JPH02160664A - Carbon-metal composite material - Google Patents

Carbon-metal composite material

Info

Publication number
JPH02160664A
JPH02160664A JP63315613A JP31561388A JPH02160664A JP H02160664 A JPH02160664 A JP H02160664A JP 63315613 A JP63315613 A JP 63315613A JP 31561388 A JP31561388 A JP 31561388A JP H02160664 A JPH02160664 A JP H02160664A
Authority
JP
Japan
Prior art keywords
carbon
metal
fiber
composite material
nature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63315613A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sutani
酢谷 潔
Masato Kano
鹿野 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63315613A priority Critical patent/JPH02160664A/en
Priority to KR1019890014828A priority patent/KR930009894B1/en
Priority to CA 2000805 priority patent/CA2000805C/en
Priority to AT89119290T priority patent/ATE135415T1/en
Priority to DE68925936T priority patent/DE68925936T2/en
Priority to EP89119290A priority patent/EP0364972B1/en
Priority to EP19930111036 priority patent/EP0572044A2/en
Priority to EP19930111037 priority patent/EP0572045A2/en
Priority to US07/422,898 priority patent/US5158828A/en
Publication of JPH02160664A publication Critical patent/JPH02160664A/en
Priority to US08/177,791 priority patent/US5531943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title composite material excellent in wear and impact characteristics, flexural strength and electrical resistivity, thus suitable for pantograph sliding plates by incorporating a carbonaceous raw material with several kinds of metallic fiber differing in at least one nature selected from length, thickness and material nature from one another. CONSTITUTION:At least two kinds of metallic fiber differing in at least one nature selected from length, thickness and material nature from each other (e.g. steel fiber, copper fiber) are incorporated in a carbonaceous raw material such as coke powder plus pitch, or phenolic resin. Thence, using a hot pressing mold provided with e.g. a top force 3, bottom force 4 and metal frame 5, a raw material to be formed is filled between the top and bottom forces 3, 4, a hot plate 7 being heated with a heater 7-1, followed by pressing with a press head 1 to make a forming. The resultant form is then baked in a non-oxidative atmosphere at temperatures below the melting point of said metallic fiber, thus obtaining the objective composite.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主に鉄道用パンタグラフ摺板に利用可能な
複合材料に係り、耐摩耗性、耐衝撃性および曲げ強度と
電気比抵抗の優れた炭素・金属複合材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material that can be used mainly for pantograph sliding plates for railways.・Regarding metal composite materials.

従来の技術 電気車両等の1習動、集電用炭素材料としては、車両の
高速化と冷房設備等による消費電力の増大に対応するた
め、炭素の優れた摺動特性と金属の電気伝導性を生かし
た炭素・金属複合摺板が採用されつつある。
Conventional technologyAs a carbon material for current collection, the excellent sliding properties of carbon and the electrical conductivity of metals are used to cope with the increasing speed of vehicles and the increase in power consumption due to air conditioning equipment, etc. Carbon/metal composite sliding plates that take advantage of this are being adopted.

この種の炭素・金属複合材としては、例えば■炭素材の
気孔に特定の金属を加圧含浸させる方法により製造した
複合材、■炭素材用原料に金属繊維を配合し、通常の炭
素材の成型方法で成型後、炭化する方法により製造した
複合材(特開昭62−72564) 、■炭素材用原料
に金属繊維を一方向に配向させて配合した後、成型、焼
成する方法により製造した複合材(特開昭62−197
352)がある。
This type of carbon-metal composite material includes, for example: ■ Composite material manufactured by pressurizing and impregnating the pores of a carbon material with a specific metal; Composite material manufactured by a method of carbonizing after molding using a molding method (Japanese Patent Application Laid-Open No. 62-72564), ■ Manufactured by a method of blending metal fibers oriented in one direction with raw materials for carbon materials, then molding and firing. Composite materials (JP-A-62-197
352).

しかし、上記■■■の炭素・金属系摺板は、現用品であ
る金属焼結系摺板から炭素・金属系摺板への移行期、す
なわち金属焼結系と炭素・金属系摺板の混合使用時を想
定したトロリー線(銅製)の荒れた状態での摺動時の摺
板摩耗が大きいという欠点がある。
However, the carbon/metal based sliding plates mentioned above are in the transition period from the current sintered metal based sliding plates to the carbon/metal based sliding plates, that is, the transition between the metal sintered and carbon/metal based sliding plates. The drawback is that the sliding plate is subject to a large amount of wear when the trolley wire (made of copper) is slid in a rough condition, which is intended for mixed use.

かかる欠点を解消するため、本発明者らは、■炭素材骨
材粉とバインダーピッチを主成分とする炭素材原料に、
金属繊維ヤ金属粉を配合し、この原料を加圧加熱成型し
た後焼成することによって、耐摩耗性の優れた炭素・金
属複合材を得る方法を先に提案した(特願昭63−26
2110>。
In order to eliminate such drawbacks, the present inventors have developed a carbon material raw material whose main components are carbon material aggregate powder and binder pitch.
We previously proposed a method for obtaining a carbon-metal composite material with excellent wear resistance by blending metal fibers and metal powder, molding this raw material under pressure and heat, and then firing it (Japanese Patent Application No. 63-26).
2110>.

ところで、(置板の使用時、トロリー線に付着した結氷
や何等かの原因により外れたトロリー線吊興(ハンガイ
ヤ)に摺板が激しく当ることがある。
By the way, when using the sliding plate, the sliding plate may hit violently against the trolley wire hanger that has come off due to ice forming on the trolley wire or for some other reason.

その時、摺板の衝撃強度が低いと1凹板が破損し、その
破片等が周囲に飛散し、非常に危険である。
At that time, if the impact strength of the sliding plate is low, the first concave plate will break and its fragments will be scattered around, which is extremely dangerous.

したがって、摺板には耐摩耗性に加え、耐衝撃性も要求
される。
Therefore, the sliding plate is required to have not only wear resistance but also impact resistance.

しかるに、前記した炭素・金属複合材は従来の金属焼結
系1習板と比較し、著しく衝撃強度が劣るという共通の
欠点がある。
However, the above-mentioned carbon-metal composite materials have a common drawback in that they are significantly inferior in impact strength compared to conventional metal sintered metal composite materials.

この衝撃強度が劣る原因は、基本的に炭素の衝撃強度が
低いことにある。そこで、これを補うために金属成分の
配合口を増せば衝撃強度を向上できるが、金属成分が多
くなるとトロリー線との間で発生するスパークが多くな
り、トロリー線および摺板の摩耗が大きくなり好ましく
ない。
The reason for this poor impact strength is basically that the impact strength of carbon is low. Therefore, to compensate for this, impact strength can be improved by increasing the proportion of metal components, but as the amount of metal components increases, more sparks will be generated between the contact wire and the contact wire, resulting in greater wear on the contact wire and sliding plate. Undesirable.

さらに、炭素・金属複合材は従来の金属焼結系摺板と比
較し、電気比抵抗が高いとい欠点がある。
Furthermore, carbon-metal composite materials have a disadvantage in that they have a higher electrical resistivity than conventional metal sintered sliding plates.

電気比抵抗が高いと、ジュール熱によりトロリー線温度
の上昇を招き、高テンションが付与されたトロリー線が
断線にいたる可能性がおり、非常に危険である。
If the electric resistivity is high, the temperature of the trolley wire will increase due to Joule heat, and the trolley wire to which high tension has been applied may break, which is extremely dangerous.

炭素・金属複合材の電気比抵抗が高い原因は、この場合
も基本的に炭素の電気比抵抗が高いことにある。そこで
、例えば銅のような電気比抵抗の低い金属成分の配合量
を増Vば電気比抵抗の低下は可能となるが、前記したよ
うに金属成分が多くなるとトロリー線との間で発生する
スパークが多くなり好ましくない。
The reason why the electrical resistivity of the carbon-metal composite material is high is basically that carbon has a high electrical resistivity. Therefore, it is possible to lower the electrical resistivity by increasing the amount of a metal component with low electrical resistivity, such as copper, but as mentioned above, when the metal component increases, sparks occur between the contact wire and the trolley wire. This is not desirable.

発明が解決しようとする課題 この発明は前に述べたような実情よりみて、炭素・金属
複合材の問題点である、耐摩耗性と耐衝撃性の両立の困
難性、電気比抵抗を容易に低下し得ないという問題を解
決し、優れた耐衝撃性および耐摩耗性を具備し、かつ電
気比抵抗の低い炭素・金属複合材を提供しようとするも
のである。
Problems to be Solved by the Invention In view of the actual situation described above, this invention has been developed to easily solve the problems of carbon-metal composite materials, such as the difficulty in achieving both abrasion resistance and impact resistance, and the electrical resistivity. The purpose of this project is to solve the problem of not being able to lower the electrical resistance, and to provide a carbon-metal composite material that has excellent impact resistance and wear resistance, and has low electrical resistivity.

課題を解決するための手段 この発明者は、炭素材原料に金属繊維を配合した複合材
において、金属繊維の含有量を増加させずに耐摩耗性と
耐衝撃性の両特性を併せ持つ炭素・金属複合材について
種々検討した結果、次のことが判明した。
Means for Solving the Problems The inventor has developed a carbon-metal composite material that has both wear resistance and impact resistance without increasing the content of metal fibers in a composite material that combines metal fibers with carbon material raw materials. As a result of various studies on composite materials, we found the following.

金属繊維はアスペクト比(繊維長/繊維径)が大きいた
め補強効果が大きく、複合材の静的強度、衝撃強度の向
上に寄与するが、同一アスペクト比比いては繊維径の小
さいものほど高い強度が得られる。
Because metal fibers have a large aspect ratio (fiber length/fiber diameter), they have a large reinforcing effect and contribute to improving the static strength and impact strength of composite materials, but compared to the same aspect ratio, the smaller the fiber diameter, the higher the strength. can get.

しかし、衝撃強度は静的強度とは逆に、繊維径が大きく
かつ繊維長の長い繊維の方が高い衝撃強度を示すという
、静的強度とは相反する結果を示す。
However, impact strength shows a result contrary to static strength, in that fibers with larger fiber diameters and longer fiber lengths exhibit higher impact strength.

また、アスペクト比については、同一材質の場合アスペ
クト比が大きいほど複合材の静的強度、衝撃強度共に向
上することはよく知られているが、アスペクト比が大き
くなると、他の原料と混合した場合にファイバーボール
すなわち繊維のからみあった凝集物が生じやすくなり、
配合量を少なくせざるを得ない。
Regarding the aspect ratio, it is well known that the larger the aspect ratio of the same material, the better the static strength and impact strength of the composite material. Fiber balls, or entangled aggregates of fibers, tend to form,
The amount added must be reduced.

この発明者は、以上の知見に基づきさらに検討を重ねた
結果、繊維のハイブリッド化ずなわ52種類以上の繊維
を配合させることが有効であることを見い出した。
As a result of further studies based on the above knowledge, the inventor found that it is effective to blend 52 or more types of fiber hybridization zuna.

例えば、繊維径の小さい金属繊維と、少量の繊維径が大
きくかつ繊維長が艮い金属繊維を配合させると、静的強
度は若干低下するものの、衝撃強度は著しく向上するこ
とを見い出した。
For example, it has been found that when metal fibers with a small fiber diameter are mixed with a small amount of metal fibers with a large fiber diameter and a long fiber length, the static strength is slightly lowered, but the impact strength is significantly improved.

また、同一径で長さの異なる繊維を配合させることによ
っても、上記と同様の効果が得られることを見い出した
It has also been found that the same effect as described above can be obtained by blending fibers with the same diameter but different lengths.

ざらに、繊維の大きざのみならず、繊維の材質において
もハイブリッド化を適用できることが判明した。
In general, it has been found that hybridization can be applied not only to the size of the fibers but also to the material of the fibers.

例えば鉄系の繊維と銅系の繊維と組合せることによって
、耐摩耗性と電気比抵抗を両立させることが可能となる
ことを見い出した。
For example, it has been discovered that by combining iron-based fibers and copper-based fibers, it is possible to achieve both wear resistance and electrical resistivity.

すなわち、この発明は金属繊維の長さと太さと材質の少
なくとも一つが異なる2種以上の金属繊維を配合させる
ことによって得られる、耐摩耗性、耐衝撃性および電気
比抵抗の優れた炭素・金属複合材を要旨とするものであ
る。
That is, this invention provides a carbon-metal composite with excellent wear resistance, impact resistance, and electrical resistivity, which is obtained by blending two or more types of metal fibers that differ in length, thickness, and material. The main point is the material.

作   用 この発明における炭素材原料としては、自己焼結性メソ
フェーズ粉や、コークス粉のような炭素質骨材粉とピッ
チからなる2元系原料、フェノール樹脂のような熱硬化
性樹脂等柱々のものが使用できる。
Function The carbon material raw materials in this invention include self-sintering mesophase powder, binary raw materials consisting of carbonaceous aggregate powder and pitch such as coke powder, thermosetting resins such as phenolic resin, etc. can be used.

ここで、2元系原料における炭素質の骨材としては、耐
摩耗性の面からピッチや石炭等を1ooo℃程度で炭化
処理したコークス粉や、フェノール樹脂を炭化して得ら
れる等方性炭素等の硬度の高いものが好ましい。
Here, carbonaceous aggregates in binary raw materials include coke powder obtained by carbonizing pitch, coal, etc. at about 100°C from the viewpoint of wear resistance, and isotropic carbon obtained by carbonizing phenolic resin. Those with high hardness such as

炭素質骨材の粒度は、強度や耐摩耗性の面から粒径の小
さいものが良好であり、20.izm以下に粉砕して使
用するのが好ましい。
Regarding the particle size of the carbonaceous aggregate, from the viewpoint of strength and wear resistance, a small particle size is good. It is preferable to use it after pulverizing it to less than 1 ozm.

バインダーピッチとしては、コールタール中ピッチや、
これをざらに熱処理して得られる高軟化点ピッチ等を使
用できる。
Binder pitches include coal tar medium pitch,
A high softening point pitch obtained by rough heat treatment of this material can be used.

なあ、ピッチとしては、加熱時流動性を示すもので、か
つ可及的に低揮発分の方が複合材の強度、摩耗性が向上
し好ましい。
The pitch is preferably one that exhibits fluidity when heated and has as low a volatile content as possible, since this improves the strength and abrasion resistance of the composite material.

金属繊維としては、スチールファイバー、スチールウー
ル、銅ファイバー等種々の金属繊維を使用することがで
きる。このうち、摩耗特性を発現させるのに有効な金属
繊維としては低炭素鋼スチールファイバーが好適でおり
、また電気比抵抗を下げるのには銅フフ・イバーが適す
る。したがって、これらの金属繊維は要求される特性に
応じて適宜選択使用する。
Various metal fibers such as steel fiber, steel wool, copper fiber, etc. can be used as the metal fiber. Among these, low carbon steel fibers are suitable as metal fibers effective for developing wear characteristics, and copper fibers are suitable for lowering electrical resistivity. Therefore, these metal fibers are appropriately selected and used depending on the required properties.

各種金属繊維の形状、サイズ等は特に限定されないが、
サイズについては太さ0.5s以下、長さ1M以上のも
のが強度向上効果が大きい。金属繊維の形状は針状、く
さび状、波状、網状、あるいはそれらの混合物のいずれ
も使用可能である。
The shape, size, etc. of various metal fibers are not particularly limited, but
Regarding the size, those with a thickness of 0.5 seconds or less and a length of 1M or more have a large strength improvement effect. The shape of the metal fiber can be needle-like, wedge-like, wavy, net-like, or a mixture thereof.

この発明において、長さ、太さ、材質のいずれか一つが
異なる2種以上の金属繊維を配合することとしたのは、
前記したとおり一種では炭素・金属複合材の特性、すな
わち耐摩耗性、耐衝撃性、電気比抵抗等の改善に限度が
おるためでおる。
In this invention, the reason why we decided to blend two or more types of metal fibers that differ in length, thickness, and material is because
This is because, as mentioned above, there is a limit to the improvement of the properties of the carbon-metal composite material, such as wear resistance, impact resistance, and electrical resistivity.

なお、長さの異なる金属繊維を配合する場合、その長さ
の比は少なくとも2倍以上おることが好ましい。そして
、その配合比率は摩耗特性と衝撃強度を考慮すると、長
い繊維の比率が短かい繊維の10〜40%程度であるこ
とが望ましい。
In addition, when blending metal fibers with different lengths, it is preferable that the ratio of the lengths is at least twice or more. In consideration of abrasion characteristics and impact strength, it is desirable that the proportion of long fibers be about 10 to 40% of that of short fibers.

全金属繊維の配合量は特に限定されず、50〜60体積
%の高い配合率においても高強度で優れた耐摩耗性、耐
衝撃性が得られるが、スパーク特性を考慮すると40〜
50体積%程度が好ましい。
The blending amount of all metal fibers is not particularly limited, and high strength and excellent abrasion resistance and impact resistance can be obtained even at a high blending ratio of 50 to 60% by volume, but in consideration of spark properties, 40 to 60% by volume
About 50% by volume is preferable.

この発明に係る炭素・金属複合材の成型方法としては、
冷間型込め成型、押出し成型、加圧加熱成型等様々の方
法が採用できる。このうち、バインダーとしてピッチを
使用し、加圧加熱成型する方法が最も強度、耐摩耗性の
良好な炭素・金属複合材が得られる。
The method for molding the carbon-metal composite material according to this invention includes:
Various methods such as cold molding, extrusion molding, pressurized heat molding, etc. can be adopted. Among these, the method of using pitch as a binder and pressurizing and heating molding yields a carbon-metal composite material with the best strength and wear resistance.

加圧加熱成型条件としては、バインダーピッチが固化す
る温度域、すなわち480℃以上、好ましくは500℃
以上の温度域を加圧加熱することが必要であるため、加
圧加熱最高温度は480℃以上、好ましくは500’C
以上とする。
The pressure and heat molding conditions are in the temperature range where the binder pitch solidifies, that is, 480°C or higher, preferably 500°C.
Since it is necessary to pressurize and heat in the above temperature range, the maximum pressure and heating temperature is 480°C or higher, preferably 500'C.
The above shall apply.

加圧加熱成型の圧力は少なくとも常温〜加圧加熱最高温
度の一部の領域で40に94以上、好ましくは80kq
J以上とする。これは、成型圧力が40ki4未満では
バインダー−金属間の結合力が低下し、良好な摩耗特性
を有する炭素・金属複合材が得られないためでおる。
The pressure of pressurized and heated molding is at least 40 to 94 or higher in a part of the range from normal temperature to the maximum temperature of pressurized heating, preferably 80 kq.
Must be J or higher. This is because if the molding pressure is less than 40 ki4, the bonding force between the binder and the metal decreases, making it impossible to obtain a carbon-metal composite material with good wear characteristics.

加圧加熱成型法で得られた成型体は、通常の炭素材と同
様の方法で焼成する。
The molded body obtained by the pressure and heat molding method is fired in the same manner as ordinary carbon materials.

実  施  例 第1図は加圧加熱成型用金型の一例を示す概略図で、(
1)は上プレスヘッド、(2)は下プレスヘッド(固定
) 、(3)は上金型、(4)は下金型、(5)は金枠
、(6)は成型原料、(7)はシーズヒーター(7−1
)入り熱板、(8)は断熱材でおる。
Example Figure 1 is a schematic diagram showing an example of a pressurized and heated mold.
1) is the upper press head, (2) is the lower press head (fixed), (3) is the upper mold, (4) is the lower mold, (5) is the metal frame, (6) is the molding raw material, (7 ) is a sheathed heater (7-1
) hot plate, (8) is covered with heat insulating material.

すなわち、上金型(3)と下金型(4)との間に成型原
料(6)を充填した後、シーズヒーター(7−1)に通
電して熱板(刀を加熱し、プレスヘッド(1)により加
圧する。上記金型は予熱しておいてもよい。
That is, after filling the molding raw material (6) between the upper mold (3) and the lower mold (4), the sheath heater (7-1) is energized to heat the hot plate (sword) and press head Pressure is applied according to (1). The mold may be preheated.

このような加圧加熱成型法で得られた成型体は、非酸化
性雰囲気中において金属ファイバーの融点以下の温度で
焼成することができる。
The molded body obtained by such a pressure-heat molding method can be fired in a non-oxidizing atmosphere at a temperature below the melting point of the metal fiber.

次に、第1図に示す金型を用いた加圧加熱成形法と通常
の焼成法により製造した炭素・金属複合材について説明
する。
Next, a carbon-metal composite material manufactured by a pressure and heat molding method using a mold shown in FIG. 1 and a normal firing method will be described.

成型用骨材としては、レギュラーグレード石油コークス
を1000℃で炭化後、直径10mのステンレス球を詰
めた振動ミルで粉砕して得た平均粒径12項のコークス
粉を用いた。
As the molding aggregate, coke powder with an average particle size of 12 particles was used, which was obtained by carbonizing regular grade petroleum coke at 1000° C. and then pulverizing it in a vibrating mill packed with stainless steel balls of 10 m in diameter.

バインダーピッチとしては、コールタールを60sH(
Jの減圧下430°Cで2時間熱処理して得られた高化
式フローテスターで測定した軟化点が270℃のコール
タールピッチを、60メツシユ以下に粉砕したものを用
いた。
As a binder pitch, coal tar is used at 60sH (
Coal tar pitch obtained by heat treatment at 430° C. under reduced pressure of J for 2 hours and having a softening point of 270° C. measured with a Koka type flow tester was used, which was pulverized to 60 mesh or less.

金属繊維には下記4種を用いた。The following four types of metal fibers were used.

(a) 0.05 #X O,05MX長さ3IrIM
の低炭素鋼ファイバー (b)0.1mX 0.1履X長ざ6IrI!r1の低
炭素鋼ファイバー (C) 0.5mX 0.5履X長さ25Nr1の低炭
素鋼ファイバー (d) 0.05 amX O,05#1lllX長さ
3#の銅フフイバー 本実施例ではこれらの原料を第1表に示す配合比で混合
して得た成型原料を、内寸が幅100#X長ざ200m
の金型に装入した後、加圧能力500tOnの油圧プレ
スを用い成型圧力200に3/ citの加圧下5℃/
分の昇温速度で500’Cまで昇温し、1時間保持後冷
却して、幅100mx長さ200gx厚さ10履の成形
体を得た。
(a) 0.05 #X O,05MX length 3IrIM
Low carbon steel fiber (b) 0.1m x 0.1 shoe x length 6IrI! r1 low carbon steel fiber (C) 0.5 mX 0.5 shoes x length 25N r1 low carbon steel fiber (d) 0.05 am The molding raw material obtained by mixing raw materials at the compounding ratio shown in Table 1 is molded into a molding material with internal dimensions of 100# width x 200m length.
After charging it into the mold, it was heated at 5°C under a molding pressure of 200 3/cit using a hydraulic press with a pressure capacity of 500 tOn.
The temperature was raised to 500'C at a temperature increase rate of 1 hour, held for 1 hour, and then cooled to obtain a molded article with a width of 100 m, a length of 200 g, and a thickness of 10 shoes.

得られた成型体は、粉コークスを詰めたステンレス製容
器に入れ、窒素雰囲気下12°C/Hrの昇温速度で1
000℃まで昇温し、4時間保持後冷却して焼成した。
The obtained molded body was placed in a stainless steel container filled with coke powder and heated at a heating rate of 12°C/Hr in a nitrogen atmosphere.
The temperature was raised to 000°C, held for 4 hours, and then cooled and fired.

得られた炭素・金属複合材から、幅10mX長ざ60m
m (厚みは焼上り後の厚みと同じ)のテストピースを
切出し、シャルピー衝撃値、曲げ強度および電気比抵抗
値を測定した。
From the obtained carbon-metal composite material, width 10m x length 60m
A test piece with a thickness of m (thickness is the same as the thickness after baking) was cut out, and its Charpy impact value, bending strength, and electrical specific resistance value were measured.

テストピースの切出し方向は、長さ60.の方向が成型
体の長さ200mの方向と一致するようにした。
The cutting direction of the test piece is 60mm in length. The direction was made to match the direction of the 200 m length of the molded body.

シャルピー衝撃値は、打撃方向が成型時のプレス方向と
垂直になるようにして測定した。
The Charpy impact value was measured with the impact direction perpendicular to the pressing direction during molding.

曲げ強度は、曲げスパン40Mで成型時の上部に当る部
分より圧下して測定した。
The bending strength was measured by rolling down the part corresponding to the upper part during molding with a bending span of 40M.

次に、同じ炭素・金属複合材から、幅8履X長さ8M×
高さ10Mのテストピースを、高さ方向が成型時のプレ
ス方向と一致するように切出し、このテストピースを成
型時の上面に当る面を摺動面とし、下記条件で摩耗試験
を実施し、摩耗試験後、テストピースの厚み変化を測定
し、摺動圧1i1100−当りの摩耗体積を算出した。
Next, from the same carbon-metal composite material, we made 8 shoes in width x 8 meters in length.
A test piece with a height of 10M was cut out so that the height direction coincided with the pressing direction during molding, and the surface of this test piece that corresponded to the top surface during molding was used as the sliding surface, and a wear test was conducted under the following conditions. After the wear test, the thickness change of the test piece was measured, and the wear volume per sliding pressure of 1i1100- was calculated.

く摩耗試験条件〉 なお第1表には比較のため、1種類の金属繊維を用い、
本発明と同一の方法により加圧加熱成型、焼成処理を行
なって1qられた炭素・金属複合材の物性を併せて示す
For comparison, Table 1 shows the conditions under which one type of metal fiber was used and
The physical properties of a carbon-metal composite material obtained by pressurizing, heating molding and firing by the same method as the present invention are also shown.

第1表より明らかなごとく、1種類の繊維で構成した比
較例は、いずれも摩耗量と衝撃値が両立できていないの
に対し、本発明はいずれも摩耗特性および衝撃特性共に
優れ、電気比抵抗も低い複合材が得られた。
As is clear from Table 1, none of the comparative examples made of one type of fiber were able to achieve both abrasion loss and impact value, whereas the present invention was excellent in both abrasion characteristics and impact characteristics, and A composite material with low resistance was obtained.

以下余白 上記シャルピー衝撃値、曲げ強度、摩耗量および電気比
抵抗値を第1表に示す。
Table 1 below shows the Charpy impact value, bending strength, wear amount, and electrical resistivity value described above.

発明の詳細 な説明したごとく、この発明に係る炭素・金属複合材は
、大きさ、材質の異なる2種類以上の金属繊維を配合さ
せたことによって摩耗特性、衝撃特性、ざらには電気比
抵抗を向上さ・せたものであるから、パンタグラフ用店
板として優れた特性を発揮し、そのもたらす効果は甚大
である。
As described in detail, the carbon-metal composite material according to the present invention has improved wear characteristics, impact characteristics, and electrical resistivity by blending two or more types of metal fibers of different sizes and materials. Since it has been improved, it exhibits excellent characteristics as a store board for pantographs, and the effects it brings are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するための加圧加熱成型用
金型の一例を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a pressure-heat molding mold for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 炭素材原料に金属繊維を配合した複合材であって、長さ
と太さと材質の少なくとも一つが異なる2種以上の金属
繊維を配合したことを特徴とする炭素・金属複合材。
A carbon-metal composite material, which is a composite material in which metal fibers are blended into a carbon material raw material, and is characterized in that it contains two or more types of metal fibers that differ in at least one of length, thickness, and material.
JP63315613A 1988-10-17 1988-12-13 Carbon-metal composite material Pending JPH02160664A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63315613A JPH02160664A (en) 1988-12-13 1988-12-13 Carbon-metal composite material
KR1019890014828A KR930009894B1 (en) 1988-10-17 1989-10-16 Carbon/metal composite
CA 2000805 CA2000805C (en) 1988-10-17 1989-10-16 Carbon/metal composite
EP89119290A EP0364972B1 (en) 1988-10-17 1989-10-17 Carbon/metal composite
DE68925936T DE68925936T2 (en) 1988-10-17 1989-10-17 Carbon / metal composite
AT89119290T ATE135415T1 (en) 1988-10-17 1989-10-17 CARBON/METAL COMPOSITE
EP19930111036 EP0572044A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
EP19930111037 EP0572045A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
US07/422,898 US5158828A (en) 1988-10-17 1989-10-17 Carbon/metal composite
US08/177,791 US5531943A (en) 1988-10-17 1994-01-05 Method of making a carbon/metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315613A JPH02160664A (en) 1988-12-13 1988-12-13 Carbon-metal composite material

Publications (1)

Publication Number Publication Date
JPH02160664A true JPH02160664A (en) 1990-06-20

Family

ID=18067471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315613A Pending JPH02160664A (en) 1988-10-17 1988-12-13 Carbon-metal composite material

Country Status (1)

Country Link
JP (1) JPH02160664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972509B2 (en) 2001-04-19 2005-12-06 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device method of manufacturing the same, and electronic component using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122162A (en) * 1984-11-14 1986-06-10 日立化成工業株式会社 Manufacture of carbon fiber reinforced carbon material
JPS6242879A (en) * 1985-08-21 1987-02-24 Fuji Photo Film Co Ltd Thermal recording paper
JPS6246974A (en) * 1985-08-23 1987-02-28 株式会社アイジー技術研究所 Manufacture of fiber-mixed ceramic formed body
JPH0269353A (en) * 1988-09-02 1990-03-08 Toyo Carbon Kk Carbon material for sliding current collection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122162A (en) * 1984-11-14 1986-06-10 日立化成工業株式会社 Manufacture of carbon fiber reinforced carbon material
JPS6242879A (en) * 1985-08-21 1987-02-24 Fuji Photo Film Co Ltd Thermal recording paper
JPS6246974A (en) * 1985-08-23 1987-02-28 株式会社アイジー技術研究所 Manufacture of fiber-mixed ceramic formed body
JPH0269353A (en) * 1988-09-02 1990-03-08 Toyo Carbon Kk Carbon material for sliding current collection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972509B2 (en) 2001-04-19 2005-12-06 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device method of manufacturing the same, and electronic component using the same

Similar Documents

Publication Publication Date Title
CN105272254B (en) A kind of preparation method of pantograph carbon slide material
CN1326152C (en) Pantograph sliding plate of assorted fibre reinforced composite material and preparing method thereof
CN107857591B (en) A method of pantograph metal-impregnated carbon draw runner material is prepared using nano-carbon powder
CN101086285A (en) Friction material
CN1032741C (en) Pantograph slide board of electric locomotive and its making method
CN101165818A (en) Carbon base composite material for collector shoe sliding block and its preparation method
KR930009894B1 (en) Carbon/metal composite
JPH02160664A (en) Carbon-metal composite material
JP2511705B2 (en) Carbon / metal composite
CN1546337A (en) Pantograph slide plate and method for making same
WO2005047051A1 (en) Composite collectors
JPH02160662A (en) Carbon-metal composite material
JPH02160663A (en) Carbon-metal composite material
JPH04280865A (en) Carbon-metal composite material
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
JP2003506819A (en) Wear electrical contact element made of carbon / carbon composite
CN1061960C (en) Carbon-carbon composition material for electric collection
CN1062841C (en) Current collecting composite material containing nm-carbon tube
JPS61245957A (en) Production of current collecting material
JP4198419B2 (en) Carbon-based sintered sliding plate material with wear resistance
JPH0456787B2 (en)
JP2601652B2 (en) Friction material for brake
JPH0699185B2 (en) Carbon / steel fiber composite
JPH07215766A (en) Production of carbon-metal composite material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting