpチャネルMO
Sトランジスタの製造工程断面図である。 1・・・p型シリコン基板 2,12・・・LOCO5
酸化膜3.13・・・ゲート電極   4・・・n型ド
レイン拡散層5・・・CVO(a化)膜   6,16
・・・コンタクト孔7・・・多結晶シリコン膜 8・・
・Ti薄膜9.19・・・アルミニウム1i111・・
・n型シリコン基板14・・・p型ドレイン拡散層
1(a) to (1) are cross-sectional views of the manufacturing process of an n-channel MOS transistor according to the first embodiment of the present invention, and FIG.
a) to (d) are p-channel MOs which are Example 2 of the present invention.
FIG. 3 is a cross-sectional view of the manufacturing process of the S transistor. 1...p-type silicon substrate 2, 12...LOCO5
Oxide film 3.13...Gate electrode 4...N-type drain diffusion layer 5...CVO (a) film 6,16
...Contact hole 7...Polycrystalline silicon film 8...
・Ti thin film 9.19...Aluminum 1i111...
・N-type silicon substrate 14...p-type drain diffusion layer

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の一主面に絶縁膜のコンタク
ト開口部が形成され、該開口部を含む前記基板一主面の
絶縁膜上に形成された配線用金属膜と前記基板との間に
半導体薄膜及びチタン薄膜の積層膜を介装したことを特
徴とする半導体装置。
(1) A contact opening in an insulating film is formed on one main surface of a semiconductor substrate of one conductivity type, and a wiring metal film formed on an insulating film on one main surface of the substrate including the opening is connected to the substrate. A semiconductor device characterized in that a laminated film of a semiconductor thin film and a titanium thin film is interposed therebetween.
JP26975288A 1988-10-25 1988-10-25 Semiconductor device Pending JPH02116123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26975288A JPH02116123A (en) 1988-10-25 1988-10-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26975288A JPH02116123A (en) 1988-10-25 1988-10-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02116123A true JPH02116123A (en) 1990-04-27

Family

ID=17476662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26975288A Pending JPH02116123A (en) 1988-10-25 1988-10-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02116123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476429A (en) * 1990-07-18 1992-03-11 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH07161813A (en) * 1993-12-08 1995-06-23 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476429A (en) * 1990-07-18 1992-03-11 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH07161813A (en) * 1993-12-08 1995-06-23 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3128811B2 (en) Method for manufacturing semiconductor device
US6087234A (en) Method of forming a self-aligned silicide MOSFET with an extended ultra-shallow S/D junction
JPH02230739A (en) Method of applying fire-resistant metal
TW200300571A (en) Semiconductor device having a low-resistance gate electrode
JPS6072272A (en) Manufacture of semiconductor device
JPH08116057A (en) Manufacture of tin gate electrode on semiconductor device
JP2740722B2 (en) Semiconductor device and manufacturing method thereof
JPH02116123A (en) Semiconductor device
JPH03147328A (en) Manufacture of semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JP3156001B2 (en) Method for manufacturing semiconductor device
JP3263941B2 (en) Method for manufacturing semiconductor device
JPH11330365A (en) Semiconductor device and manufacture thereof
JPH01160009A (en) Manufacture of semiconductor device
JPH04266031A (en) Manufacture of semiconductor device
JPH04303944A (en) Manufacture of semiconductor device
JPH06120355A (en) Manufacture of semiconductor device
JPH047843A (en) Manufacture of thin film transistor
KR100356817B1 (en) Method of forming contacts in semiconductor devices
JPS6151941A (en) Manufacture of electrode wiring film
JP3371414B2 (en) Method of forming wiring
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JPS62115776A (en) Manufacture of semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JPS63240017A (en) Manufacture of semiconductor device