JPH02114569A - Manufacture of nonvolatile semiconductor storage device - Google Patents

Manufacture of nonvolatile semiconductor storage device

Info

Publication number
JPH02114569A
JPH02114569A JP26704388A JP26704388A JPH02114569A JP H02114569 A JPH02114569 A JP H02114569A JP 26704388 A JP26704388 A JP 26704388A JP 26704388 A JP26704388 A JP 26704388A JP H02114569 A JPH02114569 A JP H02114569A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
insulating film
silicon
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26704388A
Other languages
Japanese (ja)
Inventor
Yoshiki Fukuzaki
義樹 福崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP26704388A priority Critical patent/JPH02114569A/en
Publication of JPH02114569A publication Critical patent/JPH02114569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce the number of processes and to obtain a gate insulating film of a uniform film thickness by a method wherein an oxinitride film which has been formed by oxidizing a silicon nitride film formed in a prescribed position on an silicon substrate is used as a tunneling insulating film. CONSTITUTION:A thermal silicon nitride film 2 is formed on a silicon substrate 1 and is patterned; the thermal silicon nitride film 2 is left only in a part where a tunneling insulating film is formed. Then, this assembly is oxidized thermally in an atmosphere of a vapor until the thermal silicon nitride film 2 is transformed completely into an oxinitride; an oxinitride film 4 to be used as the tunneling insulating film is formed. During this process, since an oxidation velocity of silicon nitride is slower than that of silicon, a thermal silicon oxide film 3 is formed simultaneously in a part where the silicon substrate is exposed. Thereby, it is possible to sharply reduce the number of processes and to sharply enhance uniformity and reproducibility of a film thickness of the thermal silicon oxide film 3 around the tunneling insulating film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MIO8構造あるいはフローティングゲート
構造を有する不揮発性メモリトランジスタから構成され
た不揮発性半導体記憶装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a nonvolatile semiconductor memory device composed of nonvolatile memory transistors having an MIO8 structure or a floating gate structure.

(従来の技術) 従来より、電気的に書き換えが可能な不揮発性メモリと
して、MIO8構造を有するものやフローティングゲー
ト構造を有するものが知られているが、これらはいずれ
も薄い絶縁膜のトンネル電流を利用して情報の書き換え
を行うものである。
(Prior art) Conventionally, electrically rewritable non-volatile memories have been known, such as those with an MIO8 structure and those with a floating gate structure. It is used to rewrite information.

以下、従来の不揮発性半導体記憶装置の製造方法につい
て説明する。
A conventional method for manufacturing a nonvolatile semiconductor memory device will be described below.

第2図は従来の不揮発性半導体記憶装置の製造方法の一
例を説明するための工程順断面図で、1はシリコン基板
、5,7,8.9は熱酸化シリコン膜、6は窒化シリコ
ン膜である。以下製造工R+。
FIG. 2 is a process-order cross-sectional view for explaining an example of a conventional method for manufacturing a nonvolatile semiconductor memory device, in which 1 is a silicon substrate, 5, 7, 8.9 are thermally oxidized silicon films, and 6 is a silicon nitride film. It is. Manufacturing R+ below.

を説明する。Explain.

まずシリコン基板1上に保護のための熱酸化シリコン膜
5および熱酸化のマスクとなる窒化シリコン膜6をLP
CVD法により形成し、トンネル絶縁膜を形成する部分
のみ残して除去する(第2図(a))、次いでこれを熱
酸化し、トンネル絶縁膜を形成する部分の周辺に比較的
厚い熱酸化シリコン膜7 (soo人程度)を形成しく
第2図(b))、さらに窒化シリコン膜6上の熱酸化シ
リコン膜8、窒化シリコン膜6および保護のための熱酸
化シリコン膜5をウェットエツチングによって除去しく
第2図(C))、トンネル絶縁膜となる熱酸化シリコン
膜9を形成する(第2図(d))。この後、MIO8構
造とするためには、窒化シリコン膜などの誘電率の大き
い絶縁膜を形成し、次いでゲート電極となるポリシリコ
ンなどを形成すればよい。このとき、比較的厚い熱酸化
シリコン膜7はゲートの両端に位I4するように形成さ
れ、メモリトランジスタのドレインおよびソースの耐圧
を向上させる働きを持つ。また、フローティングゲート
構造とするためには、直接フローティングゲートとなる
ポリシリコンな形成し、さらにその上に絶縁膜を介して
コントロールゲートとなるポリシリコンを形成すればよ
い。この場合には、熱酸化シリコン膜7はメモリトラン
ジスタのゲート絶縁膜となる。
First, a thermal oxidation silicon film 5 for protection and a silicon nitride film 6 as a mask for thermal oxidation are formed on a silicon substrate 1 by LP.
It is formed by the CVD method and removed leaving only the part where the tunnel insulating film will be formed (FIG. 2(a)). This is then thermally oxidized to form a relatively thick thermally oxidized silicon around the part where the tunnel insulating film is to be formed. After forming a film 7 (as shown in FIG. 2(b)), the thermally oxidized silicon film 8 on the silicon nitride film 6, the silicon nitride film 6, and the thermally oxidized silicon film 5 for protection are removed by wet etching. Next, a thermally oxidized silicon film 9 which will become a tunnel insulating film is formed (FIG. 2(d)). After this, in order to obtain the MIO8 structure, an insulating film with a high dielectric constant such as a silicon nitride film is formed, and then polysilicon or the like which becomes a gate electrode is formed. At this time, a relatively thick thermally oxidized silicon film 7 is formed on both ends of the gate so as to have a thickness I4, and has the function of improving the withstand voltage of the drain and source of the memory transistor. Further, in order to obtain a floating gate structure, it is sufficient to directly form a polysilicon film that will serve as a floating gate, and then to form a polysilicon film that will serve as a control gate via an insulating film thereon. In this case, the thermally oxidized silicon film 7 becomes the gate insulating film of the memory transistor.

(発明が解決しようとする課M) しかしながら、上記のような従来の製造方法では、トン
ネル絶縁膜の周辺に比較的厚い酸化シリコン膜を持つ構
造を得るために、3回の熱酸化工程と3回のウェットエ
ツチング工程および1回のL P G V D工程を含
み工程が複雑であると同時に。
(Problem M to be solved by the invention) However, in the conventional manufacturing method as described above, in order to obtain a structure having a relatively thick silicon oxide film around the tunnel insulating film, three thermal oxidation steps and three At the same time, the process is complicated, including two wet etching steps and one LPG VD step.

保護のための熱酸化シリコン膜5をウェットエツチング
する際、ゲート絶縁膜となる熱酸化シリコン膜7も同時
にある程度エツチングされ、ウェットエツチングの性質
上エツチング後の熱酸化シリコン膜7の膜厚が不均一に
なるという問題点を有していた。
When the thermally oxidized silicon film 5 for protection is wet-etched, the thermally oxidized silicon film 7 that becomes the gate insulating film is also etched to some extent at the same time, and due to the nature of wet etching, the thickness of the thermally oxidized silicon film 7 after etching is uneven. It had the problem of becoming

本発明は上記従来の問題点を解決するもので、工程数を
削減するとともに均一な膜厚のゲート絶縁膜を得ること
ができる不揮発性半導体記憶装置の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above conventional problems, and aims to provide a method for manufacturing a nonvolatile semiconductor memory device that can reduce the number of steps and obtain a gate insulating film with a uniform thickness.

(課題を解決するための手段) この目的を達成するために本発明の不揮発性半導体記憶
装置の製造方法は、半導体基板上の所定の位置に形成し
た窒化シリコン膜を酸化して形成したオキシナイトライ
ド膜をトンネル絶縁膜として用いることを特徴とするも
のである。
(Means for Solving the Problems) In order to achieve this object, the method for manufacturing a non-volatile semiconductor memory device of the present invention uses oxynitrite formed by oxidizing a silicon nitride film formed at a predetermined position on a semiconductor substrate. This method is characterized in that a Ride film is used as a tunnel insulating film.

(作 用) 本発明の製造方法によれば、窒化シリコン膜の形成、窒
化シリコン膜の部分的除去、窒化シリコン膜およびシリ
コン基板の酸化という3回の工程のみでトンネル絶縁膜
とのその周辺の比較的厚い酸化シリコン膜を同時に形成
することができ、またウェットエツチング工程が無いた
め、トンネル絶縁膜周辺の酸化シリコン膜は均一性なら
びに再現性良く形成することができる。
(Function) According to the manufacturing method of the present invention, the formation of the tunnel insulating film and its surroundings can be achieved by only three steps: forming a silicon nitride film, partially removing the silicon nitride film, and oxidizing the silicon nitride film and silicon substrate. Since a relatively thick silicon oxide film can be formed at the same time and there is no wet etching process, the silicon oxide film around the tunnel insulating film can be formed with good uniformity and reproducibility.

(実施例) 以下、本発明の一実施例について、図面を参照しながら
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における不揮発性半導体記憶
装置の製造方法を説明する工程順断面図である。第1図
において、1はシリコン基板、2は熱窒化シリコン膜、
3は熱酸化シリコン膜、4はオキシナイトライド膜であ
る。以下本実施例の不揮発性半導体記憶装置の製造方法
についてその製造工程を説明する。
FIG. 1 is a step-by-step sectional view illustrating a method of manufacturing a nonvolatile semiconductor memory device according to an embodiment of the present invention. In FIG. 1, 1 is a silicon substrate, 2 is a thermal silicon nitride film,
3 is a thermally oxidized silicon film, and 4 is an oxynitride film. The manufacturing steps of the method for manufacturing the nonvolatile semiconductor memory device of this embodiment will be described below.

まず第1図(a)に示すように、シリコン基板1上にt
ooo℃のアンモニア雰囲気中において熱窒化シリコン
膜2を約20人形成し1次いで公知のフォトエツチング
技術により、熱窒化シリコン膜2のパターンニングを行
ない、トンネル絶縁膜を形成する部分にのみ熱窒化シリ
コン膜2を残す。次に第1図(b)に示すように、熱窒
化シリコン膜2が全てオキシナイトライドに変わるまで
1000℃の水蒸気雰囲気中において熱酸化を行い、ト
ンネル絶縁膜となるオキシナイトライド膜4を形成する
First, as shown in FIG. 1(a), a t
Approximately 20 thermal silicon nitride films 2 are formed in an ammonia atmosphere at 00°C, and then the thermal silicon nitride film 2 is patterned using a known photoetching technique, and thermal silicon nitride is applied only to the portion where the tunnel insulating film is to be formed. Leave membrane 2 behind. Next, as shown in FIG. 1(b), thermal oxidation is performed in a steam atmosphere at 1000°C until the thermal silicon nitride film 2 is completely converted to oxynitride, thereby forming an oxynitride film 4 that will become a tunnel insulating film. do.

このとき、窒化シリコンの酸化速度がシリコンのそれに
比べて非常に遅いため、シリコン基板が露出している部
分くは500人程度の熱酸化シリコン膜3が同時に形成
される。
At this time, since the oxidation rate of silicon nitride is much slower than that of silicon, a thermally oxidized silicon film 3 on the exposed portion of the silicon substrate or on the order of 500 layers is simultaneously formed.

以上のように本実施例によれば、シリコン基板1上の所
定の位置に形成した熱窒化シリコン膜2を酸化して形成
したオキシナイトライド膜4をトンネル絶縁膜として用
いたことにより、工程数を大幅に削減できるとともにト
ンネル絶縁膜周辺の熱酸化シリコン膜3の膜厚の均一性
および再現性を大幅に改善することができる。
As described above, according to this embodiment, by using the oxynitride film 4 formed by oxidizing the thermal silicon nitride film 2 formed at a predetermined position on the silicon substrate 1 as the tunnel insulating film, the number of steps is reduced. It is possible to significantly reduce the amount of noise, and to significantly improve the uniformity and reproducibility of the thickness of the thermally oxidized silicon film 3 around the tunnel insulating film.

なお、本実施例では窒化シリコン膜をシリコン基板の熱
窒化により形成したが、これはLPCVD法によって形
成してもよい。また20人の窒化シリコン膜を1000
℃の水蒸気雰囲気中で酸化したが、この窒化シリコン膜
の膜厚と酸化条件を適当に選ぶことによって、トンネル
絶縁膜の膜厚とその周辺の熱酸化シリコン膜の膜厚を独
立しである範囲内で任意に設定することができることは
言うまでもない。
In this example, the silicon nitride film was formed by thermal nitriding of the silicon substrate, but it may also be formed by the LPCVD method. In addition, 20 people made 1000 silicon nitride films.
℃ in a steam atmosphere, but by appropriately selecting the thickness of this silicon nitride film and the oxidation conditions, the thickness of the tunnel insulating film and the thickness of the thermally oxidized silicon film around it can be controlled within a certain range. Needless to say, it can be set arbitrarily.

(発明の効果) 本発明は、シリコン基板上の所定の位置に形成した窒化
シリコン膜を酸化して形成したオキシナイトライド膜を
トンネル絶縁膜として用いることにより、工程数を大幅
に削減できるとともにゲート絶縁膜あるいはその一部と
して使用するトンネル絶縁膜周辺の酸化シリコン膜の膜
厚の均一性および[イ現性を大幅に改善することができ
る。また1−ンネル絶縁膜として、通常用いる酸化シリ
コン膜に比べて絶縁破壊強度の非常に優れたオキシナイ
トライド膜を用いることにより、不揮発性メモリトラン
ジスタの書き換え許容回数を一桁以上向上させることが
できる。さらに窒化シリコン膜を直接シリコン基板上に
形成して酸化を行うことにより、バーズビークを大幅に
抑えることができ、不揮発性メモリトランジスタの微細
化をはかることができるなど、数々の優れた効果を得る
ことのできる不揮発性半導体記憶装置の製造方法を提供
するものである。
(Effects of the Invention) The present invention uses an oxynitride film formed by oxidizing a silicon nitride film formed at a predetermined position on a silicon substrate as a tunnel insulating film. The uniformity of the film thickness of the silicon oxide film around the insulating film or the tunnel insulating film used as a part thereof and the embeddability can be significantly improved. In addition, by using an oxynitride film as the 1-channel insulating film, which has much higher dielectric breakdown strength than the normally used silicon oxide film, it is possible to increase the number of rewrites allowed for nonvolatile memory transistors by more than an order of magnitude. . Furthermore, by forming a silicon nitride film directly on a silicon substrate and oxidizing it, we can obtain a number of excellent effects such as greatly suppressing bird's beak and making it possible to miniaturize nonvolatile memory transistors. The present invention provides a method for manufacturing a nonvolatile semiconductor memory device that allows for the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における不揮発性半導体記憶
装置の製造方法を示す工程順断面図、第2図は従来の不
揮発性半導体記憶装置の製造方法を示す工程順断面図で
ある。 1 ・・・シリコン基板、 2・・・熱窒化シリコン膜
、 3,5,7,8.9 ・・・熱酸化シリコン膜、 
4 ・・・オキシナイトライド膜、 6 ・・・窒化シ
リコン膜。 特許出願人 松下電子工業株式会社 第 2 図 第 図
FIG. 1 is a step-by-step cross-sectional view showing a method for manufacturing a non-volatile semiconductor memory device according to an embodiment of the present invention, and FIG. 2 is a step-by-step cross-sectional view showing a conventional method for manufacturing a non-volatile semiconductor memory device. 1...Silicon substrate, 2...Thermal silicon nitride film, 3, 5, 7, 8.9...Thermal oxidation silicon film,
4... Oxynitride film, 6... Silicon nitride film. Patent applicant Matsushita Electronics Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜のトンネル電流を利用して書き換えを行う不揮発
性半導体記憶装置のトンネル絶縁膜として、シリコン基
板上の所定の位置に形成した窒化シリコン膜を酸化して
形成したオキシナイトライド膜を用いることを特徴とす
る不揮発性半導体記憶装置の製造方法。
An oxynitride film formed by oxidizing a silicon nitride film formed at a predetermined position on a silicon substrate is used as a tunnel insulating film in a nonvolatile semiconductor memory device that performs rewriting using tunnel current in the insulating film. A method for manufacturing a non-volatile semiconductor memory device.
JP26704388A 1988-10-25 1988-10-25 Manufacture of nonvolatile semiconductor storage device Pending JPH02114569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26704388A JPH02114569A (en) 1988-10-25 1988-10-25 Manufacture of nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26704388A JPH02114569A (en) 1988-10-25 1988-10-25 Manufacture of nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH02114569A true JPH02114569A (en) 1990-04-26

Family

ID=17439249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26704388A Pending JPH02114569A (en) 1988-10-25 1988-10-25 Manufacture of nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH02114569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206412A (en) * 1991-10-29 1993-08-13 Semiconductor Energy Lab Co Ltd Semiconductor memory device and its manufacture
WO2024077592A1 (en) * 2022-10-14 2024-04-18 长江存储科技有限责任公司 Three-dimensional memory and manufacturing method therefor, and memory system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206412A (en) * 1991-10-29 1993-08-13 Semiconductor Energy Lab Co Ltd Semiconductor memory device and its manufacture
WO2024077592A1 (en) * 2022-10-14 2024-04-18 长江存储科技有限责任公司 Three-dimensional memory and manufacturing method therefor, and memory system

Similar Documents

Publication Publication Date Title
JPH10163348A (en) Manufcture of nonvolatile semiconductor storage device
US20020014654A1 (en) Method and structure for an oxide layer overlying an oxidation-resistant layer
US5424232A (en) Method for manufacturing a non-volatile memory having a floating gate oxide type fet provided with a tunnel oxide film
JPH02114569A (en) Manufacture of nonvolatile semiconductor storage device
JP3054422B2 (en) Method for manufacturing semiconductor device
JPH08316226A (en) Formation method of element isolation region and manufacture of semiconductor device
JPH04271177A (en) Manufacture of nonvolatile semiconductor memory
JP2696103B2 (en) Manufacturing method of semiconductor nonvolatile memory
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
JP3433016B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH05343693A (en) Manufacture of nonvolatile semiconductor storage device
JPH04356969A (en) Nonvolatile semiconductor device
JPH0685280A (en) Manufacture of nonvolatile semiconductor device
JP3371169B2 (en) Method for manufacturing semiconductor device
JPH0878550A (en) Fabrication of floating gate type nonvolatile semiconductor memory
JP3283269B2 (en) Method for manufacturing semiconductor memory device
KR930004347B1 (en) Method of fabricating nonvolatile semiconductor memory device
JPH03227573A (en) Method of manufacturing semiconductor memory device
JPS6353978A (en) Manufacture of semiconductor storage device
JPH08293563A (en) Semiconductor non-volatile memory device and manufacture thereof
JPH07120724B2 (en) Method of manufacturing semiconductor memory device
JPH03273684A (en) Semiconductor storage device and manufacture thereof
JPH03262163A (en) Manufacture of semiconductor storage device
JPH02218167A (en) Manufacture of semiconductor storage device
JPH0341775A (en) Manufacture of semiconductor memory