JP2936288B2 - Composite ceramic and method for producing the same - Google Patents

Composite ceramic and method for producing the same

Info

Publication number
JP2936288B2
JP2936288B2 JP2414734A JP41473490A JP2936288B2 JP 2936288 B2 JP2936288 B2 JP 2936288B2 JP 2414734 A JP2414734 A JP 2414734A JP 41473490 A JP41473490 A JP 41473490A JP 2936288 B2 JP2936288 B2 JP 2936288B2
Authority
JP
Japan
Prior art keywords
powder
composite ceramic
atmosphere
producing
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2414734A
Other languages
Japanese (ja)
Other versions
JPH04231382A (en
Inventor
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP2414734A priority Critical patent/JP2936288B2/en
Publication of JPH04231382A publication Critical patent/JPH04231382A/en
Application granted granted Critical
Publication of JP2936288B2 publication Critical patent/JP2936288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱伝導率を低くした複合
セラミックスおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ceramic having reduced thermal conductivity and a method for producing the same.

【0002】[0002]

【従来の技術】内燃機関の熱効率を向上するためには外
部に放散される熱をできるかぎり少なくすることが望ま
れる。また、内燃機関に使用される材料は高温にさらさ
れるので高温での強度が要求されるとともに寸法精度が
要求されるので熱膨張が少ない材料が望ましい。
2. Description of the Related Art In order to improve the thermal efficiency of an internal combustion engine, it is desired to reduce the heat dissipated to the outside as much as possible. In addition, materials used for internal combustion engines are exposed to high temperatures, so that high-temperature strength is required and dimensional accuracy is required. Therefore, materials having low thermal expansion are desirable.

【0003】そこでこれらの条件を満たす材料として複
合セラミックスがあげられる。従来のこの複合セラミッ
クスとして、例えば特公昭56- 14635号公報および特公
昭60- 41634 号公報にはセラミックスの原料粉末である
Siにその窒化を促進させる目的で触媒としてTiを微量添
加する方法が開示されている。
[0003] As a material satisfying these conditions, there is a composite ceramic. As this conventional composite ceramic, for example, Japanese Patent Publication No. 56-14635 and Japanese Patent Publication No.
A method of adding a small amount of Ti as a catalyst for the purpose of accelerating the nitridation of Si is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の複
合セラミックスは微量のTiをその窒化を促進させる目的
で触媒とて添加していたので熱伝導率を低下し、かつ、
寸法精度を得るという効果を期待することができず内燃
機関の材料として使用するまでには至っていないのが実
情である。
However, in the above-mentioned composite ceramics, a small amount of Ti is added as a catalyst for the purpose of accelerating the nitridation, so that the thermal conductivity is reduced, and
The effect of obtaining dimensional accuracy cannot be expected, and the fact is that it has not yet been used as a material for internal combustion engines.

【0005】本発明は上記実情を鑑みてなされたもので
あり熱伝導率の低い複合セラミックスを提供するもので
ある。
[0005] The present invention has been made in view of the above circumstances, and provides a composite ceramic having a low thermal conductivity.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明に係わる第1の手段は、気孔を20%含みSi、
Ti、O、Nの元素からなることを特徴とする複合セラミ
ックスであり、第2の手段はSiの粉末とTi元素を含む粉
末の混合粉末を成形する工程と、この混合粉末をN2雰囲
気中において1200℃以上で焼成する工程と、更にこれを
大気中で熱処理することにより前記N2 雰囲気中での焼
成により形成されたTi−N化合物の一部あるいは全部を
Ti−OあるいはTi−O−Nで示される化合物に変化させ
ることを特徴とする複合セラミックスの製造方法であ
る。そして第3の手段として上記第2の手段においてSi
の粉末とTi元素を含む粉末の混合粉末の混合割合がこの
混合粉末の総重量に対しTiが20重量%以上であることを
特徴とするものである。
A first means according to the present invention for solving the above-mentioned problems is that Si containing 20% of pores,
The second means is a step of forming a mixed powder of a Si powder and a powder containing a Ti element, and forming the mixed powder in an N2 atmosphere. Baking at a temperature of 1200 ° C. or more, and further performing a heat treatment in the air to remove a part or all of the Ti—N compound formed by the baking in the N2 atmosphere.
This is a method for producing a composite ceramic, characterized by changing to a compound represented by Ti-O or Ti-ON. And, as a third means, the second means
Wherein the mixing ratio of the mixed powder of the powder and the powder containing the Ti element is 20% by weight or more with respect to the total weight of the mixed powder.

【0007】[0007]

【作用】本発明は気孔を20%含みSi、Ti、O、Nの元
素からなる複合セラミックスとすることにより熱伝導率
が低いものとなる。この複合セラミックスを得る方法と
してSiの粉末とTi元素を含む粉末の混合粉末を成形し、
この混合粉末をN2雰囲気中において1200℃以上で焼成
し、更にこれを大気中で熱処理することにより前記N2雰
囲気中での焼成により形成されたTi−N化合物の一部あ
るいは全部をTi−OあるいはTi−O−Nで示される化合
物に変化させることにより上記複合セラミックスが得ら
れる。
According to the present invention, the thermal conductivity is reduced by forming a composite ceramic containing 20% of pores and containing elements of Si, Ti, O and N. As a method of obtaining this composite ceramics, a mixed powder of a powder of Si and a powder containing a Ti element is formed,
This mixed powder is fired in an N2 atmosphere at 1200 ° C. or higher, and further heat-treated in the air to convert part or all of the Ti—N compound formed by firing in the N2 atmosphere to Ti—O or The above composite ceramics can be obtained by changing to a compound represented by Ti-ON.

【0008】またSiの粉末とTi元素を含む粉末の混合粉
末の混合割合がこの混合粉末の総重量に対しTiが20重量
%以上にすることにより熱伝導率が低い複合セラミック
スとなる。
Further, when the mixing ratio of the mixed powder of the Si powder and the powder containing the Ti element is 20% by weight or more with respect to the total weight of the mixed powder, a composite ceramic having a low thermal conductivity is obtained.

【0009】[0009]

【実施例】以下本発明の一実施例について説明する。An embodiment of the present invention will be described below.

【0010】実施例1 先ず実験に使用した試料は次の
通りである。Siおよび所定量のTi粉末に水とバインダを
加えスラリ−状とした。これを乾燥、粉砕し成形原料を
得た。これを1ton/2 の圧力でプレス成形し、Φ10のペ
レット状成形体を作成した。そしてこれを最高 500℃
のN2 雰囲気中で有機バインダ−を揮発除去した後に、
最高1400℃のN2 雰囲気(9.5atm)中で焼結せしめN2
化のみの比較試料をつくり、この比較試料の熱伝導率お
よび直径方向の寸法変化をTiの混合比を変えて測定し
た。
Example 1 The samples used in the experiment are as follows. Water and a binder were added to Si and a predetermined amount of Ti powder to form a slurry. This was dried and pulverized to obtain a forming raw material. This was press-molded at a pressure of 1 ton / 2 to produce a pellet-shaped molded body of Φ10. And up to 500 ° C
After volatilizing and removing the organic binder in the N2 atmosphere of
Sintered in N2 atmosphere (9.5atm) up to 1400 ℃
A comparative sample was prepared, and the thermal conductivity and the dimensional change in the diameter direction of the comparative sample were measured by changing the mixing ratio of Ti.

【0011】次に上記比較試料を更に 800℃の大気雰囲
気中で略1.5hrs熱処理しTiの混合比を変えて熱伝導率お
よび直径方向の寸法変化を測定するとともに、X線解析
による生成物の同定を行なった。その結果を図1に示
す。同図より明らかな通り、1400℃のN2 化のみ(点
線)のものに比べて更にこれを 800℃の大気中で熱処理
したもの(実線)の方が熱伝導率が低下していることが
判る。そしてTiの混合比が多くなるほど両者の熱伝導率
の差が大きくなっている。そしてこの熱伝導率の差はTi
の混合比が20重量%以上では比較的緩やかになってい
る。
Next, the comparative sample is further heat-treated for about 1.5 hours in an air atmosphere at 800 ° C. to measure the thermal conductivity and the dimensional change in the diameter direction by changing the mixing ratio of Ti. Identification was performed. The result is shown in FIG. As is clear from the figure, it can be seen that the thermal conductivity of the sample further heat-treated in the atmosphere at 800 ° C (solid line) is lower than that of N2 only at 1400 ° C (dotted line). . And, as the mixing ratio of Ti increases, the difference in thermal conductivity between the two increases. And this difference in thermal conductivity is Ti
Is relatively gentle when the mixing ratio of is 20% by weight or more.

【0012】比較例 SiにTiO2を加えたものを原
料として、実施例1と同様なプロセスで成形、乾燥後、
N2雰囲気で焼成した。この場合にはTiO2がTiN
nに変化するため、同じ配合比(モル比)のものと比較
したときに、熱伝導率は高い値を示し、また、焼結過程
でその寸法は収縮することが確認された。この実験によ
りSiにTiO2を加えても所望の結果を得ることがで
きないことが判った。
Comparative Example 1 Using a material obtained by adding TiO2 to Si as a raw material, forming and drying the same process as in Example 1,
It was fired in an N2 atmosphere. In this case, TiO2 is replaced by TiN
Since it changes to n, it was confirmed that the thermal conductivity showed a high value when compared with that of the same compounding ratio (molar ratio), and that the dimensions shrank during the sintering process. This experiment showed that desired results could not be obtained even if TiO2 was added to Si.

【0013】実施例2 SiとTiの混合割合をSiが
7Tiが3である原料をスラリー状で作成し、これを石
膏上に設置したSi3N4の焼結体で成る肉厚5mm、
高さ50mm、外径50mmの円筒内に注入し吸 水固
化後、石膏から外して中間時点での寸法変化の測定をし
た。その結果この時点では充填部とSi3N4の外枠と
の間には成形時の収縮に起因する隙間0.6mmが存在
していた。これを実施例1の条件と同一の条件でN2中
で焼成した時点ではN2かのために上記隙間は小さくな
っていたが、更にこれを1200℃の大気中で熱処理し
た後にその隙間を測定したところ、その隙間は完全に消
滅していたことが確認された。この実験で得られたこと
は、高温の大気中で熱処理することにより寸法の変化を
膨張により調節可能になるということである。
Example 2 A mixture of Si and Ti was prepared by preparing a raw material in which Si was 7 Ti and 3 in the form of a slurry, and this was made of a sintered body of Si3N4 placed on gypsum and having a thickness of 5 mm.
The mixture was poured into a cylinder having a height of 50 mm and an outer diameter of 50 mm, solidified by water absorption, removed from gypsum, and measured for dimensional change at an intermediate point. As a result, at this time, there was a gap of 0.6 mm between the filling portion and the outer frame of Si3N4 due to shrinkage during molding. When this was fired in N2 under the same conditions as in Example 1, the gap was small because of N2, but after this was further heat-treated in the air at 1200 ° C., the gap was measured. However, it was confirmed that the gap had completely disappeared. What has been obtained in this experiment is that heat treatment in a high-temperature atmosphere allows dimensional changes to be adjusted by expansion.

【0014】[0014]

【発明の効果】以上詳述した通り本発明によれば、Si粉
末とTi粉末とを混合した原料をN2雰囲気中で焼結し、こ
れを更に高温の大気中で熱処理することによりSi、Ti、
O、Nの元素からなる複合セラミックスを得ることがで
き、かつ、この複合セラミックスは低熱膨張率であり、
かつ、寸法変化の調整を膨張により行なうことができ
る。そして上記原料の総重量に対してTiの混合比を20重
量%以上にすることにより上記効果が顕著にすることが
できる。
As described above in detail, according to the present invention, a raw material obtained by mixing a Si powder and a Ti powder is sintered in an N2 atmosphere, and further heat-treated in a high-temperature atmosphere to obtain Si, Ti. ,
A composite ceramic comprising the elements of O and N can be obtained, and this composite ceramic has a low coefficient of thermal expansion,
In addition, the adjustment of the dimensional change can be performed by expansion. By setting the mixing ratio of Ti to 20% by weight or more with respect to the total weight of the raw materials, the above effect can be remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の特性を示す特性図である。FIG. 1 is a characteristic diagram showing characteristics of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気孔を20%含みSi、Ti、O、Nの元素か
らなることを特徴とする複合セラミックス。
1. A composite ceramic comprising 20% of pores and comprising elements of Si, Ti, O and N.
【請求項2】Siの粉末とTi元素を含む粉末の混合粉末を
成形する工程と、この混合粉末をN2雰囲気中において12
00℃以上で焼成する工程と、更にこれを大気中で熱処理
することにより前記N2 雰囲気中での焼成により形成さ
れたTi−N化合物の一部あるいは全部をTi−Oあるいは
Ti−O−Nで示される化合物に変化させることを特徴と
する複合セラミックスの製造方法。
2. A step of forming a mixed powder of a Si powder and a powder containing a Ti element, and forming the mixed powder in an N2 atmosphere.
Baking at a temperature of 00 ° C. or more, and further performing a heat treatment in the air to convert a part or all of the Ti—N compound formed by baking in the N 2 atmosphere to Ti—O or
A method for producing a composite ceramics, which comprises converting the compound to a compound represented by Ti-ON.
【請求項3】請求項1記載のSiの粉末とTi元素を含む粉
末の混合粉末の混合割合がこの混合粉末の総重量に対し
Tiが20重量%以上であることを特徴とする複合セラミッ
クスの製造方法。
3. The mixing ratio of the mixed powder of the Si powder and the powder containing the Ti element according to claim 1 is based on the total weight of the mixed powder.
A method for producing a composite ceramic, wherein Ti is at least 20% by weight.
JP2414734A 1990-12-27 1990-12-27 Composite ceramic and method for producing the same Expired - Lifetime JP2936288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414734A JP2936288B2 (en) 1990-12-27 1990-12-27 Composite ceramic and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414734A JP2936288B2 (en) 1990-12-27 1990-12-27 Composite ceramic and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04231382A JPH04231382A (en) 1992-08-20
JP2936288B2 true JP2936288B2 (en) 1999-08-23

Family

ID=18523183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414734A Expired - Lifetime JP2936288B2 (en) 1990-12-27 1990-12-27 Composite ceramic and method for producing the same

Country Status (1)

Country Link
JP (1) JP2936288B2 (en)

Also Published As

Publication number Publication date
JPH04231382A (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JPH09142936A (en) Si3n4 ceramic, si-base composition for producing the same and their production
JP2936288B2 (en) Composite ceramic and method for producing the same
JPS60186468A (en) Ceramic structural material and manufacture
JPH029777A (en) Fiber reinforced ceramic molded body and production thereof
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH1121175A (en) Silicon nitride sintered compact
JPH025711B2 (en)
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JPH04144952A (en) Formation of ceramics molding
JP2747630B2 (en) Fiber reinforced ceramic molding
JPH04295057A (en) Composite ceramics and its production
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0687664A (en) Production of silicon nitride sintered compact
JPH0226863A (en) Cordierite-based ceramic and production thereof
JP2514107B2 (en) Tarbot Charlotter
JPH03153574A (en) High strength sialon-based sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPH05279116A (en) Ceramics material having low thermal expansion and its production
JP2001114566A (en) Material having high strength and low thermal conductivity and method for production thereof
JP2001114564A (en) Material having high strength and low thermal conductivity and method for production thereof
JPS6236068A (en) Manufacture of composite ceramics