JPH02107567A - Production of high-density silicon nitride sintered body - Google Patents

Production of high-density silicon nitride sintered body

Info

Publication number
JPH02107567A
JPH02107567A JP63255953A JP25595388A JPH02107567A JP H02107567 A JPH02107567 A JP H02107567A JP 63255953 A JP63255953 A JP 63255953A JP 25595388 A JP25595388 A JP 25595388A JP H02107567 A JPH02107567 A JP H02107567A
Authority
JP
Japan
Prior art keywords
sintered body
pressure
silicon nitride
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255953A
Other languages
Japanese (ja)
Other versions
JP2678775B2 (en
Inventor
Tomohisa Kito
木藤 共久
Katsuhisa Yabuta
勝久 籔田
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63255953A priority Critical patent/JP2678775B2/en
Publication of JPH02107567A publication Critical patent/JPH02107567A/en
Application granted granted Critical
Publication of JP2678775B2 publication Critical patent/JP2678775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title high-density silicon nitride sintered body wherein the pinholes deteriorating the high-temp. characteristic are not left even when the sintered body is secondarily calcined at a high gas pressure by preforming silicon nitride and a sintering assistant, and secondarily calcining the primarily calcined presintered body at specified temp. and pressure. CONSTITUTION:The silicon nitride powder and sintering assistant are preformed into a specified shape. The preform is primarily calcined in a gaseous nitrogen atmosphere, and then secondarily calcined in a compressed inert gas atmosphere to produce a densified silicon nitride sintered body. The secondary calcination is carried out by the following schedule. (1) The preform is heated to the temp. at which a liq. phase is formed in the sintered body at <=300atm, and (2) heated at a temp. higher than the temp. at which the liq. phase is formed while gradually increasing the pressure from 300atm to a specified pressure. In this production process, the condition that an open cell is not formed in the primarily sintered body must be fulfilled. When the open cell is formed, pinholes are left remaining even by the above-mentioned schedule.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高密度窒化珪素焼結体の製造方法さらに詳細に
は内部にピンホールの残留しない焼結体を得るための製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a high-density silicon nitride sintered body, and more particularly to a manufacturing method for obtaining a sintered body in which no pinholes remain inside.

〈従来の技術〉 近年熱効率の向−ヒ、燃料の節約、低公害、軽量化を目
的として高温ガスタービン、ディーゼルエンジンなど高
温で稼動する機器の開発が盛んである。これら高温で使
用される機器に用いられる材料としてはセラミック中で
も窒化珪素が注目されている。
<Prior Art> In recent years, there has been active development of equipment that operates at high temperatures, such as high-temperature gas turbines and diesel engines, with the aim of improving thermal efficiency, saving fuel, reducing pollution, and reducing weight. Among ceramic materials, silicon nitride is attracting attention as a material used in these devices used at high temperatures.

この窒化珪素(Si3Ng)は優れた物理的、化学的特
性を有するがそれ噴味では緻密化させるのが困難であっ
た。このようなSi3N4焼結体の製造法としては■ガ
ス圧焼結法、■焼結助剤(八β201+ MgO。
This silicon nitride (Si3Ng) has excellent physical and chemical properties, but it has been difficult to densify it by blowing. Methods for manufacturing such a Si3N4 sintered body include: (1) gas pressure sintering method; (2) sintering aid (8β201+ MgO);

YzOz ;希土類酸化物等の焼結助剤)を添加して大
気圧下で焼結する常圧焼結法、■ホットプレス法、■熱
間静水圧プレス法など4つの方法がある。
There are four methods, including a normal pressure sintering method in which sintering is performed under atmospheric pressure by adding YzOz (a sintering aid such as a rare earth oxide), (1) a hot press method, and (2) a hot isostatic press method.

このうち、ホットプレス法は比較的高密度で高強度の焼
結体が得られているが、複雑な形状の焼結体が得難いこ
とと、コストアンプが避けられない。
Among these methods, the hot press method produces a sintered body with relatively high density and high strength, but it is difficult to obtain a sintered body with a complicated shape and costs are inevitably increased.

常圧焼結法は予め任意形状に成形したSi、N、粉末を
焼結する方法であるので複雑形状品の製造は容易である
が比較的多量の焼結助剤が必要であるため、粒界のガラ
ス成分が増し、高温特性に優れた焼結体が得難い。この
点ガス圧焼結法や、熱間静水圧プレス法は、少量の焼結
助剤で緻密化させることができ、高温構造材料用5iJ
4焼結体の製造方法として有用である。
The pressureless sintering method is a method of sintering Si, N, and powder that has been formed into an arbitrary shape in advance, so it is easy to manufacture products with complex shapes, but it requires a relatively large amount of sintering aid, so As the glass content of the glass increases, it is difficult to obtain a sintered body with excellent high-temperature properties. In this respect, the gas pressure sintering method and the hot isostatic pressing method can be densified with a small amount of sintering aid, and 5iJ
This method is useful as a method for producing 4 sintered bodies.

一例として特公昭61− 46430号があるが、その
概要はSiJ、粉末を所定形状に成形するとともに、こ
れを相対密度92%以上に予備焼結し閉気孔させ後、1
500℃以上、窒素分圧500気圧以上で熱間静水圧プ
レス(HI P)で2次焼結する方法であり、得られた
焼結体の密度は98%以上であるが、完全には内部ピン
ホールが消滅していない焼結体を得ており、2次焼成時
の温度と圧力のスケジュールの緻密化との関係について
は何等言及していない。また、予備焼結体の密度が97
%以下の場合、−上記の方法でピンホールのない焼結体
を得ることは困難である。
An example is Japanese Patent Publication No. 61-46430, which outlines that SiJ powder is formed into a predetermined shape, pre-sintered to a relative density of 92% or more to close the pores, and then
This is a method of secondary sintering using hot isostatic pressing (HIP) at a temperature of 500°C or higher and a nitrogen partial pressure of 500 atm or higher, and the resulting sintered body has a density of 98% or higher, but the internal A sintered body in which pinholes have not disappeared is obtained, and there is no mention of the relationship between the refinement of the temperature and pressure schedule during secondary firing. In addition, the density of the preliminary sintered body is 97
% or less, it is difficult to obtain a pinhole-free sintered body using the above method.

〈発明が解決すべき課題〉 本発明者らは上記の焼結方法に於て、11000atの
窒素ガス圧力下で2次焼成して相対密度98.4χの焼
結体を得、latmの窒素ガス雰囲気で2500℃2h
rの条件で熱処理を行なったところ、焼結体中には内部
にクランクが発生したが、その原因は過度の引張応力が
発生したことによるものと推定される。これは2次焼成
時に何等かの経路で焼結体中に圧力媒体に用いたガス(
窒素ガス等)が侵入し、焼結体中に残留していたピンホ
ールの中に高圧のま−閉じ込められたことによるものと
推定される。
<Problems to be Solved by the Invention> In the above sintering method, the present inventors obtained a sintered body with a relative density of 98.4χ by performing secondary firing under a nitrogen gas pressure of 11,000 atm. 2500℃ 2 hours in atmosphere
When the heat treatment was carried out under the conditions of r, cranks were generated inside the sintered body, which is presumed to be caused by the generation of excessive tensile stress. This is because the gas used as a pressure medium (
It is presumed that this is because nitrogen gas (such as nitrogen gas) entered the sintered body and was trapped under high pressure in the pinholes remaining in the sintered body.

換言すれば、高圧のガス圧下で2次焼成した後に焼結体
内部に残留したピンホールの中に高圧の雰囲気ガスが封
じ込まれる場合、高温構造材として使用するとその特性
の劣化が避けられないということを意味している。
In other words, if high-pressure atmospheric gas is trapped in the pinholes remaining inside the sintered body after secondary firing under high gas pressure, its properties will inevitably deteriorate when used as a high-temperature structural material. It means that.

本発明はこのような状況に鑑み、高圧のガス圧力下で2
次焼成した場合でも、高温での特性の劣化を生じさせる
ピンホールが残留しない焼結体を得るための焼結方法を
目的とするものである。
In view of this situation, the present invention has been developed to
The object of the present invention is to provide a sintering method for obtaining a sintered body that does not have pinholes that cause deterioration of properties at high temperatures even after subsequent firing.

〈課題を解決するための手段〉 本発明者等は予備成形体を300a tm以上のガス圧
下で2次焼成を行う焼成法において前述の問題を生じる
ような内部ピンホールが残留しない焼結体を得るための
焼結方法について鋭意検討したところ、2次焼成の温度
と圧力のスケジュールがピンホールの残留の有無に大き
な影響を持つことが判った。
<Means for Solving the Problems> The present inventors have developed a sintered body that does not leave internal pinholes that would cause the aforementioned problems in a firing method in which a preform is subjected to secondary firing under a gas pressure of 300 atm or more. After careful consideration of the sintering method used to obtain this material, it was found that the temperature and pressure schedule of the secondary firing had a large effect on whether or not pinholes remained.

本発明はこの知見に基づき以下の手段によりこの問題を
解決し得ることができた。
Based on this knowledge, the present invention was able to solve this problem by the following means.

窒化珪素粉末及び焼結助剤を所定の形状に予備成形し、
N2雰囲気下で1次焼成した後にN2又はA7等の不活
性ガスの加圧雰囲気下で2次焼成するスケジュールを、
(イ)焼結体中における液相生成温度までは300a 
tm以下で加圧加熱し、(Tl)焼結体中における液相
生成温度以−ヒでは300a tmを越えて所定の圧力
まで昇圧させて加圧加熱する高密度窒化珪素焼結体の製
造方法である。
Preform silicon nitride powder and sintering aid into a predetermined shape,
A schedule for primary firing in an N2 atmosphere and then secondary firing in a pressurized atmosphere of an inert gas such as N2 or A7,
(a) The temperature up to the liquid phase formation temperature in the sintered body is 300a.
A method for producing a high-density silicon nitride sintered body by pressurizing and heating at a temperature below tm and increasing the pressure to a predetermined pressure exceeding 300 atm below the liquid phase formation temperature in the (Tl) sintered body. It is.

本発明においては1次焼結体に開気孔が存在しないこと
が必要であり、開気孔が存在すれば上記のスケジュール
によってもピンホールが残留することになる。
In the present invention, it is necessary that there be no open pores in the primary sintered body, and if there are open pores, pinholes will remain even if the above schedule is followed.

1次焼結体の開気孔の有無は水銀圧入法を用いて大気圧
以上の圧入圧力での水銀の侵入の有無によって決定する
ことができ、水銀の侵入が認められなければ開気孔が存
在せず、水銀の侵入が認められれば開気孔が存在すると
判断することができる。
The presence or absence of open pores in the primary sintered body can be determined by the presence or absence of mercury intrusion at an injection pressure higher than atmospheric pressure using the mercury intrusion method, and if mercury intrusion is not observed, open pores are not present. First, if mercury intrusion is observed, it can be determined that open pores exist.

ここで焼結体における液相生成温度は成形体を加熱して
いたときに急激な焼成収縮が開始する温度として決定す
ることができる。
Here, the liquid phase generation temperature in the sintered body can be determined as the temperature at which rapid firing shrinkage begins when the molded body is heated.

ただしこの方法では液相生成温度の決定温度に若干の誤
差を生じるため、昇圧は、この温度より30℃以上高い
温度で行うのがよく、より好ましくは50℃以上高い温
度で行うのがよい。
However, since this method causes a slight error in the temperature at which the liquid phase formation temperature is determined, the pressure increase is preferably performed at a temperature higher than this temperature by 30° C. or more, more preferably at a temperature higher than this temperature by 50° C. or more.

〈作 用〉 高密度焼結体を得るためには、1次焼結体に開気孔の有
無が重要であることは前述のとおりである。すなわち、
開気孔が無ければ一般的に2次焼結時の雰囲気ガスが焼
結体に侵入することは考えられない。ただし、ガス圧焼
結に於ては雰囲気ガスの圧力を高めて焼成するために、
ガス圧力が外力として焼結体に作用し、これにより影響
されることが考えられる。本発明者はこの点について検
討したところ、1次焼結体中に液相が生成していない温
度で300a tmを越える圧力に昇圧すると開気孔の
存在しない1次焼結体にあっても2次焼結後にピンホー
ルが残留し、ピンホール中には圧力媒体として用いたガ
スが高圧で存在することが判った。
<Function> As mentioned above, the presence or absence of open pores in the primary sintered body is important in order to obtain a high-density sintered body. That is,
If there are no open pores, it is generally unlikely that atmospheric gas during secondary sintering will enter the sintered body. However, in gas pressure sintering, the pressure of the atmospheric gas is increased to perform firing.
It is thought that gas pressure acts on the sintered body as an external force and is influenced by this. The inventor studied this point and found that if the pressure is increased to over 300 atm at a temperature where no liquid phase is generated in the primary sintered body, even if the primary sintered body has no open pores, It was found that pinholes remained after the subsequent sintering, and that the gas used as the pressure medium existed at high pressure in the pinholes.

ところが液相生成温度では300a tm以下とし、3
00atmを越える圧力への昇圧は液相生成温度以上で
行なうスケジュールでは2次焼結体にピンホールが存在
しないことが判った。
However, the liquid phase formation temperature is 300a tm or less, and 3
It was found that no pinholes were present in the secondary sintered body when the pressure was raised to over 00 atm at a temperature higher than the liquid phase formation temperature.

その理由は1次焼結体中の粒界相の状態の差が考えられ
る。液相生成温度以上では粒界相は液相状態で、窒化珪
素粒とは充分に濡れているので、ガス圧力が作用し、両
者の間にせん断力が生じても両者の間にはガスが侵入し
得る空隙は生じない。
The reason for this is thought to be the difference in the state of the grain boundary phase in the primary sintered body. Above the liquid phase formation temperature, the grain boundary phase is in a liquid phase and is sufficiently wet with the silicon nitride grains, so even if gas pressure acts and shear force is generated between the two, there is no gas between them. No penetrable voids are created.

液相が生成していない温度では窒化珪素粒と粒界相の濡
れが不充分で、加圧によるせん断力が両者間に作用した
場合に、両者間にはガスの侵入し得る微小な空隙が生じ
、これによって圧力媒体として用いたガスが1次焼結体
中に侵入し高圧で閉じ込められることになり、熱処理に
よりクランクが発生する原因となる。ただし圧力が30
0 atm以下の場合は、外力としての作用に乏しくた
とえ液相が生成していない温度であっても焼結体にガス
の侵入し得る空隙が生じない。
At temperatures where no liquid phase is generated, silicon nitride grains and the grain boundary phase are insufficiently wetted, and when shear force from pressurization acts between them, tiny voids are created between them through which gas can enter. As a result, the gas used as a pressure medium enters the primary sintered body and is trapped under high pressure, causing cranking due to heat treatment. However, the pressure is 30
When the temperature is 0 atm or less, there is little effect as an external force, and even if the temperature is such that no liquid phase is generated, no voids are created in the sintered body through which gas can enter.

そこで1次焼結体中に液相が生成しない温度ではガス圧
を300a tm以下に保持し、液相が生成する温度以
上では300a tmを越えて所定の圧力まで次第に昇
圧するスケジュールを用いることによって、焼結体中に
圧力媒体ガスを侵入させることな(、高圧焼成すること
ができ、その結果としてピンホールの残留しない裔密度
焼結体が得られる。
Therefore, by using a schedule in which the gas pressure is maintained at 300 atm or less at temperatures where no liquid phase is generated in the primary sintered body, and gradually increased to a predetermined pressure above 300 atm at temperatures where liquid phases are generated, The sintered body can be fired under high pressure without allowing pressure medium gas to enter the sintered body, and as a result, a sintered body with no remaining pinholes can be obtained.

〈実施例〉 比表面積12rn”/g、α率92%の5iJn粉末9
3重里%と比表面積8m/gのへ2□0.粉末3重呈%
と、比表面積10m/gのY2O3粉末3重景%と、比
表面積20m1BのMgo粉末1重量%をエタノール中
で混合した後乾燥し造粒した。
<Example> 5iJn powder 9 with a specific surface area of 12rn''/g and an α rate of 92%
3 layers% and a specific surface area of 8 m/g to 2□0. Powder triplicate %
, 3% by weight of Y2O3 powder with a specific surface area of 10 m/g, and 1% by weight of Mgo powder with a specific surface area of 20 m1B were mixed in ethanol, then dried and granulated.

この粉末をtox 5 X30mに、金型プレスした後
、latmのN2雰囲気下で1500.1550.16
00.1650℃で各々2時間保持し、表に示した4種
の予備焼結体を得た。
After pressing this powder into a mold of tox 5 x 30m, it was heated to 1500.1550.16 in a latm N2 atmosphere.
Each sample was held at 0.001650°C for 2 hours to obtain four types of preliminary sintered bodies shown in the table.

この予備焼結体の開気孔の存無を水銀圧入法で測定した
。これによれば密度88.7%のものは水銀の侵入が認
められ、気孔率として4.99%であった。
The presence or absence of open pores in this pre-sintered body was measured by mercury intrusion method. According to this, the intrusion of mercury was observed in the material with a density of 88.7%, and the porosity was 4.99%.

密度91.1〜97.8%のものは大気圧から3000
0ps iの圧力においても侵入は認められず開気孔が
存在しなかった。また焼成温度と収縮の関係を8×8×
4011の成形体の長手方向の線収縮率により測定した
。その結果は第1図に示すとおりである。第1図によれ
ばこの試料の液相生成温度(収縮が急激に開始する温度
)は約1370°Cであることが判った。次にこのデー
タを基に第2図に示す4種のスケジユールで2000a
tm −1800℃−2hrの条件で2次焼成を行なっ
た。Tは2次焼成時の温度、Pは圧力を示し、横軸は時
間を示す。第2図A〜Cは比較例、Dは本発明を示す。
Those with a density of 91.1 to 97.8% are 3000% below atmospheric pressure.
Even at a pressure of 0 psi, no intrusion was observed and no open pores were present. Also, the relationship between firing temperature and shrinkage is 8×8×
The linear shrinkage rate in the longitudinal direction of the molded product of No. 4011 was measured. The results are shown in FIG. According to FIG. 1, the liquid phase formation temperature (temperature at which contraction begins rapidly) of this sample was found to be approximately 1370°C. Next, based on this data, 2000a was calculated using the four schedules shown in Figure 2.
Secondary firing was performed at tm -1800°C for 2 hours. T represents the temperature during secondary firing, P represents the pressure, and the horizontal axis represents the time. FIGS. 2A to 2C show comparative examples, and FIG. 2D shows the present invention.

なお圧力媒体ガスは窒素(N2)ガスである。Note that the pressure medium gas is nitrogen (N2) gas.

得られた2次焼結体については密度、内部ピンホール及
び1atmNz雰囲気下1500℃−2hrの条件で執
処理をした後焼結体内部のクランクの発生の有無につい
て調査した。
The resulting secondary sintered body was examined for density, internal pinholes, and the presence or absence of cranks inside the sintered body after being treated at 1,500° C. for 2 hours in a 1 atmNz atmosphere.

その結果は表に示すとおりである。The results are shown in the table.

〈発明の効果〉 本発明によれば、1次焼結体に開気孔が無ければ1次焼
結体の密度が97%以下であっても2次焼成により完全
に緻密化し、又、高温下においても焼結体中に変化生じ
ない安定な焼結体が得られた。
<Effects of the Invention> According to the present invention, if the primary sintered body has no open pores, even if the density of the primary sintered body is 97% or less, it will be completely densified by secondary firing, and A stable sintered body with no change in the sintered body was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、窒化珪素成形体の熱収縮率と焼成温度の関係
を示すグラフ。 第2図は2次焼成時の温度Tと圧力Pのスケジュールを
表わすグラフである。
FIG. 1 is a graph showing the relationship between the thermal shrinkage rate and firing temperature of a silicon nitride molded body. FIG. 2 is a graph showing a schedule of temperature T and pressure P during secondary firing.

Claims (1)

【特許請求の範囲】 窒化珪素粉末及び焼結助剤を所定の形状に予備成形し、
窒素(N_2)ガス雰囲気下で1次焼成し後に不活性ガ
スの加圧雰囲気下で2次焼成し、緻密化する窒化珪素焼
結体の製造方法に於て、2次焼成を (イ)焼結体中における液相生成温度までは300at
m以下で加圧加熱し、 (ロ)焼結体中における液相生成温度以上では300a
tmを越えて所定の圧力まで次第に昇圧させて加圧加熱
する ことを特報とする高密度窒化珪素焼結体の製造方法
[Claims] Preforming silicon nitride powder and a sintering aid into a predetermined shape,
In the method for manufacturing a silicon nitride sintered body, which is first fired in a nitrogen (N_2) gas atmosphere and then secondarily fired in a pressurized inert gas atmosphere to become dense, the second firing is (a) sintering. The temperature up to the liquid phase formation temperature in the compact is 300at.
(b) 300a above the liquid phase formation temperature in the sintered body.
A method for manufacturing a high-density silicon nitride sintered body, which involves gradually increasing the pressure beyond tm to a predetermined pressure and heating under pressure.
JP63255953A 1988-10-13 1988-10-13 Method for manufacturing high-density silicon nitride sintered body Expired - Fee Related JP2678775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255953A JP2678775B2 (en) 1988-10-13 1988-10-13 Method for manufacturing high-density silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255953A JP2678775B2 (en) 1988-10-13 1988-10-13 Method for manufacturing high-density silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH02107567A true JPH02107567A (en) 1990-04-19
JP2678775B2 JP2678775B2 (en) 1997-11-17

Family

ID=17285872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255953A Expired - Fee Related JP2678775B2 (en) 1988-10-13 1988-10-13 Method for manufacturing high-density silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2678775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131572A (en) * 1989-07-18 1991-06-05 Sumitomo Electric Ind Ltd Production of sintered silicon nitride having high strength
JP2002326875A (en) * 2001-01-12 2002-11-12 Toshiba Corp Abrasion resistant member of silicon nitride and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131572A (en) * 1989-07-18 1991-06-05 Sumitomo Electric Ind Ltd Production of sintered silicon nitride having high strength
JP2002326875A (en) * 2001-01-12 2002-11-12 Toshiba Corp Abrasion resistant member of silicon nitride and its manufacturing method

Also Published As

Publication number Publication date
JP2678775B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JPH02107567A (en) Production of high-density silicon nitride sintered body
JPS6213310B2 (en)
JPS6241191B2 (en)
US5545362A (en) Production method of sintered silicon nitride
JPH0512305B2 (en)
EP0648717A2 (en) Reaction sintered ceramics and method of producing the same
CN104803686A (en) Solid oxide fuel cell multi-layer ceramic structure body sintering method
JP2742619B2 (en) Silicon nitride sintered body
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JP2972836B2 (en) Forming method of composite ceramics
JPH05319937A (en) Functionally gradient material
JPS6146433B2 (en)
JPH04347329A (en) Ceramics sub-combustion chamber for diesel engine and manufacture thereof
JP2967243B2 (en) Ceramic intake / exhaust port liner and method of manufacturing the same
JPH076745B2 (en) Hot isostatic pressing equipment
JPS6389455A (en) Mullite sintered body
Matsuo Development of gas pressure sintered silicon nitride ceramics
JPH0714606B2 (en) Method for preparing ceramic clay
JPS6146432B2 (en)
Jayaseelan et al. Thermally stable high-strength porous alumina
Blicblau Fabrication of silicon nitride ceramics
JPS62113769A (en) Manufacture of silicon nitride sintered body
JP2936288B2 (en) Composite ceramic and method for producing the same
JPH0457635B2 (en)
JPH01227849A (en) Ceramic cylinder liner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees