JPS6213310B2 - - Google Patents

Info

Publication number
JPS6213310B2
JPS6213310B2 JP56011180A JP1118081A JPS6213310B2 JP S6213310 B2 JPS6213310 B2 JP S6213310B2 JP 56011180 A JP56011180 A JP 56011180A JP 1118081 A JP1118081 A JP 1118081A JP S6213310 B2 JPS6213310 B2 JP S6213310B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
density
sintering
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011180A
Other languages
Japanese (ja)
Other versions
JPS57123865A (en
Inventor
Katsuhiko Honma
Tsuneo Tateno
Hiroshi Okada
Keiko Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56011180A priority Critical patent/JPS57123865A/en
Priority to DE3141590A priority patent/DE3141590C2/en
Publication of JPS57123865A publication Critical patent/JPS57123865A/en
Publication of JPS6213310B2 publication Critical patent/JPS6213310B2/ja
Priority to US07/251,052 priority patent/US5603876A/en
Priority to US07/814,806 priority patent/US5445776A/en
Priority to US08/463,273 priority patent/US5665291A/en
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高密度でかつ高強度の窒化珪素焼結体
を製造する方法に関するものである。 近年、熱効率の向上、燃料の節約、低公害、軽
量化を目的として高温ガスタービンを始め、デイ
ーゼルエンジン、MHD発電など高温で稼動する
機器の開発が活発に行なわれている。ところが、
これら機器の開発は一途に高温構造材料の開発に
かかつており、これら材料の形成が注目されてい
るが、かゝる高温下では従来の耐熱金属では必ず
しも満足な機械的強度を得るに至らず、又、資源
の乏しい耐熱金属材料の節約という観点から地上
の比較的豊富なSi、Al、C、Nなどを原料とする
セラミツクスを高温構造材料として開発が進めら
れつつある。 又、かかる高温構造材料の開発は高硬度部材と
しての工具や耐食材料としての用途を目的として
も同様にその重要性が認識され、大きな関心が寄
せられている。 とりわけ、これらセラミツクス高温構成材料の
中で高温下で充分な強度を有し化学的に安定で熱
衝撃にも強い材料として窒化珪素(Si3N4)は最も
有望なものの一つとして注目されている。 このSi3N4は上述の如き優れた物理的特性を有
するが、これはSi3N4が珪素(Si)と窒素(N)
との強固な共有結合よりなる化合物であることに
よる。このことは、反面において高密度でかつ高
強度の製品を製造することが極めて困難であるこ
とを意味し、この分野における研究の殆んどは如
何に高密度で、高強度のSi3N4の成形体を製造す
るかに費やされている現状である。 従来、かゝる高強度のSi3N4焼結体の製造法と
して、最近、熱間静水圧プレス(以下HIPとい
う)法により高温高圧の不活性ガスをSi3N4粉末
を所定の形状にした成形体あるいはこれを予備焼
結した予備焼結体に作用させて高密度化する方法
が提案されている。 しかしながら、本発明者等がこのようにして得
られたSi3N4焼結体の相対密度と強度との相関関
係について実験を行つたところ、Si3N4焼結体の
相対密度と強度とは必ずしも相関関係があるとは
云えないことが判明した。そこで本発明者等は更
に検討を重ね、予備焼結体のβ型Si3N4に着目し
て実験を行つた結果、予備焼結体のβ型Si3N4
有率と焼結体の強度とに相関があることを知見し
た。 本発明は、かかる知見に基づいてなされたもの
で、高密度で、かつ、高強度のSi3N4焼結体を製
造する方法を提供するものであり、その特徴とす
るところは、Si3N4粉末に焼結助剤を添加混合
し、これを所定形状に成形した後焼結した相対密
度80%以上、β型Si3N4含有率が20〜80%の予備
焼結体を製造し、次いで、該予備焼結体を1600℃
以上、500気圧以上の高温高圧ガス雰囲気下で
HIP処理することにより、残留α型窒化珪素の大
部分をβ化させると共に、相対密度95%以上の高
密度Si3N4焼結体とすることにある。 以下本発明を更に詳細に説明する。 先づ本発明方法を用いるSi3N4粉末の原料は金
属Siの窒化法により得られるものの他、SiO2還元
粉あるいは気相反応法、熱分解法によりSiCl4
Si(NH)2から製造されたもの等が使用される
が、得られるSi3N4焼結の抗折強度の点からして
気相反応法及び熱分解法により製造されたものが
好ましい。なお、Si3N4粉末の非晶質、α型及び
β型の比率は後述する如く予備焼結により得られ
る予備焼結体のβ型Si3N4の含有率を20〜80%と
し得るものであればいかなるものでもよいことは
云う迄もない。 前記Si3N4粉末に添加する焼結助剤としては
Y、Al、Mg、Ti等の酸化物または窒化物、
ZrO2、BeO、La2O3、CeO2等のいづれかあるい
はその混合物等であり、これ等焼結助剤の添加量
はSi3N4粉末に対して30重量%以下、好ましくは
5〜15重量%である。焼結助剤を含有したSi3N4
粉末の成形は射出成型法、押圧成型法、型プレス
成型法、静水圧成型法等により所定の形状に応じ
て行う。 前記の所定形状に成形された成形体は次いで予
備焼結し、相対密度80%以上、β型Si3N4含有率
が20〜80%の予備焼結体とする。予備焼結はホツ
トプレス焼結法、大気圧近傍または高圧N2ガス
雰囲気下で焼結する方法等により行うことができ
るが、N2ガス等の非酸化性雰囲気下で焼結する
ことが好ましい。この場合、焼結温度は添加する
焼結助剤の種類及び添加量、焼結時間により異る
が、1400〜1800℃が適当である。第1図は焼結温
度と予備焼結体のα型Si3N4含有率との関係を示
す一例であり、Si3N4粉末に焼結助剤として、
Y2O36重量%、Al2O32重量%にMgOを夫々1重
量%、3重量%、5重量%を添加し、焼結温度を
変えて200分焼結した場合の焼結温度と予備焼結
体のα型Si3N4含有率との関係を示したものであ
る。第1図から明らかな如く焼結助剤の添加量に
より予備焼結体のα型Si3N4含有率は異るが、焼
結温度が1500〜1600℃の範囲ではα型Si3N4含有
率は約80%〜20%であり、従つて予備焼結体のβ
型Si3N4含有率を20〜80%とするには焼結温度と
して低温域の1500〜1600℃とすることが好まし
い。 一方、焼結時間は、焼結助剤の種類及び添加
量、焼結時間により異るが50〜200分が適当であ
る。 第2図は焼結時間と予備焼結体のα型Si3N4
有率との関係を示す一例であり、Si3N4粉末に焼
結助剤としてY2O36重量%、Al2O32重量%に
MgOを夫々1重量%、3重量%、5重量%添加
し、焼結温度1600℃で、焼結時間を変えて焼結し
た場合の焼結時間と予備焼結体のα型Si3N4含有
率との関係を示したものである。第2図から明ら
かな如く、焼結助剤の添加量により、予備焼結体
のα型Si3N4含有率は異るが、焼結時間が50〜200
分の範囲では予備焼結体のα型Si3N4含有率は、
約80〜20%であり、従つて予備焼結体のβ型
Si3N4含有率を20〜80%とするには焼結時間は50
〜200分とすることが適当であることが判る。 この予備焼結において重要なことは、予備焼結
により得られる予備焼結体が後述するHIP処理に
よつて抗折強度が高められることであつて、予備
焼結体のβ型Si3N4含有率が20〜80%であること
が必要である。この理由については明らかではな
いが、予備焼結のβ型Si3N4含量が80%を超える
場合には、HIP処理により得られるSi3N4焼結体
の抗折試験後の破面を観察すると、針状結晶が粗
大化していることからして、β型Si3N4含量が80
%以下即ちα型Si3N4含量が20%以上存在してい
ることが、HIP処理により生成あるいは成長する
β型結晶の粗大化を阻止しているものと考えられ
る。 上記の如くして得られた予備焼結体は次いで
HIP処理に付して相対密度95%以上、β型Si3N4
含有率が好ましくは95%以上の高密度焼結体とす
る。この場合、予備焼結体の相対密度は80%以上
であるが、この範囲で予備焼結体の相対密度が低
いものは、焼結体中の気孔が表面に連通した開孔
となつているものがあるため、そのままHIP処理
したのでは閉孔部のみが消滅し、開孔部がそのま
ま残留することになるので相対密度の低い予備焼
結体はSi、Al等の酸化物または窒化物等を被覆し
て封孔処理を行いHIP処理に付すことが好ましい
が、本発明者等の研究によると、予備焼結体の相
対密度が92%以上の場合には焼結体中の気泡は、
その殆んどが表面に開口していない開孔となつて
いるから、封孔処理することなく、そのままHIP
処理に付すことができる。勿論、相対密度が92%
以上の予備焼結体であつても、例えば圧媒ガスと
してArガスを用いる場合におけるSi3N4の分解反
応の防止等他の目的のために被覆処理を行つて
HIP処理し得ることは云う迄もない。 HIP処理はArガス、N2ガス等の不活性ガス雰
囲気下で行われるが、Si3N4の分解反応を防止し
て、高密度化しうることからしてN2ガス雰囲気
下で行うことが好ましい。 HIP温度としては、1600℃以上、好ましくは
1700〜2000℃であり、予備焼結温度より高いこと
が望ましい。このHIP温度は当然Si3N4の分解温
度以下でなければならず、この分解温度もHIP圧
力の上昇を共に高くなるが、少くともそのHIP処
理時の圧力における分解温度よりも100℃低い温
度以下で行うことが好ましい。 次にHIP圧力は、500気圧以上で行うのがよ
く、500気圧以下ではHIP処理に長時間を要する
と共にSi3N4の分解反応量が時間に比例して大き
くなるため焼結体の重量減少を招くのみならず、
高密度化自体が達成し難くなる。従つてHIP圧力
は少くとも500気圧、好ましくは700気圧以上にす
ることが望ましい。 一方、HIP圧力は高ければ高い程、Si3N4の分
解反応が抑止され高密度化が達成され易いが、昇
圧に時間を要し、かつ、昇圧用のコンプレツサを
はじめ本体圧力容器などHIP処理装置が大型化す
るので実用的でなくなる。従つて実用的には2500
気圧までの圧力でHIP処理することが望ましい。 またHIP処理時間は5分〜5時間の範囲で処理
することが好ましい。 上記の如くしてHIP処理が施されたSi3N4焼結
体は相対密度が95%以上の高密度焼結体となる。 以上述べた如く、本発明方法は、予備焼結体の
β型Si3N4の含有率を20〜80%として、HIP処理
を施すものであるから、HIP処理により結晶がし
易く、高密度化が容易となると共に、HIP処理に
より得られたSi3N4焼結体中の殆んどがβ型Si3N4
に変化しており、しかもその組織は微細であり、
抗折強度の向上した高密度Si3N4焼結体を製造す
ることができる。 またHIP処理により高密度化が容易であると同
時に高温処理が可能であるからα型Si3N4からβ
型Si3N4に転移するに要する時間を短くでき、処
理時間の短縮化によるコストダウンが可能とな
る。更に本発明方法は、Si3N4粉末と焼結助剤と
の混合物を成形して予備焼結体とするものである
から、複雑形状のものでもその成形が容易であ
り、しかもHIP処理により高密度化及び強度の向
上が可能であるから従つて任意の複雑形状の高密
度でかつ高強度のSi3N4焼結体を容易に製造し得
る利点もあり本発明方法はSi3N4焼結体の工業的
製造方法として極めて実効性に富むものである。 以下本発明方法を実施例によつて更に具体的に
説明する。 実施例 1 原料粉末として、金属Siを窒化して製造した市
販のSi3N4粉末(α型含有率90%、β型含有率10
%、平均粒度1μm)を用い、これに焼結助剤と
してY2O36重量%、MgO3重量%、Al2O32重量%
を添加混合し、1ton/cm2の圧力で冷間成形後、大
気圧下N2気流中で、焼結温度を各々変えて各々
200分間焼結し、第1表試料No.1〜7に示す特性
の予備焼結体を作製した。次いでこれらの予備焼
結体を封孔処理することなく第2表試料No.1〜7
に示すHIP処理条件でHIP処理を行い、得られた
焼結の特性を調べたところ、第2表試料No.1〜7
に示す如き結果を得た。第1表、第2表中試料No.
1〜4、6及び7は本発明例、試料No.5は比較例
を示す。
The present invention relates to a method for producing a high-density and high-strength silicon nitride sintered body. In recent years, there has been active development of equipment that operates at high temperatures, such as high-temperature gas turbines, diesel engines, and MHD power generation, with the aim of improving thermal efficiency, saving fuel, reducing pollution, and reducing weight. However,
The development of these devices is focused on the development of high-temperature structural materials, and the formation of these materials is attracting attention, but conventional heat-resistant metals do not necessarily have sufficient mechanical strength at such high temperatures. In addition, from the perspective of saving heat-resistant metal materials, which are scarce in resources, ceramics made from Si, Al, C, N, etc., which are relatively abundant on earth, are being developed as high-temperature structural materials. Further, the importance of the development of such high-temperature structural materials for use as tools as high-hardness members and as corrosion-resistant materials is similarly recognized, and great interest is being focused. In particular, among these high-temperature ceramic constituent materials, silicon nitride (Si 3 N 4 ) is attracting attention as one of the most promising materials that has sufficient strength at high temperatures, is chemically stable, and is resistant to thermal shock. There is. This Si 3 N 4 has excellent physical properties as mentioned above, but this is because Si 3 N 4 is composed of silicon (Si) and nitrogen (N).
This is because it is a compound consisting of a strong covalent bond with. On the other hand, this means that it is extremely difficult to manufacture products with high density and high strength, and most of the research in this field has focused on how high density and high strength Si 3 N 4 At present, most of the time is spent on manufacturing molded bodies. Conventionally, as a method for manufacturing such high-strength Si 3 N 4 sintered bodies, recently, hot isostatic pressing (hereinafter referred to as HIP) method is used to press inert gas at high temperature and pressure to shape Si 3 N 4 powder into a predetermined shape. A method has been proposed for increasing the density by acting on a compacted compact or a presintered compact obtained by presintering the same. However, when the present inventors conducted an experiment on the correlation between the relative density and strength of the Si 3 N 4 sintered body obtained in this way, it was found that the relative density and strength of the Si 3 N 4 sintered body were It was found that there is not necessarily a correlation between the two. Therefore, the present inventors further investigated and conducted experiments focusing on the β-type Si 3 N 4 of the pre-sintered body. As a result, the β-type Si 3 N 4 content of the pre-sintered body and the sintered body It was found that there is a correlation with strength. The present invention has been made based on this knowledge, and provides a method for producing a high-density and high-strength Si 3 N 4 sintered body. A pre-sintered body with a relative density of 80% or more and a β-type Si 3 N 4 content of 20 to 80% is produced by adding and mixing a sintering aid to N 4 powder, molding it into a predetermined shape, and sintering it. Then, the pre-sintered body was heated to 1600°C.
under a high-temperature, high-pressure gas atmosphere of 500 atmospheres or more.
By performing the HIP treatment, most of the residual α-type silicon nitride is turned into β, and a high-density Si 3 N 4 sintered body with a relative density of 95% or more is obtained. The present invention will be explained in more detail below. First, the raw materials for the Si 3 N 4 powder used in the method of the present invention are those obtained by the nitriding method of metal Si, as well as SiCl 4 and SiO 2 reduced powders, gas phase reaction methods, and thermal decomposition methods.
Those manufactured from Si(NH) 2 are used, but from the viewpoint of the bending strength of the resulting Si 3 N 4 sintered material, those manufactured by a gas phase reaction method and a thermal decomposition method are preferable. Note that the ratio of the amorphous, α-type, and β-type of the Si 3 N 4 powder is such that the content of β-type Si 3 N 4 in the preliminary sintered body obtained by preliminary sintering can be 20 to 80%, as described later. Needless to say, it can be anything. Sintering aids added to the Si 3 N 4 powder include oxides or nitrides of Y, Al, Mg, Ti, etc.
ZrO 2 , BeO, La 2 O 3 , CeO 2 , etc. or a mixture thereof, and the amount of these sintering aids added is 30% by weight or less, preferably 5 to 15% by weight based on the Si 3 N 4 powder. Weight%. Si 3 N 4 containing sintering aid
The powder is molded into a predetermined shape by an injection molding method, a pressure molding method, a die press molding method, a hydrostatic molding method, or the like. The molded body formed into the predetermined shape is then pre-sintered to obtain a pre-sintered body having a relative density of 80% or more and a β-type Si 3 N 4 content of 20 to 80%. Preliminary sintering can be performed by a hot press sintering method, a method of sintering near atmospheric pressure or under a high pressure N 2 gas atmosphere, but it is preferable to sinter in a non-oxidizing atmosphere such as N 2 gas. In this case, the sintering temperature varies depending on the type and amount of the sintering aid added and the sintering time, but is suitably 1400 to 1800°C. Figure 1 is an example showing the relationship between the sintering temperature and the α-type Si 3 N 4 content of the pre-sintered body.
Sintering temperature when 1% by weight, 3% by weight, and 5% by weight of MgO were added to 6% by weight of Y 2 O 3 and 2% by weight of Al 2 O 3 and sintered for 200 minutes at different sintering temperatures. This figure shows the relationship between α-type Si 3 N 4 content of the pre-sintered body and α-type Si 3 N 4 content. As is clear from Figure 1, the α-type Si 3 N 4 content of the pre-sintered body varies depending on the amount of sintering aid added, but when the sintering temperature is in the range of 1500 to 1600°C, α-type Si 3 N 4 The content is approximately 80% to 20%, therefore the β of the pre-sintered body
In order to obtain a mold Si 3 N 4 content of 20 to 80%, the sintering temperature is preferably in the low temperature range of 1500 to 1600°C. On the other hand, the sintering time varies depending on the type and amount of the sintering aid added and the sintering time, but is suitably 50 to 200 minutes. Figure 2 is an example showing the relationship between the sintering time and the α-type Si 3 N 4 content of the pre -sintered body. 2 O 3 to 2% by weight
Sintering time and α-type Si 3 N 4 of pre-sintered body when sintering was carried out by adding 1% by weight, 3% by weight, and 5 % by weight of MgO, respectively, and changing the sintering time at a sintering temperature of 1600 °C. It shows the relationship with the content rate. As is clear from Figure 2, the α-type Si 3 N 4 content of the pre-sintered body varies depending on the amount of sintering aid added, but the sintering time is 50 to 200.
In the range of minutes, the α-type Si 3 N 4 content of the pre-sintered body is
approximately 80-20%, and therefore the β type of the pre-sintered body
The sintering time is 50% for Si3N4 content of 20-80% .
It turns out that setting the time to ~200 minutes is appropriate. What is important in this preliminary sintering is that the bending strength of the preliminary sintered body obtained by the preliminary sintering is increased by the HIP treatment described later, and the β-type Si 3 N 4 of the preliminary sintered body is It is necessary that the content is 20-80%. The reason for this is not clear, but if the content of β-type Si 3 N 4 in the preliminary sintering exceeds 80%, the fracture surface after the bending test of the Si 3 N 4 sintered body obtained by HIP treatment is Observation shows that the content of β-type Si 3 N 4 is 80
% or less, that is, the α-type Si 3 N 4 content is 20% or more, which is considered to prevent the β-type crystals generated or grown by the HIP treatment from becoming coarser. The pre-sintered body obtained as described above is then
Relative density 95% or more after HIP treatment, β-type Si 3 N 4
The content is preferably a high-density sintered body of 95% or more. In this case, the relative density of the pre-sintered body is 80% or more, but if the relative density of the pre-sintered body is low within this range, the pores in the sintered body are open pores that communicate with the surface. If the HIP process is performed as it is, only the closed pores will disappear and the open pores will remain, so the pre-sintered body with a low relative density should be made of oxides or nitrides such as Si or Al. It is preferable to cover the sintered body, perform a sealing process, and then subject it to HIP treatment, but according to the research of the present inventors, when the relative density of the preliminary sintered body is 92% or more, air bubbles in the sintered body are
Most of them have open pores that do not open on the surface, so there is no need to seal them, so you can use HIP as is.
Can be subjected to processing. Of course, the relative density is 92%
Even with the above pre-sintered bodies, coating treatment may be performed for other purposes such as preventing the decomposition reaction of Si 3 N 4 when using Ar gas as the pressure medium gas.
It goes without saying that HIP processing is possible. HIP processing is performed in an inert gas atmosphere such as Ar gas or N 2 gas, but it is recommended to perform it in an N 2 gas atmosphere because it can prevent the decomposition reaction of Si 3 N 4 and increase the density. preferable. HIP temperature is 1600℃ or higher, preferably
The temperature is preferably 1700 to 2000°C, which is higher than the pre-sintering temperature. This HIP temperature must naturally be below the decomposition temperature of Si 3 N 4 , and this decomposition temperature also increases the HIP pressure, but it must be at least 100°C lower than the decomposition temperature at the pressure during the HIP process. It is preferable to carry out the following. Next, it is best to perform HIP at a pressure of 500 atm or higher. If the HIP pressure is lower than 500 atm, the HIP process will take a long time and the amount of Si 3 N 4 decomposed will increase in proportion to the time, resulting in a decrease in the weight of the sintered body. In addition to inviting
High density itself becomes difficult to achieve. Therefore, it is desirable that the HIP pressure be at least 500 atmospheres, preferably 700 atmospheres or more. On the other hand, the higher the HIP pressure, the more likely it is to suppress the decomposition reaction of Si 3 N 4 and achieve higher density. This increases the size of the device, making it impractical. Therefore, practically 2500
It is desirable to HIP at pressures up to atmospheric pressure. Moreover, it is preferable that the HIP treatment time is in the range of 5 minutes to 5 hours. The Si 3 N 4 sintered body subjected to the HIP treatment as described above becomes a high-density sintered body with a relative density of 95% or more. As described above, in the method of the present invention, the content of β-type Si 3 N 4 in the pre-sintered body is set at 20 to 80% and the HIP treatment is performed. In addition, most of the Si 3 N 4 sintered body obtained by HIP treatment is β-type Si 3 N 4
, and its structure is minute.
A high-density Si 3 N 4 sintered body with improved bending strength can be produced. In addition, HIP processing allows for easy densification and high-temperature processing, so it is possible to convert α-type Si 3 N 4 to β-type Si 3 N 4 .
The time required for transition to type Si 3 N 4 can be shortened, and costs can be reduced by shortening processing time. Furthermore, since the method of the present invention involves molding a mixture of Si 3 N 4 powder and a sintering aid into a pre-sintered body, it is easy to mold even complex shapes, and moreover, it can be easily molded by HIP treatment. Since it is possible to increase the density and improve the strength, the method of the present invention has the advantage that it is possible to easily produce a high-density and high-strength Si 3 N 4 sintered body of any complex shape . This method is extremely effective as an industrial manufacturing method for sintered bodies. The method of the present invention will be explained in more detail below with reference to Examples. Example 1 As a raw material powder, commercially available Si 3 N 4 powder (α type content 90%, β type content 10%) produced by nitriding metal Si was used.
%, average particle size 1 μm), and 6% by weight of Y2O3 , 2% by weight of MgO3, and 2 % by weight of Al2O3 as sintering aids.
were added and mixed, and after cold forming at a pressure of 1 ton/ cm2 , each was sintered at different sintering temperatures in a N2 stream under atmospheric pressure.
Sintering was performed for 200 minutes to produce preliminary sintered bodies having the characteristics shown in Sample Nos. 1 to 7 of Table 1. Next, these preliminary sintered bodies were prepared as Samples Nos. 1 to 7 in Table 2 without sealing.
HIP processing was performed under the HIP processing conditions shown in Table 2, and the characteristics of the obtained sintered material were investigated.
The results shown are obtained. Sample No. in Tables 1 and 2.
Samples 1 to 4, 6 and 7 are examples of the present invention, and Sample No. 5 is a comparative example.

【表】【table】

【表】 上表の結果から明らかな如く、比較例の試料No.
5を除く本発明例の各試料No.1〜4、6及び7は
予備焼結体のβ型含有率が25〜76%の範囲であ
り、いづれもHIP処理により相対密度が向上し、
かつ、抗折強度が著しく改善されていることが判
る。 一方、予備焼結体のβ型含有率が80%を超す試
料No.5は、HIP処理により相対密度は向上するも
のの、抗折強度は寧ろ低下している。 また、圧媒ガスとしてN2ガスを用いた試料No.
1と、Arガスを用いた試料No.3を比較してHIP処
理時の圧媒ガスの種類による影響をみると、Ar
ガスの場合はHIP処理により相対密度の向上は見
られないが、抗折強度は改善されており、一方、
N2ガスの場合は、HIP処理により相対密度、抗折
強度共改善されており圧媒ガスととしてはN2
スを用いるのが好ましいことが判る。 実施例 2 実施例1と同じSi3N4粉末を用い、第1表試料
No.8〜12に示す如く焼結助剤の種類及び添加量を
変えて、No.8、9、12は実施例1と同様にして成
形、予備焼結を行い、No.10、11は1600℃及び1700
℃で250Kg/cm230分ホツトプレスして予備焼結を
行なつて第1表試料No.8〜12に示す特性の予備焼
結体を作製した。次いで、これらの予備焼結体を
実施例1と同様にして、第2表試料No.8〜12に示
すHIP処理条件でHIP処理を行い、得られた焼結
体の特性を調べたところ第2表試料No.8〜12に示
す如き結果を得た。第1表、第2表中、試料No.
9、10は本発明例、試料No.8、11、12は比較例を
示す。 上表の結果から、本発明例である試料No.9、10
は実施例1と焼結助剤を異にしても、実施例1と
同様にいづれもHIP処理により相対密度が向上
し、抗折強度の改善が大きいことが判る。 これに対して、予備焼結体のβ型含有率が81
%、90%あるいは100%と高い試料No.8、11及び
12はHIP処理により相対密度は上昇するが抗折強
度の向上は殆んど見られず、予備焼結体のβ型含
有率を100%としても、HIP処理により得られる
焼結体の抗折強度は改善されないことが判る。 実施例 3 原料のSi3N4粉末として気相法により製造した
Si3N4粉末(アモルフアス部60%、α型含有率57
%、β型含有率3%、平均粒径1μm)を用い、
実施例1と同じ焼結助剤を混合し、実施例1と同
様にして成形、予備焼結を行い、第1表試料No.
13、14に示す特性の予備焼結体を作製した。次い
で、これらの予備焼結を実施例1と同様にして第
2表試料No.13、14に示すHIP処理条件でHIP処理
を行い、得られた焼結体の特性を調べたところ、
第2表試料No.13、14に示す如き結果を得た。第1
表、第2表中、試料No.13は本発明、試料No.14は比
較例を示す。上表の結果から、予備焼結体のβ型
含有率が35%である試料No.13はβ型含有率が83%
である試料No.14に比して抗折強度が大きく改善さ
れており、気相法によるSi3N4粉末を使用しても
本発明方法による焼結体の抗折強度の改善効果が
大きいことが判る。 また、上表より気相法によるSi3N4粉末を出発
原料とした場合は、窒化法によるSi3N4粉末を出
発原料とした場合(実施例1)に比して、HIP処
理による抗折強度の改善効果が著しく大きいこと
が明らかである。 実施例 4 実施例1と同じSi3N4粉末を用い、第1表試料
No.15、16に示す焼結助剤を添加混合し、実施例1
と同様にして成形、予備焼結を行い、第1表No.
15、16に示す如き特性の予備焼結体を作製した。
これらの予備焼結体をSi3N480重量%、SiO210重
量%、Al2O310重量%の混合粉末の有機溶媒スラ
リー中に浸漬して、その表面をコーテイングし、
乾燥、焼成により開孔部を封孔処理した。次いで
実施例1と同様にして、第2表試料No.15、16に示
すHIP処理条件でHIP処理を行い、得られた焼結
体の特性を調べたところ、第2表試料No.15、16に
示す如き結果を得た。第1表、第2表中、試料No.
15は本発明例、試料No.16は比較例を示す。 上表から予備焼結体のβ型含有率が66%の試料
No.15はそのβ型含有率が95%である試料No.16に比
してHIP処理による抗折強度の上昇が大きく、
HIP処理時に封孔処理を施してHIP処理を行つた
場合も、本発明方法による焼結体の抗折強度の改
善効果が大きいことが判る。 以上の実施例1、2、3、4の結果を綜合し、
本発明方法によれば、相対密度並びに抗折強度の
改善効果が大きく、高密度でかつ高強度のSi3N4
焼結を製造し得ることが明らかである。
[Table] As is clear from the results in the table above, sample No. of the comparative example.
Samples Nos. 1 to 4, 6, and 7 of the present invention examples except No. 5 have β-type content in the pre-sintered body in the range of 25 to 76%, and in all of them, the relative density is improved by HIP treatment,
Moreover, it can be seen that the bending strength is significantly improved. On the other hand, in sample No. 5 in which the β-type content of the preliminary sintered body exceeds 80%, although the relative density is improved by the HIP treatment, the bending strength is rather decreased. In addition, sample No. 2 uses N2 gas as the pressure medium gas.
Comparing Sample No. 1 and Sample No. 3, which used Ar gas, and looking at the influence of the type of pressure medium gas during HIP treatment, it was found that Ar
In the case of gas, no improvement in relative density was observed after HIP treatment, but bending strength was improved;
In the case of N 2 gas, both the relative density and the bending strength are improved by HIP treatment, and it is clear that it is preferable to use N 2 gas as the pressure medium gas. Example 2 Using the same Si 3 N 4 powder as in Example 1, the samples in Table 1 were prepared.
As shown in Nos. 8 to 12, the type and amount of sintering aid added were changed, and Nos. 8, 9, and 12 were molded and presintered in the same manner as in Example 1, and Nos. 10 and 11 were 1600℃ and 1700
Preliminary sintering was carried out by hot pressing at 250 kg/cm 2 for 30 minutes at a temperature of 0.degree. Next, these preliminary sintered bodies were subjected to HIP treatment in the same manner as in Example 1 under the HIP treatment conditions shown in Sample Nos. 8 to 12 of Table 2, and the characteristics of the obtained sintered bodies were investigated. The results shown in Sample Nos. 8 to 12 in Table 2 were obtained. In Tables 1 and 2, sample No.
Sample Nos. 9 and 10 are examples of the present invention, and Samples Nos. 8, 11, and 12 are comparative examples. From the results in the table above, samples No. 9 and 10, which are examples of the present invention,
It can be seen that even though the sintering aid was different from that in Example 1, the relative density was improved by the HIP treatment in all cases as in Example 1, and the bending strength was greatly improved. In contrast, the β-type content of the pre-sintered body was 81
%, 90% or 100% high samples No. 8, 11 and
Although the relative density of No. 12 increases with HIP treatment, there is almost no improvement in bending strength, and even if the β-type content of the pre-sintered body is 100%, the It can be seen that the strength is not improved. Example 3 Produced by gas phase method as raw material Si 3 N 4 powder
Si 3 N 4 powder (amorphous part 60%, α type content 57
%, β type content 3%, average particle size 1 μm),
The same sintering aid as in Example 1 was mixed, molding and preliminary sintering were performed in the same manner as in Example 1, and Sample No. 1 in Table 1 was obtained.
Preliminary sintered bodies with the characteristics shown in 13 and 14 were prepared. Next, these preliminary sinterings were performed in the same manner as in Example 1, and HIP processing was performed under the HIP processing conditions shown in Table 2 Sample Nos. 13 and 14, and the characteristics of the obtained sintered bodies were investigated.
The results shown in Sample Nos. 13 and 14 in Table 2 were obtained. 1st
In Table 2, Sample No. 13 shows the present invention, and Sample No. 14 shows the comparative example. From the results in the table above, sample No. 13, whose pre-sintered body has a β-type content of 35%, has a β-type content of 83%.
The bending strength is greatly improved compared to sample No. 14, which is the same, and even if Si 3 N 4 powder produced by the vapor phase method is used, the effect of improving the bending strength of the sintered body by the method of the present invention is large. I understand that. Also, from the table above, when Si 3 N 4 powder produced by the vapor phase method is used as the starting material, the resistance by HIP treatment is lower than when Si 3 N 4 powder produced by the nitriding method is used as the starting material (Example 1). It is clear that the effect of improving the bending strength is significantly large. Example 4 Using the same Si 3 N 4 powder as in Example 1, the samples in Table 1 were prepared.
Example 1 by adding and mixing the sintering aids shown in Nos. 15 and 16.
Molding and preliminary sintering were performed in the same manner as in Table 1, No.
Preliminary sintered bodies with the characteristics shown in 15 and 16 were prepared.
These preliminary sintered bodies were immersed in an organic solvent slurry of mixed powder of 80% by weight of Si 3 N 4 , 10% by weight of SiO 2 , and 10% by weight of Al 2 O 3 to coat the surface.
The openings were sealed by drying and firing. Next, in the same manner as in Example 1, HIP treatment was performed under the HIP treatment conditions shown in Table 2 Samples No. 15 and 16, and the properties of the obtained sintered bodies were investigated. The results shown in 16 were obtained. In Tables 1 and 2, sample No.
Sample No. 15 shows an example of the present invention, and Sample No. 16 shows a comparative example. From the table above, the sample has a pre-sintered body with a β-type content of 66%.
No. 15 has a greater increase in bending strength due to HIP treatment than sample No. 16, which has a β-type content of 95%.
It can be seen that the method of the present invention has a large effect of improving the bending strength of the sintered body even when the HIP treatment is performed with a sealing treatment performed during the HIP treatment. Combining the results of Examples 1, 2, 3, and 4 above,
According to the method of the present invention, the effect of improving relative density and bending strength is large, and high density and high strength Si 3 N 4
It is clear that sintering can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結温度と予備焼結体のα型含有率と
の関係の一例を示すグラフ、第2図は焼結時間と
予備焼結体のα型含有率との関係の一例を示すグ
ラフである。
Figure 1 is a graph showing an example of the relationship between sintering temperature and α-type content in the pre-sintered body, and Figure 2 is a graph showing an example of the relationship between sintering time and α-type content in the pre-sintered body. It is a graph.

Claims (1)

【特許請求の範囲】 1 窒化珪素粉末に焼結助剤を添加混合し、これ
を所定形状に成形した後焼結して、相対密度80%
以上、β型窒化珪素含有率が20〜80%の予備焼結
体を製造し、次いで、該予備焼結体を1600℃以
上、500気圧以上の高温高圧ガス雰囲気下で熱間
静水圧プレス処理することにより、残留α型窒化
珪素の大部分をβ化させると共に相対密度95%以
上の高密度窒化珪素焼結体とすることを特徴とす
る高密度窒化珪素焼結体の製造方法。 2 窒化珪素粉末が気相反応法もしくは熱分解法
で製造したものである特許請求の範囲第1項記載
の高密度窒化珪素焼結体の製造方法。 3 焼結助剤としてY2O3、Al2O3、MgO、
ZrO2、TiO2、BeO、La2O3、CeO2、TiN、AlNの
1種以上を30重量%以下添加してなる特許請求の
範囲第1項または第2項記載の高密度窒化珪素焼
結体の製造方法。 4 焼結温度が1500〜1600℃で、焼結時間が50〜
200分である特許請求の範囲第1〜3項のいづれ
かに記載の高密度窒化珪素焼結体の製造方法。 5 予備焼結体の相対密度が92%以上であつて、
該予備焼結体に封孔処理を施すことなく熱間静水
圧プレス処理に付す特許請求の範囲第1〜4項記
載のいづれかに高密度窒化珪素焼結体の製造方
法。 6 予備焼結体の熱間静水圧プレス温度が焼結温
度以上である特許請求の範囲第1〜5項のいづれ
かに記載の高密度窒化珪素焼結体の製造方法。 7 熱間静水圧プレス処理をN2ガス雰囲気下で
行う特許請求の範囲第1〜5項のいづれかに記載
の高密度窒化珪素焼結体の製造方法。 8 熱間静水圧プレス処理後のβ型窒化珪素含有
率が95%以上である特許請求の範囲第1〜7項の
いづれかに記載の高密度窒化珪素焼結体の製造方
法。
[Claims] 1. A sintering aid is added to and mixed with silicon nitride powder, which is molded into a predetermined shape and then sintered to achieve a relative density of 80%.
As described above, a pre-sintered body with a β-type silicon nitride content of 20 to 80% is produced, and then the pre-sintered body is subjected to hot isostatic pressing in a high-temperature, high-pressure gas atmosphere of 1600°C or higher and 500 atm or higher. A method for producing a high-density silicon nitride sintered body, characterized in that most of the residual α-type silicon nitride is turned into β by this process, and a high-density silicon nitride sintered body with a relative density of 95% or more is obtained. 2. The method for producing a high-density silicon nitride sintered body according to claim 1, wherein the silicon nitride powder is produced by a gas phase reaction method or a thermal decomposition method. 3 Y 2 O 3 , Al 2 O 3 , MgO as sintering aids,
The high-density silicon nitride sintered material according to claim 1 or 2, which contains at least 30% by weight of one or more of ZrO 2 , TiO 2 , BeO, La 2 O 3 , CeO 2 , TiN, and AlN. Method for producing solids. 4 Sintering temperature is 1500~1600℃, sintering time is 50~
A method for manufacturing a high-density silicon nitride sintered body according to any one of claims 1 to 3, wherein the manufacturing time is 200 minutes. 5 The relative density of the preliminary sintered body is 92% or more,
5. A method for producing a high-density silicon nitride sintered body according to any one of claims 1 to 4, wherein the preliminary sintered body is subjected to hot isostatic pressing treatment without performing a sealing treatment. 6. The method for producing a high-density silicon nitride sintered body according to any one of claims 1 to 5, wherein the hot isostatic pressing temperature of the preliminary sintered body is equal to or higher than the sintering temperature. 7. The method for producing a high-density silicon nitride sintered body according to any one of claims 1 to 5, wherein the hot isostatic pressing treatment is performed in an N2 gas atmosphere. 8. The method for producing a high-density silicon nitride sintered body according to any one of claims 1 to 7, wherein the β-type silicon nitride content after hot isostatic pressing is 95% or more.
JP56011180A 1980-10-20 1981-01-27 Manufacture of high density silicon nitride sintered body Granted JPS57123865A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56011180A JPS57123865A (en) 1981-01-27 1981-01-27 Manufacture of high density silicon nitride sintered body
DE3141590A DE3141590C2 (en) 1980-10-20 1981-10-20 Process for the production of high density sintered silicon nitride
US07/251,052 US5603876A (en) 1980-10-20 1988-09-26 Method for producing high density sintered silicon nitride (SI3 N.sub.4
US07/814,806 US5445776A (en) 1980-10-20 1991-12-31 Method for producing high density sintered silicon nitride (Si3 N.sub.4
US08/463,273 US5665291A (en) 1980-10-20 1995-06-05 Method for producing high density sintered silicon nitride(Si3 N4)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011180A JPS57123865A (en) 1981-01-27 1981-01-27 Manufacture of high density silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS57123865A JPS57123865A (en) 1982-08-02
JPS6213310B2 true JPS6213310B2 (en) 1987-03-25

Family

ID=11770859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56011180A Granted JPS57123865A (en) 1980-10-20 1981-01-27 Manufacture of high density silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS57123865A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155576A (en) * 1984-01-26 1985-08-15 工業技術院長 Manufacture of silicon nitride sintered body
JPS63235437A (en) * 1986-10-24 1988-09-30 Ube Ind Ltd Beta-type silicon-nitride whisker compact and its production
JPH07115936B2 (en) * 1986-12-16 1995-12-13 電気化学工業株式会社 Method for manufacturing silicon nitride sintered body
JPH0774103B2 (en) * 1986-12-27 1995-08-09 日本碍子株式会社 High hardness silicon nitride sintered body
JP2597774B2 (en) * 1991-10-21 1997-04-09 住友電気工業株式会社 Silicon nitride based sintered body and method for producing the same
JPH05148028A (en) * 1991-11-28 1993-06-15 Sumitomo Electric Ind Ltd Production of sintered silicon nitride
JPH05155663A (en) * 1991-12-05 1993-06-22 Sumitomo Electric Ind Ltd Silicon nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107914A (en) * 1978-02-10 1979-08-24 Tokyo Shibaura Electric Co Production of high density silicon nitride base sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107914A (en) * 1978-02-10 1979-08-24 Tokyo Shibaura Electric Co Production of high density silicon nitride base sintered body

Also Published As

Publication number Publication date
JPS57123865A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4351787A (en) Process for sintering reaction bonded silicon nitride
Cao et al. . alpha.'-Sialon ceramics: a review
US5665291A (en) Method for producing high density sintered silicon nitride(Si3 N4)
US4541975A (en) Method for producing high strength sintered silicon carbide
JPS6152111B2 (en)
JPS6152108B2 (en)
US4209478A (en) Method of sintering ceramics
JPS6138149B2 (en)
JPS6213310B2 (en)
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
US5445776A (en) Method for producing high density sintered silicon nitride (Si3 N.sub.4
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JPS6146430B2 (en)
JP2662863B2 (en) Method for producing silicon nitride based sintered body
US5545362A (en) Production method of sintered silicon nitride
CN109020595A (en) A kind of preparation method and applications of aluminium carbon ceramic composite material
JPS6152110B2 (en)
CN113173800B (en) beta-Sialon porous ceramic and preparation method thereof
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JPH0118031B2 (en)
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPS6346029B2 (en)
JPH01160870A (en) Silicon nitride sintered compact and production thereof
JPH0610115B2 (en) Manufacturing method of composite ceramics