JPH02107564A - Production of carbon-metal composite material - Google Patents

Production of carbon-metal composite material

Info

Publication number
JPH02107564A
JPH02107564A JP63262110A JP26211088A JPH02107564A JP H02107564 A JPH02107564 A JP H02107564A JP 63262110 A JP63262110 A JP 63262110A JP 26211088 A JP26211088 A JP 26211088A JP H02107564 A JPH02107564 A JP H02107564A
Authority
JP
Japan
Prior art keywords
carbon
metal
pitch
powder
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63262110A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sutani
酢谷 潔
Toru Iwahashi
徹 岩橋
Yukihiro Sugimoto
杉本 行廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63262110A priority Critical patent/JPH02107564A/en
Priority to KR1019890014828A priority patent/KR930009894B1/en
Priority to CA 2000805 priority patent/CA2000805C/en
Priority to AT89119290T priority patent/ATE135415T1/en
Priority to DE68925936T priority patent/DE68925936T2/en
Priority to EP89119290A priority patent/EP0364972B1/en
Priority to EP19930111036 priority patent/EP0572044A2/en
Priority to EP19930111037 priority patent/EP0572045A2/en
Priority to US07/422,898 priority patent/US5158828A/en
Publication of JPH02107564A publication Critical patent/JPH02107564A/en
Priority to US08/177,791 priority patent/US5531943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the title carbon-metal composite material having excellent wear resistance and appropriate for the contact strip of a railway pantograph by incorporating metallic fibers (powder) into the carbonaceous material consisting essentially of carbonaceous aggregate powder and binder pitch, thermocompression-forming the mixture, and then calcining the formed product. CONSTITUTION:The metallic fiber such as a steel fiber (a low-carbon steel fiber having <=0.5mm size and >=1mm length is preferably used) or metal powder is incorporated into the carbonaceous material consisting essentially of (A) the coke powder obtained by carbonizing pitch, coal, etc., at about 1,000 deg.C, isotropic carbon obtained by carbonizing phenolic resin, etc., having preferably <=20mum particle size as the carbonaceous aggregate and (B) the coal tar pitch or carbonaceous material consisting essentially of the high-melting-point pitch, etc., obtained by further heat-treating the coal tar pitch as the binder pitch. The mixture is formed at >=480 deg.C or preferably at >=500 deg.C and at >=40kg/cm<2> or preferably at >=80kg/cm<2>, and the formed product is calcined at a temp. close to the m.p. of the metallic fiber in a nonoxidizing atmosphere to obtain a carbon-metal composite material.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、主に鉄道用パンタグラフ摺板に好適な耐摩
耗性に優れた炭素・金属複合材の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for producing a carbon-metal composite material with excellent wear resistance, which is mainly suitable for pantograph sliding plates for railways.

【従来の技術】[Conventional technology]

電気車両等のI情動、集電用炭素材料は、車両の高速化
と冷房設備等による潤費電力の増大に対応するため、炭
素の優れた摺動特性と金属の電気伝導性を生かした炭素
・金属複合置板の開発が進められている。 例えば、炭素・金属複合材の1!!造方法としては、■
炭素材の気孔に特定の金属を加圧含浸させる方法、■炭
素材用原料に金属繊維を配合し、通常の炭素材の成型方
法で成型後、炭化する方法(特開昭62−72564>
 、■炭素材用原料に金属繊維を一方向に配向させて配
合した後、成型、焼成する方法(特開昭62−1973
52 )等が提案されている。 又、■炭素・金属複合材系ブレーキ摩擦材の製造方法と
して、ピッチ、金属繊維、黒鉛を原料とし、温度400
〜600′C?成型圧40に34以上で加圧・加熱・成
型する方法(特願昭62−48294>がある。 (発明が解決しようとする課題1 しかし、上記■■■の方法による炭素・金属系層板は、
現用品である金属焼結系1習板から炭素・金属系摺板へ
の移行期、すなわち金属焼結系と炭素・金属系摺板の混
合使用時を想定したトロリー線(銅製)の荒れた状態で
の摺動時の摺板摩耗が大きいという欠点がある。 一方、■のブレーキ摩擦材製造方法で得られた炭素・金
属複合材は、パンタグラフ用摺板として使用した場合に
は摩耗が著しいという問題がある。 この発明は従来の技術のこのような問題点に鑑みなされ
たもので、金属焼結系摺板と炭素・金属系摺板の混合使
用を想定した、荒れたトロリー線に対する耐摩耗性の改
善と、強度、比抵抗の向上をはかる炭素・金属系摺板の
製造方法を提案しようとするものである。 (課題を解決するための手段] 従来の炭素・金属系摺板が荒れたトロリー線との摺動時
に大きく摩耗する原因について検討した結果、基本的に
カーボンは脆い材料であるため、荒れたトロリー線との
摺動時にカケ落ち、割れ等が発生し易く、摩耗が生じる
こと、このカーボンの脆さをカバーするために金属m維
や金属粉等の金属成分の配合量を増やせば、摺板の摩耗
は減少すると考えられるが、実際はファイバー配合量が
30体積%を超えると強度が低下し、摩耗がより著しく
なること、そしてこの原因は金属と炭素の結合力が小さ
いこと、すなわち常温あるいはバインダーが軟化する2
00℃以下の温度で加圧成型する方法では、成型時バイ
ンダーと金属は十分に圧密されるが、その後の焼成過程
の400〜500℃程度の領域でバインダーが軟化変形
し、バインダーと金属の結合が弱くなるためであること
を見出した。 一方、加圧加熱成型法による炭素・金属系摩擦材は、炭
素系骨材として硬度の低い黒鉛を使用しているため、ト
ロリー線等と1と動させた場合、黒鉛が容易に削られて
しまい摩耗が著しくなることも判明した。 この発明者はこのような知見に基づき検討した結果、バ
インダーが軟化変形〜固化する領域を加圧しつつ昇温す
ることによって金属とバインダーの結合力を強化し、か
つ骨材としてピッチを炭化処理(1000℃程度)して
得られる炭素質のコークス粉や等方性炭素のように硬度
の高い炭素質の骨材を使用することにより耐摩耗性の優
れた炭素・金属複合材の製造が可能であることを見出し
た。 すなわち、この発明は炭素材骨材粉とバインダーピッチ
を主成分とする炭素材原料に、金属繊維と金属粉のいず
れか一方又は両方を配合し、この配合原料を加圧加熱成
型した後、焼成することを要旨とするものである。 (作  用] この発明における炭素質の骨材としては、ピッチや石炭
等を1ooo℃稈度で炭化処理したコークス粉や、フェ
ノール樹脂を炭化して得られる等方性炭素等の硬度の高
いものが好適である。 このような炭素質骨材の粒度は、強度や耐摩耗性の面か
ら粒径の小さいものが良好であり、20゜以下に粉砕し
て使用するのが好ましい。 又、バインダーピッチとしては、コールタール中ピッチ
や、これをさらに熱処理して得られる高軟化点ピッチ等
を使用できる。 このような炭素材原料に配合する金属添加物としては、
スチールファイバー、スチールウール、銅ファイバー等
の金属繊維や、各種金属粉等様々のものを使用できる。 この中では低炭素鋼製スチールファイバーが最も良好な
性能を示す。 金属繊維の形状、サイズ等は特に限定されないが、高強
度の成型体を得るという観点から規定すると、太さ0.
5+nm以下、長ざLr+m以上のものが好ましい。 又、金属粉も強度の面から粒径100.c7m以下のも
のが好ましい。 ここで、炭素材原料に対する金属添加物の配合量は特に
限定されないが、50〜60体積%の高い配合率におい
ても高強度で耐摩耗性の優れた炭素・金属複合材を得る
ことができる。 次に、成型条件としては、バインダーピッチが固化する
温度域、すなわち480’C以上、好ましくは500’
C以上の温度域を加圧加熱することが必要であるため、
加圧加熱最高温度は480’C以上、好ましくは500
℃以上とするのが適当である。 加圧加熱成型の圧力は少なくとも常温〜加圧加熱最高温
度の一部の領域で40−4以上、好ましくは8014以
上である。これは、成型圧力が40 kg 4未満では
バインダー−金属間の結合力が低下し、良好な摩耗特性
を有する炭素・金属複合材が得られないためである。 第1図は加圧加熱成型用金型の一例を示す概略図で、(
1)は上プレスヘッド、(2)は下プレスヘッド(固定
) 、(3)は上ダイス、(4)は下ダイス、(5)は
金枠、(6)は成型原料、(力はシーズヒーター(7−
1)入り熱板、(8)は断熱材である。 すなわち、上ダイス(3)と下ダイス(4)との間に成
型原料(6)を充填した後、シーズヒーター(7−1)
に通電して熱板(7)を加熱し、プレスヘッド(1)に
より加圧する。上記ダイスは予熱しておいてもよい。 このような加圧加熱成型法で得られた成型体は、通常の
炭素材と同様の方法で焼成する。すなわち、非酸化性雰
囲気中で、金属ファイバーの融点前後の温度で行なう。 [実 施 例] 石油コークスをi ooo℃で炭化後、直径101tr
nのステンレス球を詰めた振動ミルで4時間粉砕して平
均粒径10,9々mのコークス粉を得、これを成型用骨
材とした。 バインダーピッチには、環球法で測定した軟化点が78
°Cのコールタール中ピッチを用いた。 金属添加物としては、0.1mmφX長さ3mmの低炭
素鋼ファイバーを用い、添加聞は5.20.30゜40
、50体積%とした。 本実施例ではまず、バインダーピッチとコークス粉のみ
を配合し、2軸混練機を用い、150℃で2時間混線後
冷却し、100I以下に解砕して炭素材原料粉を得た。 ついで、この炭素材原料粉に低炭素鋼ファイバーを所定
量配合し十分混合した後、第1図に示す金型に充填し、
加圧能力500tOnの油圧プレスを用いて加圧加熱成
形し、幅100+nmX長さ200mmX厚ざ30mm
の成形体を得た。加圧加熱成型は、第1表に示す所定の
温度範囲を5℃/分で昇温しながら、所定の加圧最高温
度で1時間保持後冷却して行なった。 そして、粉コークスを詰めたステンレス製容器にこの成
型体を入れ、窒素雰囲気下12°C/Hrの昇温速度で
1ooo’cまで昇温し、4時間保持後冷却して炭素・
金属複合材を得た。 得られた炭素・金属複合材の物性値を第1表に小す。 なお第1表には比較のため、前記と同一配合の成形原料
を2000kq4の圧力で常温成型を行なった後、前記
と同様の方法で1000℃の炭化処理を行なって得られ
た炭素・金属複合材と、成型用骨材としてコークス粉に
替えて平均粒径11.の黒鉛粉を用い、本発明の試験N
:1.3.4と同一配合の成型原料を前記と同じ方法に
より加圧力aoKga、加圧温度300〜550°Cで
加圧加熱成型した後、前記と同じ方法により1ooo’
cの炭化を行なって得られた炭素・金属複合材の物性値
を併せて示す。 第1表中、嵩密度、電気比抵抗、シャルピー衝撃値、曲
げ強度、摩耗体積の測定は、得られた炭素・金属複合材
から幅10+nmX厚ざ10mmX長ざ60mmのテス
トピースを切出して行なった。テストピースの切出し方
向は、長さ60mmの方向が成型体の長さ200mmの
方向と一致するようにした。 電気比抵抗は10mm X 10mmの面間の値を4点
法にに測定した。 シャルピー衝撃値の測定は、打撃方向が成型時のプレス
方向と一致するようにして測定した。 又、同じ材料から幅BmmX厚さ8mmX高さ25mm
のナス1−ピースを高さ25mmの方向が成型時のプレ
ス方向と一致するように切出し、下記条件で摩耗試験を
行なった後、テストピースの厚み変化を測定し摺動距離
1007m当りの摩耗体積を算出した。 〈摩耗試験の条件〉 試験機の型式:ピンオンディスクタイプデ ィ ス り
: 300mmφ銅板(摺動品半径132mm、摺動面
はバイトで平 均粗さ90双mに荒して使用) ディスク回転数:11000rp  (摺動速度5QK
In/Hr)テストピース摺動面サイズ:縦8mn+X
横8mm押付は荷重: 1.5に9 (2,34KE1
4>摺 動 時 間: 2時間(摺動距離100飴)第
1表より、加圧加熱成型して得られた本発明の試験陽1
〜7,9の炭素・金属複合材の摩耗体積は22mm37
100K111以下と、常温で成型した比較例の試験t
bH−1〜H−5の場合と比べて著しく小さく、又低炭
素鋼ファイバーを50体積%配合しても強度低下が見ら
れないが、最高加圧温度が470℃で成型した試験lV
!:1.9の場合には摩耗体積が増大し始めており、R
高加圧温度としては480’C以上が好ましいことがわ
かる。 又、成型圧が30K142の試験No、10の場合も摩
耗体積が増大し始めており、成型圧としては4ON#J
以上が好ましいことがわかる。 一方、骨材として天然黒鉛を使用した試験部H−6、H
−7の場合は、本発明の試験部3,4と比べ格段に摩耗
体積が大きくなることがわかる。 以下余白
Carbon materials for current collection in electric vehicles, etc. are carbon materials that take advantage of the excellent sliding properties of carbon and the electrical conductivity of metals, in order to cope with the increase in vehicle speed and increased power consumption due to air conditioning equipment, etc.・Development of metal composite mounting plates is progressing. For example, carbon-metal composite material 1! ! As for the construction method, ■
A method of impregnating the pores of a carbon material with a specific metal under pressure; ■ A method of blending metal fibers into raw materials for carbon materials, molding them using a normal carbon material molding method, and then carbonizing them (Japanese Patent Laid-Open No. 62-72564)
, ■ A method in which metal fibers are oriented in one direction and blended into raw materials for carbon materials, and then molded and fired (Japanese Patent Laid-Open No. 62-1973)
52) etc. have been proposed. In addition, as a manufacturing method for carbon/metal composite brake friction material, pitch, metal fiber, and graphite are used as raw materials, and the temperature is 400℃.
~600'C? There is a method of pressurizing, heating and molding at a molding pressure of 40 to 34 or more (Japanese Patent Application No. 62-48294). teeth,
The roughened trolley wire (copper) is intended for the period of transition from the current sintered metal type 1 sliding plate to carbon/metal type sliding plate, that is, when sintered metal type and carbon/metal type sliding plate are mixedly used. The disadvantage is that the sliding plate is subject to a large amount of wear when sliding under such conditions. On the other hand, the carbon-metal composite material obtained by the brake friction material manufacturing method (2) has a problem of significant wear when used as a sliding plate for a pantograph. This invention was made in view of the problems of the conventional technology, and it is intended to improve the wear resistance of rough trolley wires and to use a mixture of sintered metal sliding plates and carbon/metal sliding plates. This paper attempts to propose a method for manufacturing carbon/metal sliding plates that improves strength and resistivity. (Means for solving the problem) As a result of studying the reasons why conventional carbon/metal-based sliding plates wear heavily when sliding on rough trolley wires, we found that carbon is basically a brittle material. In order to compensate for the brittleness of carbon, which is prone to chipping, cracking, etc. and wear when sliding against the wire, increasing the amount of metal components such as metal fibers and metal powder can improve the quality of the sliding plate. It is thought that the wear will be reduced, but in reality, when the fiber content exceeds 30% by volume, the strength decreases and the wear becomes more significant.The reason for this is that the bonding force between metal and carbon is small, that is, at room temperature or when the binder softens2
In the method of pressure molding at a temperature below 00°C, the binder and metal are sufficiently compacted during molding, but the binder softens and deforms in the region of about 400 to 500°C during the subsequent firing process, causing the bond between the binder and the metal to deteriorate. It was found that this is because it becomes weaker. On the other hand, carbon/metal-based friction materials made using the pressure and heat molding method use graphite with low hardness as the carbon-based aggregate, so when moved with a trolley wire, etc., the graphite is easily scraped off. It was also found that wear and tear becomes significant. As a result of studies based on such knowledge, the inventor has strengthened the bonding force between the metal and the binder by increasing the temperature while pressurizing the area where the binder softens and deforms to hardens, and also carbonizes the pitch as an aggregate ( Carbon-metal composites with excellent wear resistance can be manufactured by using carbonaceous aggregates with high hardness such as carbonaceous coke powder and isotropic carbon obtained at 1000℃). I discovered something. That is, the present invention involves blending either or both of metal fibers and metal powder into a carbon material raw material whose main components are carbon aggregate powder and binder pitch, pressurizing and heating the blended raw material, and then sintering the raw material. The gist of this is to (Function) The carbonaceous aggregate used in this invention is one with high hardness, such as coke powder obtained by carbonizing pitch or coal at a culmness of 100°C, or isotropic carbon obtained by carbonizing phenolic resin. The particle size of such carbonaceous aggregate is preferably small in terms of strength and wear resistance, and it is preferable to use it after crushing it to 20 degrees or less. As the pitch, coal tar pitch, high softening point pitch obtained by further heat treatment, etc. can be used. Metal additives to be added to such carbon material raw materials include:
Various materials can be used, such as metal fibers such as steel fiber, steel wool, and copper fiber, and various metal powders. Among these, steel fiber made from low carbon steel shows the best performance. The shape, size, etc. of the metal fibers are not particularly limited, but from the viewpoint of obtaining a molded product with high strength, the thickness is 0.
Preferably, the length is 5+nm or less and the length is Lr+m or more. In addition, metal powder has a particle size of 100. C7m or less is preferable. Here, the blending amount of the metal additive with respect to the carbon material raw material is not particularly limited, but even at a high blending ratio of 50 to 60% by volume, a carbon-metal composite material with high strength and excellent wear resistance can be obtained. Next, the molding conditions are the temperature range in which the binder pitch solidifies, that is, 480'C or higher, preferably 500'C.
Since it is necessary to pressurize and heat the temperature range above C,
The maximum pressure heating temperature is 480'C or higher, preferably 500'C.
It is appropriate to set the temperature to ℃ or higher. The pressure of pressurized and heated molding is at least 40-4 or higher, preferably 8014 or higher in at least a part of the range from normal temperature to the highest pressure-heated temperature. This is because if the molding pressure is less than 40 kg4, the bonding force between the binder and the metal decreases, making it impossible to obtain a carbon-metal composite material with good wear characteristics. Figure 1 is a schematic diagram showing an example of a pressurized and heated mold.
1) is the upper press head, (2) is the lower press head (fixed), (3) is the upper die, (4) is the lower die, (5) is the metal frame, (6) is the molding raw material, (force is the seed Heater (7-
1) A heated plate, (8) is a heat insulating material. That is, after filling the molding raw material (6) between the upper die (3) and the lower die (4), the sheathed heater (7-1)
Electricity is supplied to heat the hot plate (7), and pressure is applied by the press head (1). The dice may be preheated. The molded body obtained by such a pressure-heat molding method is fired in the same manner as for ordinary carbon materials. That is, it is carried out in a non-oxidizing atmosphere at a temperature around the melting point of the metal fiber. [Example] After carbonizing petroleum coke at iooo℃, the diameter was 101 tr.
The coke powder was pulverized for 4 hours using a vibrating mill packed with n stainless steel balls to obtain coke powder with an average particle size of 10.9 m, which was used as a molding aggregate. The binder pitch has a softening point of 78 as measured by the ring and ball method.
Pitch in coal tar at °C was used. As a metal additive, a low carbon steel fiber with a diameter of 0.1 mm and a length of 3 mm was used, and the addition distance was 5.20.30°40.
, 50% by volume. In this example, first, only binder pitch and coke powder were blended, mixed at 150° C. for 2 hours using a twin-screw kneader, cooled, and crushed to 100 I or less to obtain carbon material raw material powder. Next, a predetermined amount of low carbon steel fiber is blended into this carbon material raw material powder and mixed thoroughly, and then filled into the mold shown in Fig. 1.
Pressure-heat molded using a hydraulic press with a pressure capacity of 500 tOn, width 100+nm x length 200mm x thickness 30mm
A molded body was obtained. The pressurized and heated molding was carried out by increasing the temperature within the predetermined temperature range shown in Table 1 at a rate of 5° C./min, holding the predetermined maximum pressurizing temperature for 1 hour, and then cooling. Then, this molded body was placed in a stainless steel container filled with coke powder, heated to 100'C at a rate of 12°C/Hr under a nitrogen atmosphere, held for 4 hours, and then cooled to form carbon.
A metal composite was obtained. Table 1 shows the physical properties of the obtained carbon/metal composite. For comparison, Table 1 shows carbon-metal composites obtained by molding raw materials with the same composition as above at room temperature at a pressure of 2000 kq4 and then carbonizing at 1000°C in the same manner as above. material and the average particle size of 11. Test N of the present invention was conducted using graphite powder of
: The molding raw material with the same composition as in 1.3.4 was pressurized and heat molded by the same method as above at a pressure of aoKga and a pressure temperature of 300 to 550°C, and then molded to 1ooo' by the same method as above.
The physical property values of the carbon-metal composite material obtained by carbonizing c are also shown. In Table 1, bulk density, electrical resistivity, Charpy impact value, bending strength, and wear volume were measured by cutting out test pieces with a width of 10+ nm, thickness of 10 mm, and length of 60 mm from the obtained carbon-metal composite. . The cutting direction of the test piece was such that the direction of the length of 60 mm coincided with the direction of the length of the molded body of 200 mm. The electrical resistivity was measured using a 4-point method between 10 mm x 10 mm surfaces. The Charpy impact value was measured so that the direction of impact coincided with the pressing direction during molding. Also, from the same material, width Bmm x thickness 8mm x height 25mm
A piece of eggplant 1-piece with a height of 25 mm was cut out so that the direction coincided with the pressing direction during molding, and a wear test was performed under the following conditions.The thickness change of the test piece was measured and the wear volume per 1007 m of sliding distance was measured. was calculated. <Abrasion test conditions> Model of testing machine: Pin-on-disk type Disc: 300mmφ copper plate (sliding product radius 132mm, sliding surface roughened with a cutting tool to an average roughness of 90 mm) Disc rotation speed: 11000rp (sliding speed 5QK
In/Hr) Test piece sliding surface size: Length 8mm+X
Load for horizontal 8mm pressing: 1.5 to 9 (2,34KE1
4>Sliding time: 2 hours (sliding distance 100 candy) From Table 1, test positive 1 of the present invention obtained by pressurized and heated molding.
The wear volume of the carbon-metal composite material of ~7,9 is 22mm37
Test t of a comparative example molded at room temperature with 100K111 or less
It is significantly smaller than the cases of bH-1 to H-5, and no decrease in strength is observed even when 50% by volume of low carbon steel fiber is mixed, but the test lV molded at a maximum pressing temperature of 470°C
! : In the case of 1.9, the wear volume has started to increase, and R
It can be seen that the high pressurizing temperature is preferably 480'C or higher. Also, in the case of test No. 10 where the molding pressure was 30K142, the wear volume started to increase, and the molding pressure was 4ON#J.
It can be seen that the above is preferable. On the other hand, test sections H-6 and H using natural graphite as aggregate
In the case of -7, it can be seen that the wear volume is significantly larger than in test sections 3 and 4 of the present invention. Margin below

【発明の効果】【Effect of the invention】

以上説明したごとく、この発明方法によれば、加圧加熱
成型法を採用したことにより金属と炭素の結合が強固で
、かつ高硬度の炭素質骨材を用いたことにより耐摩耗性
に優れた炭素・金属複合材を得ることができ、パンタグ
ラフ用摺板として優れた特性を発揮し、そのもたらす効
果は甚大でおる。
As explained above, according to the method of the present invention, the bond between the metal and carbon is strong due to the use of the pressure-heat molding method, and excellent wear resistance is achieved due to the use of high-hardness carbonaceous aggregate. A carbon-metal composite material can be obtained that exhibits excellent properties as a sliding plate for pantographs, and its effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するための加圧加熱成型用
金型の一例を示す概略図でおる。
FIG. 1 is a schematic diagram showing an example of a pressure-heat molding mold for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 炭素材骨材粉とバインダーピッチを主成分とする炭素材
原料に、金属繊維と金属粉のいずれか一方又は両方を配
合し、この配合原料を加圧加熱成型した後、焼成するこ
とを特徴とする炭素・金属複合材の製造方法。
It is characterized by blending either or both of metal fibers and metal powder into a carbon material raw material whose main components are carbon aggregate powder and binder pitch, pressurizing and heating the blended raw material, and then firing it. A method for manufacturing carbon-metal composite materials.
JP63262110A 1988-10-17 1988-10-17 Production of carbon-metal composite material Pending JPH02107564A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63262110A JPH02107564A (en) 1988-10-17 1988-10-17 Production of carbon-metal composite material
KR1019890014828A KR930009894B1 (en) 1988-10-17 1989-10-16 Carbon/metal composite
CA 2000805 CA2000805C (en) 1988-10-17 1989-10-16 Carbon/metal composite
EP89119290A EP0364972B1 (en) 1988-10-17 1989-10-17 Carbon/metal composite
DE68925936T DE68925936T2 (en) 1988-10-17 1989-10-17 Carbon / metal composite
AT89119290T ATE135415T1 (en) 1988-10-17 1989-10-17 CARBON/METAL COMPOSITE
EP19930111036 EP0572044A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
EP19930111037 EP0572045A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
US07/422,898 US5158828A (en) 1988-10-17 1989-10-17 Carbon/metal composite
US08/177,791 US5531943A (en) 1988-10-17 1994-01-05 Method of making a carbon/metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262110A JPH02107564A (en) 1988-10-17 1988-10-17 Production of carbon-metal composite material

Publications (1)

Publication Number Publication Date
JPH02107564A true JPH02107564A (en) 1990-04-19

Family

ID=17371177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262110A Pending JPH02107564A (en) 1988-10-17 1988-10-17 Production of carbon-metal composite material

Country Status (1)

Country Link
JP (1) JPH02107564A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239059A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon composite material
JPH01239062A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239059A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon composite material
JPH01239062A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon composite material

Similar Documents

Publication Publication Date Title
US5531943A (en) Method of making a carbon/metal composite
CN103194659A (en) Dispersion-strengthened copper-based powder metallurgy brake pad and preparation for same
CN101407123B (en) Wear resistant copper-based gradient material for manufacturing pantograph slider and preparation thereof
KR930009894B1 (en) Carbon/metal composite
JP4311777B2 (en) Method for producing graphite material
JPH02107564A (en) Production of carbon-metal composite material
WO2005047051A1 (en) Composite collectors
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
JP2511705B2 (en) Carbon / metal composite
JPH02160663A (en) Carbon-metal composite material
JPH04280865A (en) Carbon-metal composite material
JPH02160662A (en) Carbon-metal composite material
JPS5937731B2 (en) sliding member
JPH02160664A (en) Carbon-metal composite material
JPS61122110A (en) Production of high-density carbon material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
CN1062841C (en) Current collecting composite material containing nm-carbon tube
JP2000302578A (en) Current collecting slider material consisting of copper- impregnated carbon fired compact and having excellent wear resistance at high speed traveling
JPH0456787B2 (en)
JPH0333063A (en) Carbon/metal composite material
JPH06172029A (en) Carbon-metal composite material and its production
JPS6217090A (en) Manufacture of current collecting material
JPS61245957A (en) Production of current collecting material
JPH07215766A (en) Production of carbon-metal composite material
JP2697581B2 (en) Current collector slides made of sintered copper impregnated carbon material with high toughness and high conductivity