JPH0118031B2 - - Google Patents

Info

Publication number
JPH0118031B2
JPH0118031B2 JP56094385A JP9438581A JPH0118031B2 JP H0118031 B2 JPH0118031 B2 JP H0118031B2 JP 56094385 A JP56094385 A JP 56094385A JP 9438581 A JP9438581 A JP 9438581A JP H0118031 B2 JPH0118031 B2 JP H0118031B2
Authority
JP
Japan
Prior art keywords
sintering
hip
temperature
sintered body
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56094385A
Other languages
Japanese (ja)
Other versions
JPS57209887A (en
Inventor
Katsuhiko Honma
Tsuneo Tateno
Hiroshi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56094385A priority Critical patent/JPS57209887A/en
Priority to DE3141590A priority patent/DE3141590C2/en
Publication of JPS57209887A publication Critical patent/JPS57209887A/en
Priority to US07/251,052 priority patent/US5603876A/en
Publication of JPH0118031B2 publication Critical patent/JPH0118031B2/ja
Priority to US07/814,806 priority patent/US5445776A/en
Priority to US08/463,273 priority patent/US5665291A/en
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高強度で、複雑形状の窒化珪素焼結体
を製造する方法に係り、更に詳しくは、任意形状
に予備焼結した窒化珪素予備焼結体を熱間静水圧
プレス法(以下HIP法という)により熱エネルギ
ーの損失を少くして有利に高密度化する方法に関
するものである。 近年、熱効率の向上、燃料の節約、低公害、軽
量化を目的として高温ガスタービンを始めデイー
ゼルエンジン、MHD発電など高温で稼動する機
器の開発が活発に行なわれている。ところが、こ
れら機器類の開発は一途に高温構造材料の開発に
かかつており、これら材料の形成が注目されてい
るが、こゝに要求される高温下では従来の耐熱金
属では必らずしも満足な機械的強度を得るに至ら
ず、又、資源の乏しい耐熱金属材料の節約という
観点から地上に比較的豊富なSi、Al、C、Nな
どを原料とするセラミツクスを高温構造材料とし
て利用する開発が進められつつある。 とりわけ、これらセラミツクス高温構造材料の
中で従来のアルミナ(Al2O3)を中心とするセラ
ミツクスに比べて高温下で充分な強度を有し化学
的に安定で熱衝撃にも強い材料として窒化珪素
(Si3N4)は最も有望なものの一つとして関心が
寄せられている。 このSi3N4は上述のように従来のアルミナを中
心とする酸化物系セラミツクスに比べて優れた物
理的特性を有するがこれは主としてSi3N4が珪素
(Si)と、窒素(N)との強固な共有結合よりな
る化合物であることによるものである。 このことは、反面において希望する形状の製品
を製造することが非常に困難であることを意味
し、実際、近年この分野における研究の殆んどは
如何に高強度のSi3N4の成形体を製造するかに費
やされており、未だ完全に満足な成形体の製造技
術が開発されたとはいい得ない状況である。 即ち、高密度、高強度にすると成形体は単純形
状に限定を余議なくされ、複雑な形状のものを得
るためには強度を犠性にしなければならないのが
現状である。 従来、かようなSi3N4成形体の製造法として一
般によく知られている方法はCVD法、Si3N4粉末
に焼結助剤を添加し、大気圧下又は10気圧程度の
N2雰囲気下で焼結する方法、ホツトプレス法、
Siの窒化反応焼結法の4つの方法である。このう
ち、ホツトプレス法では比較的高密度で高強度の
成形体が得られているが、複雑な形状の成形体が
得難いこと並びに費用が高いことなどの問題点が
ある。 これに対し窒化反応焼結法は、原料としてSi粉
末を用いるため、既存の方法によつて複雑形状の
成形が容易であるという利点を有するも、得られ
た焼結体の密度が低く、高強度のSi3N4焼結体が
得られないことが大きな問題であり、現在、この
方法で得られているSi3N4焼結体の密度は高いも
ので80%強にすぎず、この密度不足が焼結体の強
度の向上を阻害している。しかも窒化反応に極め
て長い時間を要し、例えば反応処理時間は短かい
もので2日、長いものでは10日以上も必要とする
というのも大きな問題の1つである。 一方、常圧焼結法は、予め任意形状に成形した
窒化珪素圧粉末を焼結する方法であるから、複雑
形状品の製造は比較的容易であるが、低密度にな
らざるを得ず、高いものでも95%前後である。 この方法を改善する方法として近年、特開昭52
−47015号、53−102320号各公報に示されるよう
に任意形状に予備成形した圧粉体を数気圧〜数十
気圧のN2ガス雰囲気下で焼結する方法が提案さ
れており、この方法によると最大密度98%の焼結
体が得られている。しかしこれら何れの方法にお
いても、複雑形状の成形と高密度化とを同時に満
足する方法はなかつた。 一般に、Si3N4の焼結に当つては通常焼結助剤
としてMgO、SiO2、Al2O3等が添加されるが、
これらがSi3N4と次の如き反応により焼結時に飛
散すると考えられる。 Si3N4+3MgO→3SiO↑+3Mg↑×2N2↑ Si3N4+3SiO2→6SiO↑+2N2↑ Si3N4+Al2O3→2AlN+3SiO↑+N2↑ 一方、Si3N4自体も次の如き熱分解を起すこと
が知られている。 Si3N4→3Si→2N2↑ 焼結時におけるこれらの熱分解反応により焼結
体の重量減を生起し、時には焼結による焼結体の
収縮による密度増加率よりも熱分解による重量減
の方が大きくなる場合もあり、その重量減少率は
時として50%にも達することが報告されている。
この熱分解を抑制する方法の1つが前述のN2
ス雰囲気焼結法であるが、それでもなお数%の重
量減が認められている。 本発明者等の研究によると、後述の如くこの熱
分解による重量減は焼結前の密度と密接な関係が
あり、初期密度が低いと熱分解による重量減が著
しく、初期密度が高いと重量減も小さくなる傾向
が認められている。このことから、従来のN2
ス雰囲気焼結法においては、焼結前の圧粉体密度
は高々60%程度であり、その空孔部は完全開孔で
あるから焼結時の熱分解反応生成物はその分圧の
差により内部から外部へと拡散し、成形体内部に
至るまで分解反応が進行するものと考えられる。 一方、N2ガス雰囲気焼結法において、N2ガス
分圧を高めることは、前述の熱分解を抑止する1
つの有効な手段であるが、従来法の如き数十気圧
程度のN2ガス分圧では、熱力学的にも効果的に
熱分解を抑止するには極めて不充分といわざるを
得ない。 そこで本発明者等は上述の如き現状に立脚して
さきに窒化珪素粉末を所定形状に成形すると共に
これを相対密度92%以上に予備焼結し、しかる後
該予備焼結体に温度1500℃以上、窒素分圧500気
圧以上の高温高圧ガスを直接作用させてHIP処理
することにより相対密度98%以上の高密度焼結体
を製造する方法を提案した。 勿論、Si3N4を高密度化する方法としてHIP処
理する方法は従来より公知であるが、従来法は
Arガスを用いる通常のHIP法であり、ガラスな
どのコンテナーを利用し、その中にSi3N4粉末、
もしくはその焼結体を封入密閉してHIP処理を行
なう方法が一般的である。しかしこの方法は実用
化に際して複雑な形状のコンテナーを得難いこ
と、Si3N4のコンテナー内への均一な充填、
Si3N4とコンテナーとの反応防止手段、Si3N4
離型手段など解決すべき問題が少なくなく実用的
でない。又、予備焼結して表面をある程度封孔し
てHIP処理する方法もあるが、この場合には
Si3N4の熱分解によつて著しく重量減が生じるた
め高密度化は達成されていない。 かくて前述の提案はHIP法を利用し、予備焼結
体の相対密度を92%以上となし、特定の高温高圧
N2ガス分圧下でHIP処理することにより高密度
を達成したものであるが、しかし、かゝるHIP処
理利用の方法においてもこれを工業化せんとする
に際しては次のような問題がある。即ち、HIP処
理は1000℃以上、特にSi3N4ではより以上の高温
が望まれるのに対し、予備焼結体をHIP炉に装入
するに際しては予備焼結後、一旦常温下に取り出
し温度の低下した状態で予備焼結体をHIP炉に装
入することである。 勿論、バツチ方式でHIP炉に装入することから
すれば止むを得ない面があるが、これは予備焼結
時、或程度の昇温がなされることを考えると熱エ
ネルギーの損失は相当なものであることは否定で
きない。しかも高温下で予備焼結された焼結体は
表面が急冷され、あるいは急冷後、再急熱される
とき微細なクラツクやひゞ割れを発生し易く強度
低下は避けられないのみならず品質的における問
題を生じる。 本発明は叙上の如き状勢並びにSi3N4のHIP処
理の実状に対処し、前記種々の実験にもとづき高
強度窒化珪素焼結体の好適かつ有利な製造法を提
供すると共に、更にHIP処理プロセスにおける熱
エネルギーの損失を考慮し、現下の省エネルギー
対策に適応する経済的、合理的な方法を提供する
ことを目的とするものである。 しかして、かゝる目的に適合する本発明焼結方
法はN2−ガス雰囲気下におけるHIP処理を利用
し、同時に予備焼結との工程の連続化を根幹とし
つつ、Si3N4粉末に焼結助剤を添加混合し、これ
を所定形状に成形した後、非酸化性ガス雰囲気下
で1000〜1800℃で予備焼結し、該予備焼結体の温
度を500℃以上に保持したまゝ直ちに予め500℃以
上に予熱されているHIP炉内に装入して1500〜
2000℃、500気圧以上の高温高圧N2ガス雰囲気下
でHIP処理を施し、該処理後、焼結体を500℃以
上の温度でHIP炉より取出し、引き続き500℃以
上に保持された熱処理炉に装入して非酸化性ガス
雰囲気下で熱処理を行なうことを特徴とするもの
である。 以下、前記本発明焼結方法を更にその工程に従
つて順次詳述すると、先ず本発明方法は予備焼
結、HIP処理、熱処理の3段階工程によつて行な
われる。 このうち、第1の予備焼結はSi3N4粉末を、こ
れに焼結助剤を添加混合して所定の形状に成形
し、次いで非酸化性ガス、好ましくはN2ガス雰
囲気下で1000℃〜1800℃の高温において焼結する
ことである。 こゝで使用されるSi3N4粉末は、金属Siの窒化
法、気相反応法などにより得ることができるが、
焼結体の曲げ強度の点から特に気相反応法により
SiCl4とNH4とから製造したものは最も好適であ
る。 又、Si3N4粉末に添加される前記焼結助剤は、
Y、Al、Mg、Ti等の酸化物又は窒化物などの何
れか、あるいはその混合物であるが、特にY2O3
−Al2O3−MgO系からなる焼結助剤は最も一般的
であり、かつ有効である。そして、これら焼結助
剤の添加量は通常Si3N4粉末に対して30%以下、
好ましくは5〜15%である。 次に前記焼結助剤を混合したSi3N4粉末の成形
は既知の成型手段が使用可能であり、圧縮成型
法、射出成型法、静水圧成型法などの各手段が適
宜使用される。 かくして、以上のようにして所定形状に成形さ
れた成形体は、次に非酸化性ガス、好ましくは
N2ガス雰囲気下で予備焼結に付されるが通常、
この焼結は1000〜1800℃の高温下で行なう。そし
て、予備焼結手段は、従来一般に知られている常
圧焼結法、ホツトプレス法などの公知の手段が使
用される。 なお、前記予備焼結の温度は、添加する焼結助
剤の種類、添加量などによつて必らずしも一定し
ないが、前記1000〜1800℃の温度範囲を維持する
ことが効果的である。 このように予め、予備焼結された焼結体は、そ
の表面がある程度、封孔され、焼結体中の空孔が
表面に連通していない状態となるので後述する
HIP処理により高密度化を容易とすることができ
るのである。 この場合、Si3N4の焼結体の曲げ強度を考慮す
れば原料粉末中のα型窒化珪素は80%以上とする
ことが好適である。 上記の如くして焼結されたSi3N4予備焼結体は
第1の段階を終り、次いでその温度を常温まで冷
却低化させることなしに500℃以上に保持した
まゝHIP炉に装入し、HIP処理に付す。 HIP炉は通常、高温高圧下のHIP処理を行なう
故、一般に500℃以上の高温に予め加熱保持され
ており、従つて前記予備焼結体は連続工程として
HIP炉に装入するように設計することが出来る。 この予備焼結後、温度を一旦低下させることな
しにHIP炉に装入し、HIP処理することは従来の
HIP利用の焼結方法が、予備焼結体を一旦取り出
し冷却後、HIP炉に装入していたのに比較し昇温
に要する熱エネルギーの節約となり、HIP処理サ
イクルの短縮化を図り得ることは勿論予備焼結体
取り出し時の急冷あるいはHIP炉装入時の急熱に
起因するクラツクの発生を防止する利益がある。 HIP処理は公知のHIP炉内においてコンテナー
を使用することなしに直接処理されるが、Si3N4
の分解反応を防止し、高密度化し得ることから
N2ガス雰囲気下で行なうことが必要である。そ
してこの処理温度は1500〜2000℃であり、予備焼
結温度より高いことが好ましい。勿論、このHIP
温度は当然、Si3N4の分解温度以下でなければな
らず、分解温度もHIP圧力の上昇と共に高くなる
が、少くともそのHIP処理時の圧力における分解
温度よりも100℃位低い温度以下で行なうことが
好適である。 一方、HIP圧力は通常500気圧以上であり、こ
れ以下ではHIP処理に長時間を要すると共に、
Si3N4の分解反応量が時間に比例して大きくなる
ため焼結体の重量減少を招くのみならず、高密度
化が達成し難くなる。従つてHIP圧力は少くとも
500気圧、好ましくは700気圧以上とすることが有
利である。 なお、HIP圧力は高ければ高い程、一般には
Si3N4の分解反応が抑止され、高密度化が達成さ
れ易いが、昇圧に時間を要し、かつ昇圧用コンプ
レツサを始め本体圧力容器などHIP処理装置が大
型化するので実用的でなく、従つて工業上、2500
気圧までの圧力下でHIP処理することが望まし
い。この場合、処理時間は5分以上、通常30分前
後である。 上記HIP処理により緻密化処理が施された焼結
体は引続き少くとも500℃以上の温度でHIP炉よ
り取り出し、500℃以上に保持された熱処理に装
入して非酸化性ガス雰囲気下における熱処理にか
けられる。 従来の場合、HIP処理済の焼結体は、その後、
常温まで冷却し、そのまゝ製品とされていたが、
本発明は更に熱処理を施すことによつて強度の増
加をもたらし、製品の特性を向上させる。唯、こ
の熱処理も熱分解を避けなければならない点から
N2ガスなどの非酸化性ガス雰囲気下で行なうこ
とが肝要である。 なお、熱処理温度は前記HIP処理同様、予備焼
結体の焼結助剤の種類、混合量あるいはHIP条件
により一定するものではないが焼結体の強度を高
める意味では500℃以上の温度は効果的である。
しかし熱処理時間は、さ程長時間は必要なく5〜
10分程度で充分である。 このようにして第1、第2、第3の各段階を経
てSi3N4焼結体が製造されるが、得られた焼結体
は途中で急冷又は急熱されることがないためクラ
ツク発生が防止され強度の高い良質高密度の
Si3N4焼結体となる。又、この熱処理によつて
Si3N4の結晶粒界の焼結助剤ガラス相を結晶化さ
せることにより更に強度の向上をもたらし得る。
しかも、この熱処理に際してもHIP処理後の焼結
体を500℃以上のまゝ取出し、同じく500℃以上に
保持された熱処理炉内へ装入するため熱エネルギ
ーの損失を軽減することができる。 以上、述べた如く、本発明焼結方法によれば、
Si3N4粉末を予め1000〜1800℃の高温下で予備焼
結し、これを常温まで低下させることなく500℃
以上に保持したまゝ、予め500℃以上に予熱した
HIP内に装入してHIP処理による緻密化処理を施
し、更にHIP処理後の焼結体を空気中にそのまゝ
取り出すことなく引続き500℃以上の温度保持の
まゝ、予め500℃以上に保持された後続の熱処理
炉に装入して熱処理を行なうものであるから、従
来の如く急冷、又は急熱時における熱衝撃による
クラツクの発生は全く阻止され高強度の高密度化
Si3N4焼結体を容易に得ることができると共に、
前記予備焼結、HIP処理、熱処理を通じその温度
保持を厳密に規正することにより、これら各工程
の連続化への期待は勿論、消費される熱エネルギ
ーの損失を少くして現下に要請される省エネルギ
ー志向に適合し、更にサイクル短縮を図つて生産
効率の向上に資し、経済的かつ実際的製造プロセ
スとして今後に期待されるところ大なる焼結方法
である。 以下、本発明方法の具体的な態様を実施例によ
つて更に説明する。 実施例 Si粉末を窒化して得られた市販のSi3N4粉末に
焼結助剤としてY2O3粉末、Al2O3粉末及びMgO
粉末からなる焼結助剤を、その添加量を変えて
種々混合した各種混合粉末を500Kg/cm2の圧力で
加圧成形し、後、この圧粉成形体を第1表に示す
如き条件でN2ガス雰囲気下で夫々予備焼結し、
この予備焼結体を次いで第1表に示す各温度で
HIP炉に装入して、夫々表記のHIP処理条件で
HIP処理を行い、HIP処理後の焼結体を第1表に
示す温度で取出し、手続き同表に示す熱処理を施
してSi3N4焼結体を作製した。 これらのSi3N4焼結体について密度及び曲げ強
度を測定したところ第1表に示す結果を得た。
The present invention relates to a method of manufacturing a silicon nitride sintered body with high strength and a complex shape, and more specifically, a silicon nitride pre-sintered body pre-sintered into an arbitrary shape is prepared by hot isostatic pressing (hereinafter referred to as HIP method). This invention relates to a method for advantageously increasing the density by reducing the loss of thermal energy. In recent years, there has been active development of equipment that operates at high temperatures, such as high-temperature gas turbines, diesel engines, and MHD power generation, with the aim of improving thermal efficiency, saving fuel, reducing pollution, and reducing weight. However, the development of these devices is focused on the development of high-temperature structural materials, and the formation of these materials is attracting attention, but conventional heat-resistant metals cannot necessarily be used under the high temperatures required. In order to conserve heat-resistant metal materials, which do not have sufficient mechanical strength and are scarce in resources, ceramics made from materials such as Si, Al, C, and N, which are relatively abundant on the ground, are used as high-temperature structural materials. Development is progressing. In particular, among these ceramic high-temperature structural materials, silicon nitride is a material that has sufficient strength at high temperatures, is chemically stable, and is resistant to thermal shock compared to conventional ceramics mainly made of alumina (Al 2 O 3 ). (Si 3 N 4 ) is attracting attention as one of the most promising. As mentioned above, this Si 3 N 4 has superior physical properties compared to conventional oxide ceramics mainly made of alumina, but this is mainly due to the fact that Si 3 N 4 is composed of silicon (Si) and nitrogen (N). This is because it is a compound consisting of a strong covalent bond with. On the other hand, this means that it is very difficult to manufacture products with the desired shape, and in fact, most of the research in this field in recent years has focused on how to make high-strength Si 3 N 4 molded products. However, it cannot be said that a completely satisfactory manufacturing technology has been developed yet. That is, at present, when high density and high strength are achieved, the molded body is inevitably limited to a simple shape, and in order to obtain a complex shape, the strength must be sacrificed. Conventionally, the generally well-known method for manufacturing such Si 3 N 4 compacts is the CVD method, which adds a sintering aid to Si 3 N 4 powder and heats it under atmospheric pressure or about 10 atm.
Method of sintering under N2 atmosphere, hot press method,
These are four methods of nitriding reaction sintering of Si. Among these, the hot pressing method yields molded bodies with relatively high density and high strength, but there are problems such as difficulty in obtaining molded bodies with complex shapes and high cost. On the other hand, the nitriding reaction sintering method uses Si powder as a raw material, so it has the advantage of being easy to mold into complex shapes using existing methods, but the density of the obtained sintered body is low and the A major problem is that it is not possible to obtain strong Si 3 N 4 sintered bodies, and currently the density of Si 3 N 4 sintered bodies obtained by this method is only a little over 80%; The lack of density hinders the improvement of the strength of the sintered body. Moreover, one of the major problems is that the nitriding reaction requires an extremely long time, for example, the reaction treatment time can be as short as 2 days, or as long as 10 days or more. On the other hand, the pressureless sintering method is a method of sintering compressed silicon nitride powder that has been formed into an arbitrary shape in advance, so it is relatively easy to manufacture products with complex shapes, but it has to be of low density. The highest rate is around 95%. In recent years, as a way to improve this method, Japanese Unexamined Patent Publication No. 52
-47015 and No. 53-102320, a method has been proposed in which a green compact preformed into an arbitrary shape is sintered in an N 2 gas atmosphere of several atm to several tens of atm. According to the research, a sintered body with a maximum density of 98% has been obtained. However, in none of these methods has there been a method that simultaneously satisfies molding of complex shapes and high density. Generally, when sintering Si 3 N 4 , MgO, SiO 2 , Al 2 O 3 , etc. are usually added as sintering aids.
It is thought that these are scattered during sintering due to the following reaction with Si 3 N 4 . Si 3 N 4 +3MgO→3SiO↑+3Mg↑×2N 2 ↑ Si 3 N 4 +3SiO 2 →6SiO↑+2N 2 ↑ Si 3 N 4 +Al 2 O 3 →2AlN+3SiO↑+N 2 ↑ On the other hand, Si 3 N 4 itself also It is known that thermal decomposition occurs. Si 3 N 4 →3Si→2N 2 ↑ These thermal decomposition reactions during sintering cause weight loss of the sintered body, and sometimes the weight loss due to thermal decomposition is greater than the density increase rate due to shrinkage of the sintered body due to sintering. It has been reported that the weight loss rate can sometimes reach 50%.
One of the methods for suppressing this thermal decomposition is the aforementioned N 2 gas atmosphere sintering method, but a weight reduction of several percent is still observed. According to the research conducted by the present inventors, as described later, the weight loss due to pyrolysis is closely related to the density before sintering, and when the initial density is low, the weight loss due to pyrolysis is significant, and when the initial density is high, the weight loss due to pyrolysis is significant. There is also a tendency for the decrease to become smaller. From this, in the conventional N2 gas atmosphere sintering method, the density of the green compact before sintering is about 60% at most, and the pores are completely open, so thermal decomposition during sintering takes place. It is thought that the product diffuses from the inside to the outside due to the difference in partial pressure, and the decomposition reaction progresses until it reaches the inside of the molded article. On the other hand, in the N2 gas atmosphere sintering method, increasing the N2 gas partial pressure is one way to suppress the thermal decomposition mentioned above.
Although this is an effective means, it must be said that the N 2 gas partial pressure of several tens of atmospheres as in the conventional method is extremely insufficient thermodynamically to effectively suppress thermal decomposition. Therefore, based on the current situation as described above, the present inventors first formed silicon nitride powder into a predetermined shape, pre-sintered it to a relative density of 92% or more, and then heated the pre-sintered body to a temperature of 1500°C. As described above, we have proposed a method for producing a high-density sintered body with a relative density of 98% or more by directly applying high-temperature, high-pressure gas with a nitrogen partial pressure of 500 atm or more to HIP treatment. Of course, HIP processing is a well-known method for densifying Si 3 N 4 , but the conventional method
This is a normal HIP method using Ar gas, and uses a container such as glass, in which Si 3 N 4 powder,
Alternatively, a common method is to encapsulate and seal the sintered body and perform HIP treatment. However, when this method is put into practical use, it is difficult to obtain a container with a complicated shape, and it is difficult to uniformly fill the Si 3 N 4 inside the container.
There are many problems to be solved, such as means for preventing reaction between Si 3 N 4 and the container and means for releasing Si 3 N 4 from the mold, and it is not practical. There is also a method of pre-sintering and sealing the surface to some extent and HIP treatment, but in this case,
Densification has not been achieved because thermal decomposition of Si 3 N 4 causes significant weight loss. Therefore, the above-mentioned proposal uses the HIP method, makes the relative density of the pre-sintered body 92% or more, and
High density was achieved by HIP treatment under N 2 gas partial pressure, but even with such a method of utilizing HIP treatment, there are the following problems when attempting to commercialize it. In other words, HIP treatment requires a high temperature of 1000°C or higher, especially higher for Si 3 N 4 , whereas when charging a pre-sintered body into a HIP furnace, after pre-sintering, the temperature is The pre-sintered body is charged into the HIP furnace in a state where the sintering temperature has decreased. Of course, this is unavoidable since it is charged into the HIP furnace in batches, but considering that a certain degree of temperature rise occurs during preliminary sintering, the loss of thermal energy is considerable. It cannot be denied that it is a thing. Moreover, when the surface of a sintered body pre-sintered at high temperatures is rapidly cooled, or when it is rapidly cooled and then reheated, it is likely to generate minute cracks and cracks, which not only inevitably leads to a decrease in strength, but also causes problems in terms of quality. cause problems. The present invention deals with the above-mentioned situation and the actual state of HIP processing of Si 3 N 4 , and provides a suitable and advantageous manufacturing method for high-strength silicon nitride sintered bodies based on the various experiments described above, and also provides a method for producing high-strength silicon nitride sintered bodies. The purpose is to provide an economical and rational method that takes into account the loss of thermal energy in the process and adapts to current energy conservation measures. Therefore, the sintering method of the present invention, which is suitable for such purposes, utilizes HIP treatment in an N 2 -gas atmosphere, and at the same time is based on the continuity of the process with preliminary sintering . After adding and mixing a sintering aid and forming it into a predetermined shape, it is pre-sintered at 1000 to 1800°C in a non-oxidizing gas atmosphere, and the temperature of the pre-sintered body is maintained at 500°C or higher.ゝImmediately charge it into a HIP furnace that has been preheated to 500℃ or higher and heat it to 1500℃ or higher.
HIP treatment is performed under a high temperature, high pressure N2 gas atmosphere of 2000℃ and 500atm or higher, and after the treatment, the sintered body is taken out of the HIP furnace at a temperature of 500℃ or higher, and then placed in a heat treatment furnace maintained at 500℃ or higher. It is characterized in that it is charged and subjected to heat treatment in a non-oxidizing gas atmosphere. Hereinafter, the sintering method of the present invention will be explained in detail according to its steps. First, the method of the present invention is carried out in three steps: preliminary sintering, HIP treatment, and heat treatment. Among these, the first preliminary sintering involves adding and mixing Si 3 N 4 powder with a sintering aid, molding it into a predetermined shape, and then sintering it for 1000 minutes in a non-oxidizing gas, preferably N 2 gas atmosphere. It is sintered at a high temperature of ℃~1800℃. The Si 3 N 4 powder used here can be obtained by nitriding metal Si, gas phase reaction method, etc.
From the viewpoint of the bending strength of the sintered body, the gas phase reaction method is particularly effective.
Those made from SiCl 4 and NH 4 are most preferred. Furthermore, the sintering aid added to the Si 3 N 4 powder is
Any oxide or nitride of Y, Al, Mg, Ti, etc., or a mixture thereof, especially Y 2 O 3
-Al2O3 - MgO based sintering aids are the most common and effective. The amount of these sintering aids added is usually 30% or less based on the Si 3 N 4 powder.
Preferably it is 5 to 15%. Next, known molding means can be used to mold the Si 3 N 4 powder mixed with the sintering aid, and various methods such as compression molding, injection molding, and hydrostatic molding are used as appropriate. In this way, the molded article formed into a predetermined shape as described above is then heated with a non-oxidizing gas, preferably a non-oxidizing gas.
It is usually subjected to preliminary sintering under N2 gas atmosphere.
This sintering is performed at a high temperature of 1000 to 1800°C. As the preliminary sintering means, conventionally known means such as the normal pressure sintering method and the hot pressing method are used. Note that the temperature of the preliminary sintering is not necessarily constant depending on the type and amount of the sintering aid added, but it is effective to maintain the temperature range of 1000 to 1800°C. be. The surface of the sintered body that has been pre-sintered in this way is sealed to some extent, and the pores in the sintered body are not connected to the surface, which will be described later.
High densification can be easily achieved through HIP processing. In this case, considering the bending strength of the Si 3 N 4 sintered body, it is preferable that the α-type silicon nitride in the raw material powder be 80% or more. The Si 3 N 4 pre-sintered body sintered as described above has completed the first stage, and is then cooled down to room temperature and placed in a HIP furnace while maintaining the temperature above 500°C without lowering it. and subjected to HIP treatment. Since a HIP furnace usually performs HIP processing under high temperature and high pressure, it is generally preheated and maintained at a high temperature of 500°C or higher, and therefore the pre-sintered body is processed as a continuous process.
It can be designed to be charged into a HIP furnace. After this preliminary sintering, it is not possible to charge the product into a HIP furnace without first lowering the temperature and perform the HIP treatment.
The sintering method using HIP saves the thermal energy required to raise the temperature compared to the case where the preliminary sintered body is taken out, cooled, and then charged into the HIP furnace, and the HIP treatment cycle can be shortened. Of course, there is an advantage in preventing the occurrence of cracks caused by rapid cooling when taking out the pre-sintered body or rapid heating when charging the pre-sintered body into a HIP furnace. HIP treatment is carried out directly in a known HIP furnace without using a container, but Si 3 N 4
Because it can prevent the decomposition reaction of and increase the density of
It is necessary to carry out under N2 gas atmosphere. The treatment temperature is 1500 to 2000°C, preferably higher than the pre-sintering temperature. Of course, this HIP
Naturally, the temperature must be below the decomposition temperature of Si 3 N 4 , and the decomposition temperature also increases as the HIP pressure increases, but it must be at least 100°C lower than the decomposition temperature at the pressure during HIP treatment. It is preferable to do so. On the other hand, the HIP pressure is usually over 500 atm, and if it is less than this, the HIP process will take a long time, and
Since the decomposition reaction amount of Si 3 N 4 increases in proportion to time, it not only causes a decrease in the weight of the sintered body, but also makes it difficult to achieve high density. Therefore HIP pressure is at least
Advantageously, the pressure is above 500 atmospheres, preferably above 700 atmospheres. In addition, the higher the HIP pressure, generally
Although the decomposition reaction of Si 3 N 4 is suppressed and high density is easily achieved, it is not practical because it takes time to increase the pressure and the HIP processing equipment such as the pressure increase compressor and the main pressure vessel become large. Therefore industrially, 2500
It is desirable to HIP under pressure up to atmospheric pressure. In this case, the processing time is 5 minutes or more, usually around 30 minutes. The sintered body that has been densified by the above HIP treatment is then taken out from the HIP furnace at a temperature of at least 500℃ or higher, and then charged into a heat treatment maintained at 500℃ or higher and heat treated in a non-oxidizing gas atmosphere. Can be applied to. In the conventional case, the HIP-treated sintered body is then
It was cooled to room temperature and used as a product, but
The present invention further provides an increase in strength and improves the properties of the product by applying heat treatment. However, this heat treatment also has to avoid thermal decomposition.
It is important to perform this under a non-oxidizing gas atmosphere such as N 2 gas. As with the HIP process described above, the heat treatment temperature is not constant depending on the type of sintering aid in the pre-sintered body, the amount mixed, or the HIP conditions, but a temperature of 500°C or higher is effective in increasing the strength of the sintered body. It is true.
However, the heat treatment time does not need to be very long;
About 10 minutes is enough. In this way, a Si 3 N 4 sintered body is manufactured through the first, second, and third stages, but the resulting sintered body is not rapidly cooled or heated during the process, so cracks may occur. Made of high-quality, high-density material with high strength
It becomes a Si 3 N 4 sintered body. Also, by this heat treatment
Further strength improvement can be achieved by crystallizing the sintering aid glass phase at the Si 3 N 4 grain boundaries.
Moreover, even during this heat treatment, the sintered body after HIP treatment is taken out while still at 500°C or higher and charged into a heat treatment furnace which is also maintained at 500°C or higher, so it is possible to reduce the loss of thermal energy. As mentioned above, according to the sintering method of the present invention,
Si 3 N 4 powder is pre-sintered at a high temperature of 1000-1800℃, and then heated to 500℃ without lowering it to room temperature.
Preheated to 500℃ or higher while maintaining the temperature above 500℃.
The sintered body is charged into a HIP and subjected to densification treatment by HIP treatment, and the sintered body after HIP treatment is kept at a temperature of 500℃ or higher without being taken out into the air. Since the heat treatment is carried out by charging the material into the subsequent heat treatment furnace, the generation of cracks due to thermal shock during rapid cooling or rapid heating as in the past is completely prevented, resulting in high strength and high density.
Si 3 N 4 sintered body can be easily obtained, and
By strictly regulating the temperature maintenance through the preliminary sintering, HIP treatment, and heat treatment, it is hoped that each of these processes will be continuous, and the loss of thermal energy consumed will be reduced, thereby achieving the energy saving that is currently required. It is a sintering method that is highly anticipated in the future as an economical and practical manufacturing process, as it is compatible with various demands, contributes to improving production efficiency by shortening the cycle, and is an economical and practical manufacturing process. Hereinafter, specific embodiments of the method of the present invention will be further explained with reference to Examples. Example Y 2 O 3 powder, Al 2 O 3 powder and MgO were added as sintering aids to commercially available Si 3 N 4 powder obtained by nitriding Si powder.
Various mixed powders made by mixing various amounts of sintering aids made of powder were press-molded at a pressure of 500 kg/cm 2 , and then the green compacts were molded under the conditions shown in Table 1. Pre-sintered in an N2 gas atmosphere,
This pre-sintered body was then heated to each temperature shown in Table 1.
Charge the HIP furnace and apply the HIP treatment conditions listed below.
The HIP treatment was performed, and the sintered body after the HIP treatment was taken out at the temperature shown in Table 1, and the heat treatment shown in the procedure was performed to produce a Si 3 N 4 sintered body. When the density and bending strength of these Si 3 N 4 sintered bodies were measured, the results shown in Table 1 were obtained.

【表】【table】

【表】 第1表から明らかなようにHIP処理後熱処理を
を行わない比較例No.1及び熱処理温度が400℃と
低い比較例No.5はHIP処理後の焼結体の冷却速度
が大きく、このため高密度化しているにも拘わら
ず、曲げ強度が低いのに対して本発明方法による
No.2、No.4、No.6はいずれも高密度で、しかも曲
げ強度の高い焼結体であり、熱処理効果の大きい
ことが認められる。これは比較例No.1及びNo.5に
おいてはHIP処理後の急冷に伴う熱衝撃により微
細なクラツクが発生するのに対し、本発明方法の
No.2、No.4、No.6においては熱処理により焼結体
は急冷されることがなく、クラツクの発生が防止
されているためと考えられる。また、熱処理を
5hrと長時間行つたNo.7は熱処理によりSi3N4
結晶粒界のガラス相を結晶化させるためその曲げ
強度は他の試料に比して可成り高いものであつ
た。 また、HIP炉装入時の温度が300℃と低い比較
例No.3は曲げ強度が低く、本発明方法によるもの
より可成り劣つているが、これはHIP処理時の急
熱による熱衝撃によりクラツク等の欠陥が発生す
る結果、焼結体の曲げ強度が低下したものと考え
られる。 なお、焼結助剤の添加量を変えた試料No.9、No.
10、No.11、No.12についても上記と同様な傾向が見
られ、本発明方法によるNo.9、No.10はHIP処理を
行なわない予備焼結のみの焼結体に比し密度、曲
げ強度共に向上しており、何れも良好であること
が窺知された。 なお表記方法にあつて、各段階の温度を所要温
度以上に保持することが省エネルギーの観点に合
致し、頗るエネルギー節約に寄与することは明ら
かである。 以上の結果から、これを綜合し本発明方法は高
強度窒化珪素焼結体の製造法として極めて工業上
有効であることが首肯できる。特にコンテナーを
利用せずHIP処理を施すことにより複雑な形状の
Si3N4高密度焼結体を製造する方法として今後に
その実用化が期待される。
[Table] As is clear from Table 1, the cooling rate of the sintered body after HIP treatment is high in Comparative Example No. 1, which does not undergo heat treatment after HIP treatment, and Comparative Example No. 5, in which the heat treatment temperature is low at 400°C. Therefore, despite the high density, the bending strength is low, whereas the method of the present invention has a low bending strength.
No. 2, No. 4, and No. 6 are all sintered bodies with high density and high bending strength, and it is recognized that the heat treatment effect is large. This is because in Comparative Examples No. 1 and No. 5, fine cracks were generated due to thermal shock due to rapid cooling after HIP treatment, whereas in the method of the present invention, fine cracks were generated due to thermal shock caused by rapid cooling after HIP treatment.
This is thought to be because in No. 2, No. 4, and No. 6, the sintered bodies were not rapidly cooled due to the heat treatment, which prevented the occurrence of cracks. In addition, heat treatment
No. 7, which was subjected to heat treatment for a long time of 5 hours, had a considerably higher bending strength than the other samples because the glass phase at the grain boundaries of Si 3 N 4 was crystallized by the heat treatment. In addition, Comparative Example No. 3, in which the temperature at the time of charging into the HIP furnace was as low as 300°C, had low bending strength and was considerably inferior to that obtained by the method of the present invention, but this was due to thermal shock caused by rapid heating during HIP treatment. It is thought that the bending strength of the sintered body decreased as a result of defects such as cracks occurring. In addition, samples No. 9 and No. 9, in which the amount of sintering aid added was changed.
The same tendency as above was observed for No. 10, No. 11, and No. 12, and No. 9 and No. 10 produced by the method of the present invention had a density lower than that of the sintered body only pre-sintered without HIP treatment. It was found that both the bending strength and the bending strength were improved, and both were good. Regarding the notation method, it is clear that maintaining the temperature at each stage above the required temperature is consistent with the viewpoint of energy saving and contributes to significant energy saving. From the above results, it can be confirmed that the method of the present invention is extremely effective industrially as a method for producing a high-strength silicon nitride sintered body. In particular, complex shapes can be created by applying HIP processing without using containers.
It is expected that this method will be put to practical use in the future as a method for producing Si 3 N 4 high-density sintered bodies.

Claims (1)

【特許請求の範囲】 1 窒化珪素粉末に焼結助剤を添加混合し、これ
を所定形状に成形した後、非酸化性ガス雰囲気
下、1000〜1800℃で予備焼結し、該予備焼結体の
温度を500℃以上に保持したまま、直ちに予め500
℃以上に予熱されている熱間静水圧プレス炉内に
装入して1500〜2000℃、500気圧以上の高温高圧
窒素ガス雰囲気下で熱間静水圧プレス処理を施
し、該処理後焼結体を500℃以上の温度で熱間静
水圧プレス炉より取り出し、引き続いて500℃以
上に保持された熱処理炉に装入して非酸化性ガス
雰囲気下で熱処理を行うことを特徴とする窒化珪
素の焼結方法。 2 原料粉末のα型窒化珪素量が80%以上である
特許請求の範囲第1項記載の窒化珪素の焼結方
法。 3 焼結助剤がY2O3−Al2O3−MgO系である特
許請求の範囲第1項または第2項記載の窒化珪素
の焼結方法。 4 最終工程の熱処理により窒化珪素の粒界を結
晶化させる特許請求の範囲第1項乃至第3項のい
ずれかに記載の窒化珪素の焼結方法。
[Claims] 1. A sintering aid is added to and mixed with silicon nitride powder, which is formed into a predetermined shape, and then pre-sintered at 1000 to 1800°C in a non-oxidizing gas atmosphere. Immediately heat the body to 500℃ while maintaining the body temperature above 500℃.
The sintered body is charged into a hot isostatic pressing furnace that has been preheated to a temperature of 1500 to 2000°C and subjected to hot isostatic pressing in a high-temperature, high-pressure nitrogen gas atmosphere of 500 atm or more. of silicon nitride, which is removed from a hot isostatic press furnace at a temperature of 500°C or higher, then charged into a heat treatment furnace maintained at 500°C or higher, and heat-treated in a non-oxidizing gas atmosphere. Sintering method. 2. The method for sintering silicon nitride according to claim 1, wherein the amount of α-type silicon nitride in the raw material powder is 80% or more. 3. The method for sintering silicon nitride according to claim 1 or 2, wherein the sintering aid is Y2O3 - Al2O3 - MgO-based. 4. The method for sintering silicon nitride according to any one of claims 1 to 3, wherein the grain boundaries of silicon nitride are crystallized by heat treatment in the final step.
JP56094385A 1980-10-20 1981-06-17 Method of sintering silicon nitride Granted JPS57209887A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56094385A JPS57209887A (en) 1981-06-17 1981-06-17 Method of sintering silicon nitride
DE3141590A DE3141590C2 (en) 1980-10-20 1981-10-20 Process for the production of high density sintered silicon nitride
US07/251,052 US5603876A (en) 1980-10-20 1988-09-26 Method for producing high density sintered silicon nitride (SI3 N.sub.4
US07/814,806 US5445776A (en) 1980-10-20 1991-12-31 Method for producing high density sintered silicon nitride (Si3 N.sub.4
US08/463,273 US5665291A (en) 1980-10-20 1995-06-05 Method for producing high density sintered silicon nitride(Si3 N4)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56094385A JPS57209887A (en) 1981-06-17 1981-06-17 Method of sintering silicon nitride

Publications (2)

Publication Number Publication Date
JPS57209887A JPS57209887A (en) 1982-12-23
JPH0118031B2 true JPH0118031B2 (en) 1989-04-03

Family

ID=14108817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56094385A Granted JPS57209887A (en) 1980-10-20 1981-06-17 Method of sintering silicon nitride

Country Status (1)

Country Link
JP (1) JPS57209887A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198690A (en) * 1983-04-25 1984-11-10 いすゞ自動車株式会社 Ceramic heater and method of producing same
JPS6355163A (en) * 1986-08-26 1988-03-09 株式会社豊田中央研究所 Silicon nitride base sintered body for antiabrasive material
US5013696A (en) * 1989-09-25 1991-05-07 General Electric Company Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic
CN108774066A (en) * 2018-06-19 2018-11-09 威海麒达特种陶瓷科技有限公司 High heat conduction nitrogenizes the manufacturing method of silicon chip

Also Published As

Publication number Publication date
JPS57209887A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US5603876A (en) Method for producing high density sintered silicon nitride (SI3 N.sub.4
US4687655A (en) Process for the manufacture of shaped articles from reaction-bonded silicon nitride by nitridation under elevated nitrogen gas pressure
CN110668821B (en) Method for preparing MAX phase ceramic under no pressure
US4541975A (en) Method for producing high strength sintered silicon carbide
JPS6042187B2 (en) Method of manufacturing silicon nitride objects
JPH0577632B2 (en)
CN104744048A (en) Preparation method of compact in-situ Si4N3-SiC composite material
CN113480318A (en) High-thermal-conductivity silicon nitride ceramic and preparation method thereof
JPH0118031B2 (en)
US5445776A (en) Method for producing high density sintered silicon nitride (Si3 N.sub.4
US4997604A (en) Method for production of molded articles of silicon nitride
JPS6146430B2 (en)
JPS6213310B2 (en)
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
JPS6152110B2 (en)
CN111825465B (en) Preparation method of high-purity boron nitride for sintering aluminum nitride substrate
JPS605552B2 (en) Manufacturing method of silicon nitride molded body
JPS5888172A (en) Manufacture of high strength silicon nitride sintered body
JPS5884184A (en) Manufacture of high strength silicon nitride sintered body
JPS5884713A (en) Hot hydrostatic press treating method for ceramics
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPS5941954B2 (en) Manufacturing method of high-density ceramic sintered body
JP2706304B2 (en) Method for producing silicon nitride sintered body
JP2916934B2 (en) Method for producing sialon-based sintered body