JPH04280865A - Carbon-metal composite material - Google Patents

Carbon-metal composite material

Info

Publication number
JPH04280865A
JPH04280865A JP3069171A JP6917191A JPH04280865A JP H04280865 A JPH04280865 A JP H04280865A JP 3069171 A JP3069171 A JP 3069171A JP 6917191 A JP6917191 A JP 6917191A JP H04280865 A JPH04280865 A JP H04280865A
Authority
JP
Japan
Prior art keywords
metal
carbon
composite material
wire
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3069171A
Other languages
Japanese (ja)
Inventor
Masato Kano
鹿野 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3069171A priority Critical patent/JPH04280865A/en
Publication of JPH04280865A publication Critical patent/JPH04280865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbon-metal composite material for a sliding plate excellent in impact properties and sliding properties. CONSTITUTION:A raw molding material 6 containing one or both of metal fibers and a metal wire is charged in a space between an upper mold unit 3 and a lower mold unit 4, and another metal wire 9 orientated in one direction is inserted so that the metal wire may be arranged in a position on the non- sliding surface side. The raw molding material charged in the molds is subjected to pressure-and-heat molding at a prescribed temperature by using a press head 1 to obtain a molding containing the metal wire 9 arranged on the non- sliding surface side. The resultant carbon-metal composite material is excellent in impact resistance due to the metal wire or the metal net. Stabilized abrasion properties can be obtained since the metal wire or the metal net are arranged on the non-sliding surface side.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、主に鉄道用パンタグ
ラフ摺板に利用可能な複合材料に係り、耐摩耗性、耐衝
撃性、および電気的特性に優れた炭素・金属複合材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material that can be used primarily for railway pantograph sliding plates, and more particularly to a carbon-metal composite material that has excellent wear resistance, impact resistance, and electrical properties.

【0002】0002

【従来の技術】電気車両等の摺動、集電用炭素材料とし
ては、車両の高速化と冷房設備等による消費電力の増大
に対応するため、炭素の優れた摺動特性と金属の電気伝
導性を生かした炭素・金属複合摺板が採用されつつある
。この種の炭素・金属複合材としては、例えば■炭素材
の気孔に特定の金属を加圧含浸させる方法により製造し
た複合材、■炭素材用原料に金属繊維を配合し、通常の
炭素材の成型方法で成型後、炭化する方法により製造し
た複合材(特開昭62−72564)、■炭素材用原料
に金属繊維を一方向に配向させて配合した後、成型、焼
成する方法により製造した複合材(特開昭62−197
352)がある。
[Prior Art] As a carbon material for sliding and current collection in electric vehicles, etc., in order to cope with the increase in speed of vehicles and the increase in power consumption due to air conditioning equipment, etc., the excellent sliding properties of carbon and the electrical conductivity of metal are used. Carbon/metal composite sliding plates that take advantage of their properties are being adopted. This type of carbon-metal composite material includes, for example: ■ Composite material manufactured by pressurizing and impregnating the pores of a carbon material with a specific metal; Composite material manufactured by a method in which carbonization is performed after molding using a molding method (Japanese Patent Application Laid-open No. 62-72564); ■ Manufactured by a method in which metal fibers are oriented in one direction and blended into raw materials for carbon materials, then molded and fired. Composite materials (JP-A-62-197
352).

【0003】しかし、上記■■■の炭素・金属系摺板は
、現用品である金属焼結系摺板から炭素・金属系摺板へ
の移行期、すなわち金属焼結系と炭素・金属系摺板の混
合使用時を想定したトロリー線(銅製)の荒れた状態で
の摺動時の摺板摩耗が大きいという欠点がある。かかる
欠点を解消するため、本発明者は、■炭素材骨材粉とバ
インダーピッチを主成分とする炭素材原料に、金属繊維
や金属粉を配合し、この原料を加圧加熱成型した後焼成
することによって、耐摩耗性の優れた炭素・金属複合材
を得る方法を先に提案した(特開平2−107564)
[0003] However, the above mentioned carbon/metal sliding plates are in the transition period from the current metal sintered sliding plates to carbon/metal based sliding plates, that is, metal sintered and carbon/metal based sliding plates. The drawback is that the sliding plates are subject to large wear when sliding on a rough trolley wire (made of copper), which is intended for mixed use of the sliding plates. In order to eliminate such drawbacks, the present inventor has developed the following methods: (1) Mixing metal fibers and metal powder into a carbon material raw material whose main components are carbon aggregate powder and binder pitch, molding this raw material under pressure and heat, and then sintering it. We previously proposed a method for obtaining a carbon-metal composite material with excellent wear resistance by
.

【0004】ところで、摺板の使用時、トロリー線に付
着した結氷や何等かの原因により外れたトロリー線吊具
(ハンガイヤ)に摺板が激しく当ることがある。その時
、摺板の衝撃強度が低いと摺板が破損し、その破片等が
周囲に飛散し、非常に危険である。したがって、摺板に
は耐摩耗性に加え、耐衝撃性も要求される。しかるに、
前記した炭素・金属複合材は、従来の金属焼結系摺板と
比較し、著しく衝撃強度が劣るという共通の欠点がある
By the way, when the sliding plate is used, the sliding plate may hit violently against a trolley wire hanger that has come off due to ice forming on the trolley wire or for some other reason. At that time, if the impact strength of the sliding plate is low, the sliding plate will be damaged and its fragments will be scattered around, which is extremely dangerous. Therefore, the sliding plate is required to have not only wear resistance but also impact resistance. However,
The above-mentioned carbon-metal composite materials have a common drawback of being significantly inferior in impact strength compared to conventional metal sintered sliding plates.

【0005】この衝撃強度が劣る原因は、基本的に炭素
の衝撃強度が低いことにある。これを補うためには、金
属成分の配合量を増したり、配合する金属繊維の長さあ
るいは太さを大きくする方法が考えられるが、金属成分
を多くしたり、金属繊維のサイズを大きくすると、トロ
リー線との摩擦係数が大きくなること、およびトロリー
線との間で発生するスパークが多くなることにより、ト
ロリー線および摺板の摩耗が大きくなり好ましくない。
[0005] The reason for this poor impact strength is basically that the impact strength of carbon is low. In order to compensate for this, it is possible to increase the amount of metal components mixed or increase the length or thickness of the metal fibers, but if the metal components are increased or the size of the metal fibers is increased, An increase in the coefficient of friction with the trolley wire and an increase in the number of sparks generated between the trolley wire and the contact wire increases wear on the trolley wire and the sliding plate, which is undesirable.

【0006】このような問題を解消するため、この発明
者らは、摺板の摺動部に摩擦特性に優れた細くて短かい
金属繊維を配合し、非摺動部に耐衝撃性に優れた長くて
太い金属繊維を配合した炭素・金属複合材を先に提案し
た(特開平2−160665)。しかしながら、この複
合材においても耐衝撃性は十分とは言えず、より一層の
衝撃強度の向上が望まれている。
[0006] In order to solve these problems, the present inventors added thin and short metal fibers with excellent friction properties to the sliding parts of the sliding plate, and added fibers with excellent impact resistance to the non-sliding parts. We previously proposed a carbon-metal composite material containing long and thick metal fibers (Japanese Patent Laid-Open No. 2-160665). However, even this composite material cannot be said to have sufficient impact resistance, and further improvement in impact strength is desired.

【0007】[0007]

【発明が解決しようとする課題】この発明は前に述べた
ような実情よりみて、仮に結氷や外れたトロリー線吊具
に摺板が激しく当るようなことがあっても、摺板が破損
することがない耐衝撃性を具備し、さらに良好な耐摩耗
性を有する炭素・金属複合材を提供しようとするもので
ある。
[Problem to be Solved by the Invention] In view of the actual situation described above, the present invention is designed to prevent the sliding plate from being damaged even if the sliding plate is violently hit by ice or a detached trolley wire hoist. The present invention aims to provide a carbon-metal composite material that has excellent impact resistance and even better abrasion resistance.

【0008】[0008]

【課題を解決するための手段】この発明者は、炭素材原
料に金属繊維または金属粉の一方または両方を配合した
炭素・金属複合材において、金属線あるいは金網を配合
することにより、耐衝撃性を飛躍的に向上できることを
見い出した。しかしながら、金属線や金網が摺動面に現
れると、摩擦抵抗やスパークの増大により安定した摩擦
特性が得られず、耐摩耗性が劣化する。
[Means for Solving the Problems] The present inventor has developed a carbon-metal composite material in which one or both of metal fibers and metal powder is blended into a carbon material raw material, and by blending a metal wire or a wire mesh therein, the impact resistance can be improved. We have discovered that it is possible to dramatically improve However, when metal wires or wire meshes appear on the sliding surface, stable friction characteristics cannot be obtained due to increased frictional resistance and sparks, and wear resistance deteriorates.

【0009】この発明はかかる知見より、炭素・金属複
合材において、金属線や金網を非摺動部に限定して配す
るもので、その要旨は、炭素材原料に金属繊維および/
または金属粉を配合した複合材の厚み方向の一部に、金
属線および/または金網を配すること、またこの金属線
および/または金網を該複合材の取付面側に配すること
を要旨とするものである。
Based on this knowledge, the present invention is to arrange metal wires and wire meshes only in non-sliding parts in a carbon-metal composite material.
Or, the gist is to arrange a metal wire and/or wire mesh in a part of the thickness direction of a composite material containing metal powder, and to arrange this metal wire and/or wire mesh on the mounting surface side of the composite material. It is something to do.

【0010】0010

【作用】この発明における炭素材原料としては、自己焼
結性メソフェーズ粉や、コークス粉のような炭素質骨材
粉とピッチからなる2元系原料、フェノール樹脂のよう
な熱硬化性樹脂等種々のものが使用できる。ここで、2
元系原料における炭素質の骨材としては、耐摩耗性の面
からピッチや石炭等を1000℃程度で炭化処理したコ
ークス粉や、フェノール樹脂を炭化して得られる等方性
炭素等の硬度の高いものが好ましい。炭素質骨材の粒度
は、強度や耐摩耗性の面から粒径の小さいものが良好で
あり、20μm以下に粉砕して使用するのが好ましい。 バインダーピッチとしては、コールタール中ピッチや、
これをさらに熱処理して得られる高軟化点ピッチ等を使
用できる。なお、ピッチとしては、加熱時流動性を示す
もので、かつ可及的に低揮発分の方が複合材の強度、摩
耗性が向上し好ましい。
[Operation] Various carbon material raw materials in this invention include self-sintering mesophase powder, binary raw materials consisting of carbonaceous aggregate powder and pitch such as coke powder, and thermosetting resins such as phenolic resin. can be used. Here, 2
Examples of carbonaceous aggregates used as raw materials include coke powder made by carbonizing pitch, coal, etc. at about 1000℃ from the viewpoint of wear resistance, and isotropic carbon obtained by carbonizing phenolic resin. The higher the price, the better. Regarding the particle size of the carbonaceous aggregate, from the viewpoint of strength and wear resistance, a small particle size is preferable, and it is preferable to use the carbonaceous aggregate by pulverizing it to 20 μm or less. Binder pitches include coal tar medium pitch,
A high softening point pitch obtained by further heat-treating this or the like can be used. The pitch is preferably one that exhibits fluidity when heated and has as low a volatile content as possible, since this improves the strength and abrasion resistance of the composite material.

【0011】金属繊維としては、スチールファイバー、
スチールウール、銅ファイバー等種々の金属繊維や、各
種金属粉等種々のものを使用できる。この中では低炭素
鋼製スチールファイバーが最も良好な性能を示す。金属
繊維の大きさとしては、摩耗特性を考慮して、太さ0.
5mm以下、好ましくは0.1mm以下で、長さは10
mm以下のものが適する。金属粉は、摩耗特性が安定し
かつ高強度の成型体を得るという観点から、粒径100
μm以下のものが好ましい。
[0011] As the metal fiber, steel fiber,
Various metal fibers such as steel wool and copper fiber, and various metal powders can be used. Among these, steel fiber made from low carbon steel shows the best performance. The size of the metal fibers should be 0.5 mm in thickness considering the wear characteristics.
5 mm or less, preferably 0.1 mm or less, and the length is 10
A diameter of mm or less is suitable. The metal powder has a particle size of 100 mm from the viewpoint of obtaining a molded product with stable wear characteristics and high strength.
Preferably, the thickness is less than μm.

【0012】金属線は、摺板の長手方向と平行に、かつ
摺板の全長にわたって連続して配向させることにより耐
衝撃性を大きく向上させることができる。金属線の太さ
は複合材の強度を考慮して、3mmφ以下にすることが
好ましい。これは、直径の大きい金属線を用いると、金
属繊維や金属粉を含んだ炭素質マトリックスと、金属線
との接着性が弱くなり、強度が低下するためである。金
網も3mmφの金属線でつくられたものが好ましい。
[0012] The impact resistance can be greatly improved by orienting the metal wires continuously in parallel to the longitudinal direction of the sliding plate and over the entire length of the sliding plate. The thickness of the metal wire is preferably 3 mmφ or less in consideration of the strength of the composite material. This is because when a metal wire with a large diameter is used, the adhesiveness between the carbonaceous matrix containing metal fibers and metal powder and the metal wire becomes weak, resulting in a decrease in strength. It is also preferable that the wire mesh is made of metal wire with a diameter of 3 mm.

【0013】複合材中の金属線や金網の間隔は特に限定
されないが、金属線や金網の直径の3倍以上であること
が好ましい。間隔が狭いと複合材の成形性が悪くなった
り、炭素材と金属線や金網との界面で剪断破壊が起り易
くなるためである。
[0013] The spacing between the metal wires and wire meshes in the composite material is not particularly limited, but it is preferably at least three times the diameter of the metal wires or wire meshes. This is because if the interval is narrow, the moldability of the composite material will deteriorate, and shear failure will easily occur at the interface between the carbon material and the metal wire or wire mesh.

【0014】金属線および金網の材質としては、スチー
ル、ステンレスや、銅、青胴、真鋳等の銅合金、ニッケ
ル、ニッケル合金等の他、浸炭による衝撃強度を防ぐた
め銅、ニッケル等の炭化物生成傾向がスチールより低い
金属をメッキしたスチール等が好ましい。
[0014] Materials for the metal wire and wire mesh include steel, stainless steel, copper alloys such as copper, blue body, and brass casting, nickel, and nickel alloys, as well as carbides such as copper and nickel to prevent impact strength due to carburization. Steel plated with a metal that has a lower tendency to form than steel is preferable.

【0015】上記金属線や金網は、炭素・金属複合摺動
材の非摺動部に配合される。その場合、これらを多層に
配合することも可能である。なお、金属線や金網を摺動
部に配合することは、摺動面に現れる金属の量がばらつ
く原因となり、摩擦係数が安定せず、通電摺動時のスパ
ークが発生し易くなり、摩擦特性が不安定になるため好
ましくない。
[0015] The metal wire or wire mesh is incorporated into the non-sliding portion of the carbon/metal composite sliding material. In that case, it is also possible to blend these in multiple layers. In addition, adding metal wire or wire mesh to the sliding part will cause the amount of metal appearing on the sliding surface to vary, making the coefficient of friction unstable, making sparks more likely to occur during energized sliding, and affecting the friction properties. is undesirable because it becomes unstable.

【0016】金属線および金網をマトリックス中に配合
する方法については、特に限定するものではないが、金
型中にある一定量の金属繊維、金属粉、炭素質原料の混
合物を装入した後、金属線または金網を置き、その上に
同じ混合物を装入して成形するという方法で容易に配合
することができる。
[0016] The method of blending the metal wire and wire mesh into the matrix is not particularly limited, but after charging a certain amount of a mixture of metal fibers, metal powder, and carbonaceous raw materials into a mold, It can be easily blended by placing a metal wire or wire gauze, charging the same mixture onto it, and molding it.

【0017】成型方法としては、冷間型込め成型、加圧
加熱成型等種々の方法が採用できる。このうち、バイン
ダーとしてピッチを使用し、加圧加熱成型する方法が最
も強度、耐摩耗性の良好な炭素・金属複合材が得られる
。加圧加熱成型条件としては、バインダーピッチが固化
する温度域、すなわち480℃以上、好ましくは500
℃以上の温度域を加圧加熱することが必要であるため、
加圧加熱最高温度は480℃以上、好ましくは500℃
以上とする。加圧加熱成型の圧力は少なくとも常温〜加
圧加熱最高温度の一部の領域で40Kg/cm2以上、
好ましくは80Kg/cm2以上とする。これは、成型
圧力が40Kg/cm2未満ではバインダー〜金属間の
結合力が低下し、良好な摩耗特性を有する炭素・金属複
合材が得られないためである。加圧加熱成型法で得られ
た成型体は、通常の炭素材と同様の方法で焼成する。
[0017] As the molding method, various methods such as cold molding, pressurizing and heating molding, etc. can be employed. Among these, the method of using pitch as a binder and pressurizing and heating molding yields a carbon-metal composite material with the best strength and wear resistance. The pressure and heat molding conditions are in the temperature range where the binder pitch solidifies, that is, 480°C or higher, preferably 500°C.
Because it is necessary to pressurize and heat the temperature range above ℃,
The maximum pressure heating temperature is 480℃ or higher, preferably 500℃
The above shall apply. The pressure of pressurized and heated molding is at least 40 kg/cm2 or more in a part of the range from room temperature to the maximum temperature of pressurized heating,
Preferably it is 80 kg/cm2 or more. This is because if the molding pressure is less than 40 kg/cm2, the bonding force between the binder and the metal decreases, making it impossible to obtain a carbon-metal composite material with good wear characteristics. The molded body obtained by the pressure and heat molding method is fired in the same manner as ordinary carbon materials.

【0018】[0018]

【実施例】図1は加圧加熱成型装置の一例を示す概略図
で、1は上プレスヘッド、2は下プレスヘッド(固定)
、3は上金型、4は下金型、5は金枠、6は成型原料、
7はシーズヒーター7−1入り熱板、8は断熱材、9は
金属線である。図2は同上の加圧加熱成型装置により成
型した金属線入り成型体を例示したもので、(A)は平
面図、(B)は正面図であり、10は摺動面、11は非
摺動面である。
[Example] Figure 1 is a schematic diagram showing an example of a pressurized and heated molding device, where 1 is an upper press head and 2 is a lower press head (fixed).
, 3 is the upper mold, 4 is the lower mold, 5 is the metal frame, 6 is the molding raw material,
7 is a hot plate containing a sheathed heater 7-1, 8 is a heat insulating material, and 9 is a metal wire. FIG. 2 shows an example of a metal wire-containing molded body molded by the same pressurized and heated molding apparatus, in which (A) is a plan view, (B) is a front view, 10 is a sliding surface, and 11 is a non-sliding surface. It is a moving surface.

【0019】すなわち、上金型3と下金型4との間に成
型原料6を充填し、さらに該原料中に金属線9を非摺動
面側に位置するように装入した後、シーズヒーター7−
1に通電して熱板7を加熱し、プレスヘッド1により加
圧する。上記金型は予熱しておいてもよい。このような
加圧加熱成型法で得られた成型体は、非酸化性雰囲気中
において金属ファイバーの融点以下の温度で焼成するこ
とができる。得られた成型体は、図2に示すごとく、非
摺動面11側に金属線9が成型体の長手方向と平行にか
つ成型体の全長にわたって配されている。
That is, after filling the molding raw material 6 between the upper mold 3 and the lower mold 4 and inserting the metal wire 9 into the raw material so as to be located on the non-sliding surface side, the seed Heater 7-
1 is energized to heat the hot plate 7, and pressurized by the press head 1. The mold may be preheated. The molded body obtained by such a pressure-heat molding method can be fired in a non-oxidizing atmosphere at a temperature below the melting point of the metal fiber. As shown in FIG. 2, the obtained molded body has a metal wire 9 arranged on the non-sliding surface 11 side in parallel with the longitudinal direction of the molded body and over the entire length of the molded body.

【0020】[0020]

【実施例1】次に、図1に示す金型を用いた加圧加熱成
型法と通常の焼成法により製造した炭素・金属複合材に
ついて説明する。成型用骨材としては、レギュラーグレ
ード石油コークスを1000℃で炭化後、直径10mm
のステンレス球を詰めた振動ミルで粉砕して得た平均粒
径15μmのコークス粉を用いた。バインダーピッチと
しては、コールタールを100mmHgの減圧下440
℃で2時間熱処理して得られた高化式フローテスターで
測定した軟化点が240℃のコールタールピッチを、6
0メッシュ以下に粉砕したものを用いた。金属添加物と
しては、0.05mmφ×長さ3mmの低炭素鋼ファイ
バーを用い、添加量は30体積%とした。
[Example 1] Next, a carbon-metal composite material manufactured by a pressure and heat molding method using the mold shown in FIG. 1 and a normal firing method will be described. As the aggregate for molding, regular grade petroleum coke was carbonized at 1000°C and had a diameter of 10 mm.
Coke powder with an average particle size of 15 μm was used, which was obtained by pulverizing it with a vibrating mill packed with stainless steel balls. The binder pitch was 440 mmHg of coal tar under a reduced pressure of 100 mmHg.
Coal tar pitch with a softening point of 240°C measured with a Koka type flow tester obtained by heat treatment at 60°C for 2 hours.
The material was ground to 0 mesh or less. As the metal additive, a low carbon steel fiber with a diameter of 0.05 mm and a length of 3 mm was used, and the amount added was 30% by volume.

【0021】これらの原料を混合して得た配合原料を、
内寸が幅100mm×長さ200mmの金型内に、まず
成型後の厚みが2.5mmになる量を装入した。続いて
この上に、線径1.0mm×長さ200mmの鋼線を、
線の長さ方向を金型の長手方向と一致させ、かつ線の間
隔を5.0mmとして配置した。その後、金型内に成型
後の厚みが7.5mmになる量の配合原料を装入した。 このようにして金型に装入した原料を、加圧能力500
トンの油圧プレスを用いて加圧加熱成形(成形圧力20
0Kg/cm2の加圧下、昇温速度5℃/分で550℃
まで昇温し、1時間保持後冷却)し、幅100mm×長
さ200mm×厚さ10mmの成形体を得た。得られた
成型体は、粉コークスを詰めたステンレス製容器に入れ
、窒素雰囲気下10℃/Hrの昇温速度で1000℃ま
で昇温し、4時間保持後冷却して焼成した。
[0021] The blended raw materials obtained by mixing these raw materials are
First, an amount that would have a thickness of 2.5 mm after molding was charged into a mold with internal dimensions of 100 mm width x 200 mm length. Next, on top of this, a steel wire with a wire diameter of 1.0 mm x length of 200 mm,
The length direction of the wires was made to match the longitudinal direction of the mold, and the wires were arranged at intervals of 5.0 mm. Thereafter, the raw materials were charged into the mold in an amount that would give a thickness of 7.5 mm after molding. The raw material charged into the mold in this way has a pressurizing capacity of 500
Pressure and heat molding using a ton hydraulic press (molding pressure 20
550℃ at a heating rate of 5℃/min under a pressure of 0Kg/cm2
The temperature was raised to 100 mm, maintained for 1 hour, and then cooled) to obtain a molded article with a width of 100 mm, a length of 200 mm, and a thickness of 10 mm. The obtained molded body was placed in a stainless steel container filled with coke powder, heated to 1000°C at a heating rate of 10°C/Hr in a nitrogen atmosphere, held for 4 hours, and then cooled and fired.

【0022】また、上記と同様の方法で、鋼線に替えて
、線径1.0mm、縦線と横線の間隔がそれぞれ5mm
の鋼製金網を配合した、幅100mm×長さ200mm
×厚さ10mmの成型体を得、これを上記と同じ条件で
焼成した。
[0022] In addition, in the same manner as above, instead of the steel wire, a wire with a diameter of 1.0 mm and an interval between vertical lines and horizontal lines of 5 mm each was used.
100mm wide x 200mm long, made of steel wire mesh
A molded body with a thickness of 10 mm was obtained and fired under the same conditions as above.

【0023】上記の方法で得られた鋼線入り炭素・金属
複合材と、金網入り炭素・金属複合材から、それぞれ幅
10mm×長さ60mm(厚みは焼上り後の厚みと同じ
)のテストピースを切出し、シャルピー衝撃値を測定し
た。テストピースの切出し方向は、長さ60mmの方向
が成型体の長さ200mmの方向と一致するようにした
。シャルピー衝撃値の測定は、打撃方向が成型時のプレ
ス方向と垂直になるようにして行った。その結果を表1
に示す。
[0023] Test pieces of width 10 mm x length 60 mm (thickness is the same as the thickness after firing) were prepared from the steel wire-containing carbon-metal composite material and the wire mesh-containing carbon-metal composite material obtained by the above method. was cut out and the Charpy impact value was measured. The cutting direction of the test piece was such that the direction of the length of 60 mm coincided with the direction of the length of the molded body of 200 mm. The Charpy impact value was measured so that the direction of impact was perpendicular to the pressing direction during molding. Table 1 shows the results.
Shown below.

【0024】なお、表1には比較例として鋼線および金
網を配合せずに、コークス粉、バインダーピッチ、低炭
素鋼ファイバーのみを原料として、前記と同じ方法によ
り加圧加熱成型および焼成処理を行って得られた炭素・
金属複合材のシャルピー衝撃値を併せて示す。
[0024] Table 1 shows a comparative example in which pressure-heat molding and sintering were performed in the same manner as above, using only coke powder, binder pitch, and low carbon steel fibers as raw materials, without adding steel wire or wire mesh. The carbon obtained by
Charpy impact values of metal composites are also shown.

【0025】表1より明らかなごとく、一方向に配向さ
せた金属線または金網を配合した本発明品は、これらを
配合しない複合材と比べ、衝撃強度が飛躍的に向上して
いる。
[0025] As is clear from Table 1, the impact strength of the product of the present invention containing unidirectionally oriented metal wire or wire mesh is dramatically improved compared to the composite material containing no such material.

【0026】[0026]

【表1】[Table 1]

【0027】[0027]

【発明の効果】以上説明したごとく、この発明に係る炭
素・金属複合材は、非摺動面側に一方向に配向した金属
線または金網を配合して衝撃特性を向上させたものであ
り、特にパンタグラフ用摺板として優れた特性を発揮し
、そのもたらす効果は甚大である。
[Effects of the Invention] As explained above, the carbon-metal composite material according to the present invention has improved impact properties by incorporating metal wires or wire meshes oriented in one direction on the non-sliding surface side. In particular, it exhibits excellent properties as a sliding plate for pantographs, and its effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明方法を実施するための加圧加熱成型装
置の一例を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a pressure and heat molding apparatus for carrying out the method of the present invention.

【図2】同上の加圧加熱成型装置により成型した金属線
入り成型体の一例を示す図で、(A)は平面図、(B)
は正面図である。
FIG. 2 is a diagram showing an example of a metal wire-containing molded body molded by the same pressurized and heated molding device, in which (A) is a plan view and (B)
is a front view.

【符号の説明】[Explanation of symbols]

1    上プレスヘッド 2    下プレスヘッド 3    上金型 4    下金型 5    金枠 6    成型原料 7    熱板 8    断熱材 1 Upper press head 2 Lower press head 3 Upper mold 4 Lower mold 5 Gold frame 6 Molding raw materials 7 Hot plate 8 Insulation material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素材原料に、金属繊維および/また
は金属粉を配合した複合材であって、さらに金属線およ
び/または金網を該複合材の厚み方向の一部に配したこ
とを特徴とする炭素・金属複合材。
[Claim 1] A composite material in which metal fibers and/or metal powder are blended with a carbon material raw material, further comprising a metal wire and/or wire mesh arranged in a part of the composite material in the thickness direction. carbon/metal composite material.
【請求項2】  金属線および/または金網を複合材の
取付面側に配したことを特徴とする請求項1記載の炭素
・金属複合材。
2. The carbon-metal composite material according to claim 1, wherein a metal wire and/or a wire mesh are arranged on the mounting surface side of the composite material.
JP3069171A 1991-03-08 1991-03-08 Carbon-metal composite material Pending JPH04280865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069171A JPH04280865A (en) 1991-03-08 1991-03-08 Carbon-metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069171A JPH04280865A (en) 1991-03-08 1991-03-08 Carbon-metal composite material

Publications (1)

Publication Number Publication Date
JPH04280865A true JPH04280865A (en) 1992-10-06

Family

ID=13395007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069171A Pending JPH04280865A (en) 1991-03-08 1991-03-08 Carbon-metal composite material

Country Status (1)

Country Link
JP (1) JPH04280865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors
EP3308995B1 (en) 2016-10-17 2021-05-12 SNCF Mobilités Pantograph wearing strip and pantograph equipped with such a wearing strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors
EP3308995B1 (en) 2016-10-17 2021-05-12 SNCF Mobilités Pantograph wearing strip and pantograph equipped with such a wearing strip

Similar Documents

Publication Publication Date Title
CA2000805C (en) Carbon/metal composite
CN105272254A (en) Preparation method of pantograph carbon contact strip material
CN104926347B (en) High-speed railway EMUs pantograph slide composite material and preparation method thereof
CN107857591B (en) A method of pantograph metal-impregnated carbon draw runner material is prepared using nano-carbon powder
CN1032741C (en) Pantograph slide board of electric locomotive and its making method
CN101165818A (en) Carbon base composite material for collector shoe sliding block and its preparation method
KR930009894B1 (en) Carbon/metal composite
JPH04280865A (en) Carbon-metal composite material
CN1281431C (en) Pantograph slide plate and method for making same
US20070072440A1 (en) Composite collectors
JP2511705B2 (en) Carbon / metal composite
CN110436924B (en) Copper-impregnated carbon sliding plate material for high-speed train pantograph and preparation method thereof
JPH02160664A (en) Carbon-metal composite material
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
JPH02160663A (en) Carbon-metal composite material
JPH02160662A (en) Carbon-metal composite material
JPH06172029A (en) Carbon-metal composite material and its production
JPH02107564A (en) Production of carbon-metal composite material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JPH05279120A (en) Composite material of carbon and metal
JPH01270571A (en) Production of carbon material for sliding and current collection
JPH0699185B2 (en) Carbon / steel fiber composite
JPH08198678A (en) Production of carbon material
CN1062841C (en) Current collecting composite material containing nm-carbon tube
CN1184794A (en) Carbon-carbon composition material for electric collection