JPH06172029A - Carbon-metal composite material and its production - Google Patents

Carbon-metal composite material and its production

Info

Publication number
JPH06172029A
JPH06172029A JP4350286A JP35028692A JPH06172029A JP H06172029 A JPH06172029 A JP H06172029A JP 4350286 A JP4350286 A JP 4350286A JP 35028692 A JP35028692 A JP 35028692A JP H06172029 A JPH06172029 A JP H06172029A
Authority
JP
Japan
Prior art keywords
carbon
metal
composite material
metal composite
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4350286A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sutani
潔 酢谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4350286A priority Critical patent/JPH06172029A/en
Publication of JPH06172029A publication Critical patent/JPH06172029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a carbon-metal composite material, excellent in bending strength and abrasion resistance and suitable as sliding plates for pantographs. CONSTITUTION:A raw material for a carbon material composed of a carbon aggregate; a binder pitch, etc., is mixed with dendritic electrolytic copper powder at 10-40vol.% blending ratio. The resultant mixture is then hot press formed at 500-600 deg.C temperature and burned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、摺動集電材料、特に
鉄道用パンタグラフ摺板に好適な、曲げ強度と耐摩耗性
に優れた炭素・金属複合材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding collector material, particularly a carbon / metal composite material having excellent bending strength and abrasion resistance, which is suitable for a pantograph sliding plate for railways, and a method for producing the same.

【0002】[0002]

【従来の技術】最近の鉄道用パンタグラフ摺板として
は、炭素の優れた摺動特性と金属の電気伝導性を生かし
た炭素・金属複合材が採用されつつある。そして、この
ような炭素・金属複合材は、カーボン摺板として(1)
サヤとボルト、(2)ロウ接、(3)有機系の接着剤に
よりパンタグラフ舟に取付けられる。
2. Description of the Related Art Recently, as a pantograph sliding plate for railways, a carbon / metal composite material is being adopted which makes good use of the excellent sliding characteristics of carbon and the electrical conductivity of metal. Then, such a carbon-metal composite material is used as a carbon sliding plate (1).
It is attached to a pantograph boat with a sheath and a bolt, (2) brazing, and (3) an organic adhesive.

【0003】パンタグラフ用カーボン摺板として使用さ
れる炭素・金属複合材としては、炭素材の気孔に特定の
金属を加圧含浸させたもの(特公昭56−14732号
公報等参照)、コークス粉等の炭素骨材と、ピッチおよ
び金属繊維を混合し、500℃程度の温度で加圧加熱成
型し、焼成して得られた炭素・金属複合材(特開昭61
−245957号公報等参照)等が知られている。
As the carbon / metal composite material used as a carbon slide plate for a pantograph, a material in which pores of a carbon material are impregnated with a specific metal under pressure (see Japanese Patent Publication No. 56-14732), coke powder, etc. The carbon-metal composite material obtained by mixing the carbon aggregate of No. 3, pitch and metal fiber, press-heating and molding at a temperature of about 500 ° C., and firing (Japanese Patent Laid-Open No. Sho 61-61).
No. 245957, etc.) is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記した従来
のパンタグラフ用摺板として使用される炭素・金属複合
材およびその製造方法には、以下に記載する問題点があ
った。金属含浸法により製造される炭素・金属複合材の
場合は、多孔質な炭素に金属を含浸させるのに高温高圧
を使用するため、設備や処理コストが高くつくこと、ま
た一般的に大きなポアを有しているため使用時にアーク
により受ける高熱で金属が流出すると、材料自体の強度
が著しく低下するといった問題がある。
However, the carbon / metal composite material used as the conventional sliding plate for a pantograph and the method for producing the same have the following problems. In the case of carbon-metal composite materials produced by the metal impregnation method, high temperature and high pressure are used to impregnate porous carbon with metal, so that equipment and processing cost are high, and generally large pores are required. Since it has the above, there is a problem that the strength of the material itself is remarkably reduced when the metal flows out due to the high heat received by the arc during use.

【0005】これに対し、コークス粉等の炭素骨材と、
ピッチおよび金属繊維を混合し、加圧加熱成型した後、
焼成する方法を本発明者らは先に提案した(特開昭61
−245957号)。この方法では、ポアが小さいため
アークによる強度低下は小さい。しかしながら、金属繊
維径が通常50μm以上と粗大であるため、摺板摩耗が
多い上、繊維と炭素界面にクラックが発生しやすく、曲
げ強度もまだ十分高いとは言えなかった。
On the other hand, carbon aggregate such as coke powder,
After mixing the pitch and the metal fiber, press-heating molding,
The present inventors have previously proposed a method of firing (Japanese Patent Laid-Open No. 61-61160).
-245957). In this method, the decrease in strength due to the arc is small because the pores are small. However, since the metal fiber diameter is usually as large as 50 μm or more, the abrasion of the sliding plate is large, cracks are likely to occur at the fiber-carbon interface, and the bending strength has not been sufficiently high.

【0006】この発明は、パンタグラフ用カーボン摺板
として使用される炭素・金属複合材の前記問題点に鑑
み、曲げ強度等の強度特性と耐摩耗性に優れた炭素・金
属複合材とその製造方法を提案しようとするものであ
る。
In view of the above problems of the carbon / metal composite material used as a carbon slide plate for a pantograph, the present invention is a carbon / metal composite material having excellent strength characteristics such as bending strength and abrasion resistance, and a method for producing the same. Is to propose.

【0007】[0007]

【課題を解決するための手段】この発明は前記の、コー
クス粉等の炭素骨材と、ピッチおよび金属繊維を混合
し、500℃程度の温度で加圧加熱成型する方法をベー
スに、従来の金属繊維に替えて、添加金属に樹枝形状の
電解銅粉を用いることによって曲げ強度と耐摩耗性が著
しく改善されることを見い出したもので、その要旨は、
炭素質マトリックス中に金属粉を含む炭素・金属複合材
であって、該金属粉が樹枝形状の電解銅粉であることを
特徴とし、またその製造方法として、炭素骨材、バイン
ダーピッチからなる炭素材原料に、樹枝形状の電解銅粉
を10〜40体積%の配合率で混合し、500〜600
℃で加圧加熱成型した後、焼成することを特徴とするも
のである。
The present invention is based on the above-described method of mixing carbon aggregate such as coke powder, pitch and metal fiber and press-molding at a temperature of about 500 ° C. It has been found that bending strength and wear resistance can be remarkably improved by using dendritic electrolytic copper powder for the added metal instead of the metal fiber.
A carbon-metal composite material containing a metal powder in a carbonaceous matrix, characterized in that the metal powder is a dendritic electrolytic copper powder, and as a method for producing the same, carbon composed of carbon aggregate and binder pitch. The raw material is mixed with dendrite-shaped electrolytic copper powder at a mixing ratio of 10 to 40% by volume, and 500 to 600
It is characterized in that it is heated and molded at a temperature of ° C and then fired.

【0008】[0008]

【作用】この発明における炭素骨材としては、石油コー
クスやピッチコークスを炭化して得られるコークス粉
や、樹脂を炭素化して得られる樹脂炭等の硬質炭素が、
耐摩耗性の面から好ましい。コークス粒径は特に限定さ
れるものではないが、粗大なものが多すぎると曲げ強度
が低下するため、通常平均粒径10〜20μmのものが
使用される。
As the carbon aggregate in the present invention, hard carbon such as coke powder obtained by carbonizing petroleum coke or pitch coke, and resin charcoal obtained by carbonizing resin,
It is preferable in terms of wear resistance. The coke particle size is not particularly limited, but if too much coarse particle is present, the flexural strength will decrease, so that the average particle size is usually 10 to 20 μm.

【0009】バインダーピッチとしては、コールタール
を減圧化で熱処理して得られる高軟化点ピッチや、ナフ
タレン等の芳香族化合物を酸触媒の存在下重合して得ら
れる高軟化点ピッチ等の、流動性に優れ、かつ揮発分の
低いものが、接着性と炭化集率の面から好ましい。この
バインダーピッチの配合率は、10〜40体積%が適当
で、10体積%未満では強度が低くなり、他方40体積
%を超えると成型時原料の漏れ出し等が発生しやすくな
り好ましくない。
As the binder pitch, there is a flow such as a high softening point pitch obtained by heat treating coal tar under reduced pressure or a high softening point pitch obtained by polymerizing an aromatic compound such as naphthalene in the presence of an acid catalyst. Those having excellent properties and low volatile content are preferable in terms of adhesiveness and carbonization rate. The mixing ratio of the binder pitch is suitably 10 to 40% by volume. When it is less than 10% by volume, the strength becomes low, while when it exceeds 40% by volume, leakage of raw materials during molding is likely to occur, which is not preferable.

【0010】次に、上記炭素材原料と混合する添加金属
として、樹枝形状の電解銅粉を用いたのは、以下に示す
理由による。炭素・金属複合材の添加金属としては、各
種金属繊維、金属粉が考えられるが、耐摩耗性の点では
金属繊維よりも微細な金属粉の方が優れている。金属粉
の材質としては、電気伝導性や耐アーク性が良好な純銅
が最も好ましい。ここで、銅粉としては、アトマイズ法
で得られる球状の粉末、粉砕法で得られる偏平な粉末、
電解法で得られる樹枝形状の粉末があるが、この中では
樹枝形状の電解銅粉が複合材の耐摩耗性、曲げ強度の面
で最も好ましい。その理由は、電解銅粉の場合は、表面
が起伏に富むことからアンカー効果により炭素質マトリ
ックスと銅粉とが強固に結合するためである。かかる理
由により、この発明では炭素材原料と混合する添加金属
として樹枝形状の電解銅粉を用いたのである。
Next, the reason why the dendritic electrolytic copper powder is used as the additive metal to be mixed with the carbonaceous material is as follows. Although various metal fibers and metal powders can be considered as the additive metal of the carbon-metal composite material, fine metal powders are superior to metal fibers in terms of wear resistance. As the material of the metal powder, pure copper, which has good electric conductivity and arc resistance, is most preferable. Here, as the copper powder, a spherical powder obtained by the atomizing method, a flat powder obtained by the pulverizing method,
There are dendritic powders obtained by the electrolysis method. Among them, dendritic electrolytic copper powders are most preferable in terms of abrasion resistance and bending strength of the composite material. The reason is that, in the case of electrolytic copper powder, the surface is rich in undulations, so that the carbonaceous matrix and the copper powder are firmly bonded by the anchor effect. For this reason, in the present invention, dendritic electrolytic copper powder is used as the additive metal mixed with the carbon material raw material.

【0011】図1は樹枝形状の電解銅粉の顕微鏡写真、
図2は粉砕銅粉の顕微鏡写真である。すなわち、樹枝形
状の電解銅粉の場合は、太さ約10μm、長さ数十μm
の樹脂形状(ツリー形、ブドウの房形あるいはこれらが
連なった構造)となっており、その性能は前記したとお
り、曲げ強度、耐摩耗性の優れた複合材が得られる。一
方、図2に示す粉砕銅粉の場合は、銅繊維に比べると良
好であるが、曲げ強度、耐摩耗性は樹枝形状の電解銅粉
より劣る。
FIG. 1 is a photomicrograph of tree-shaped electrolytic copper powder,
FIG. 2 is a micrograph of crushed copper powder. That is, in the case of tree-shaped electrolytic copper powder, the thickness is about 10 μm and the length is several tens of μm.
The resin shape (tree shape, grape tuft shape, or a structure in which these are connected) is obtained, and as described above, a composite material having excellent bending strength and abrasion resistance can be obtained. On the other hand, the ground copper powder shown in FIG. 2 is better than the copper fiber, but is inferior in bending strength and wear resistance to the tree-shaped electrolytic copper powder.

【0012】上記電解銅粉の配合率は、耐摩耗性の面か
らは少ない方が良好であるが、曲げ強度と電気抵抗との
面では多い方が良好である。そこで、曲げ強度、耐摩耗
性を満足し得る配合率として、この発明では10〜40
体積%と限定した。すなわち、炭素材原料に対する電解
銅粉の配合率が10体積%未満では十分な曲げ強度が得
られず、他方40体積%を超えると耐摩耗性が悪化し、
また重量が増しパンタグラフの運動性能が悪化するため
である。
From the viewpoint of wear resistance, the smaller the compounding ratio of the electrolytic copper powder, the better, but the higher the bending strength and the electric resistance, the better. Therefore, in the present invention, as a blending ratio that can satisfy the bending strength and the wear resistance,
Limited to volume%. That is, when the compounding ratio of the electrolytic copper powder to the carbon material raw material is less than 10% by volume, sufficient bending strength cannot be obtained, while when it exceeds 40% by volume, wear resistance deteriorates.
Further, the weight is increased and the exercise performance of the pantograph is deteriorated.

【0013】加圧加熱成型条件としては、バインダーピ
ッチが固化する温度域、すなわち500℃以上の温度域
で加圧下に加熱することが、強度および耐摩耗性の発現
のために好ましい。他方、バインダーピッチの固化が完
了する600℃を超える温度域でのプレス成型は、焼結
の面では無意味で、かえって急熱に伴う熱応力等で成型
体に割れが発生しやすくなるので、加圧加熱温度の上限
は600℃とする。
As pressure and heat molding conditions, heating under pressure in a temperature range in which the binder pitch is solidified, that is, a temperature range of 500 ° C. or higher is preferable for developing strength and wear resistance. On the other hand, press molding in a temperature range exceeding 600 ° C. at which the solidification of the binder pitch is completed is meaningless in terms of sintering, and on the contrary, cracks are likely to occur in the molded body due to thermal stress accompanying rapid heating, The upper limit of the pressure heating temperature is 600 ° C.

【0014】また、成型圧は少なくとも常温〜加圧加熱
最高温度の一部において、好ましくは50kg/cm
以上とする。成型圧が50kg/cmより低いと、バ
インダーと電解銅粉の結合力が低下し、耐摩耗性が劣化
する傾向がある。
The molding pressure is preferably 50 kg / cm 2 at least at room temperature to a part of the maximum pressure heating temperature.
That is all. If the molding pressure is lower than 50 kg / cm 2 , the binding force between the binder and the electrolytic copper powder decreases, and the abrasion resistance tends to deteriorate.

【0015】成型体の焼成は、常圧下においてゆるやか
な昇温速度で昇温して行うのが好ましい。焼成温度とし
ては、炭素の強度を十分に発現させるという点から90
0℃以上が好ましく、他方、上限温度は銅の融点が10
83℃であるためこれを超えない温度とするのが好まし
く、通常は1000〜1050℃程度で焼成する。
Firing of the molded body is preferably carried out by raising the temperature at a slow temperature rising rate under normal pressure. The firing temperature is 90 from the viewpoint of sufficiently developing the strength of carbon.
0 ° C. or higher is preferable, while the upper limit temperature is such that the melting point of copper is 10
Since the temperature is 83 ° C., it is preferable to set the temperature not to exceed this, and the firing is usually performed at about 1000 to 1050 ° C.

【0016】このようにして得られたこの発明の炭素・
金属(銅)複合材は、従来の金属繊維や金属粉を配合し
た場合と比べ、曲げ強度、耐摩耗性が格段に優れるだけ
でなく、高いロウ接強度を有し、パンタグラフ用摺板と
して優れた性能を発揮する。
The carbon of the present invention thus obtained
The metal (copper) composite material is not only excellent in bending strength and wear resistance, but also has high brazing strength and is excellent as a sliding plate for pantographs, as compared with the case of mixing conventional metal fibers and metal powders. It exhibits excellent performance.

【0017】この発明の炭素・金属(銅)複合材とロウ
接する金属板としては、通常パンタグラフの材料として
使用されるアルミニウムや鉄、銅等、種々の材質が使用
できる。
As the metal plate which is brazed to the carbon / metal (copper) composite material of the present invention, various materials such as aluminum, iron and copper which are commonly used as materials for pantographs can be used.

【0018】また、接合に用いるロウ材としては、銀ロ
ウのような高融点の硬ロウ、アルミハンダのような低融
点の軟ロウのいずれでも使用できるが、接合温度の高い
硬ロウの場合にはロウ付け温度からの冷却時、炭素・金
属複合材と金属板間の熱膨張係数の違いにより発生する
炭素・金属複合材ー金属板間の応力が大きくなり、接合
面の剥離や、炭素・金属複合材、金属板の反り等のトラ
ブルが発生しやすい。このため、低温で接合可能な軟ロ
ウ付けの方が好ましい。
As the brazing material used for joining, either a high melting point hard brazing material such as silver brazing or a low melting point soft brazing material such as aluminum solder can be used. When cooling from the brazing temperature, the stress between the carbon / metal composite material and the metal plate, which is generated due to the difference in the thermal expansion coefficient between the carbon / metal composite material and the metal plate, becomes large, causing peeling of the joint surface and Problems such as warpage of metal composite materials and metal plates are likely to occur. Therefore, it is preferable to use soft brazing that can be joined at a low temperature.

【0019】炭素・金属複合材とロウ接する金属板にア
ルミニウムを用いる場合、ロウ材としてはすずー亜鉛系
またはアルミニウムー亜鉛系が適当である。これらのロ
ウ材を用い、炭素・金属複合材とアルミニウム板を面接
合する場合は、炭素・金属複合材とアルミニウム板の各
々にロウ材を膜状に溶融メッキし、このロウ材溶着面ど
うしを押付けながらロウ材の融点以上に加熱後冷却する
方法でロウ付けできる。
When aluminum is used for the metal plate which is brazed to the carbon-metal composite material, tin-zinc type or aluminum-zinc type is suitable as the brazing material. When surface joining of carbon / metal composite material and aluminum plate is performed using these brazing materials, the brazing material is melt-plated in a film shape on each of the carbon / metal composite material and the aluminum plate, and the brazing material welding surfaces are joined together. It can be brazed by pressing and heating it to a temperature above the melting point of the brazing material and then cooling it.

【0020】ここで、接合面の酸化被膜除去および接合
性の改善のため、通常フラックスが用いられるが、アル
ミニウムについては前記のロウ材の場合、フラックス不
要の場合が多い。このような軟ロウ付けで接合されたカ
ーボン摺板と金属製舟体は、ロウ付け後の冷却時も反り
や剥離等のトラブルがなく、接合強度も良好である。
Here, in order to remove the oxide film on the joint surface and to improve the jointability, a flux is usually used, but in the case of the above brazing material, the flux is often unnecessary for aluminum. The carbon sliding plate and the metal boat body joined by such soft brazing do not have problems such as warping or peeling even during cooling after brazing, and have good joining strength.

【0021】また、金属板が銅や鉄等の場合は、ごく一
般的な電気配線用に用いられるスズー鉛系のハンダによ
る接合も可能である。
When the metal plate is made of copper, iron, or the like, it is possible to join it with a tin-lead type solder used for general electric wiring.

【0022】[0022]

【実施例】【Example】

実施例1 市販の焼成した石油コークスを、振動ボールミルで平均
粒径15μmに粉砕し、得られたコークス粉を成型用炭
素骨材として用いた。バインダーピッチとしては、コー
ルタールを60mmHgの減圧下440℃で1時間熱処
理して得られる、高化式フローテスターで測定した軟化
点が250℃のコールタールピッチを、60メッシュ以
下に粉砕して用いた。銅粉としては、樹枝形状の電解銅
粉を用い、また比較のため、粉砕銅粉、アトマイズ銅
粉、銅繊維、銅含浸炭素、鋼繊維、黒鉛材を用いた。こ
れらの組成をまとめて表1に示す。
Example 1 A commercially available calcined petroleum coke was pulverized with a vibrating ball mill to an average particle size of 15 μm, and the obtained coke powder was used as a carbon aggregate for molding. As the binder pitch, coal tar pitch having a softening point of 250 ° C. measured by a Koka type flow tester, which is obtained by heat treating coal tar at 440 ° C. under a reduced pressure of 60 mmHg for 1 hour, is crushed to 60 mesh or less. I was there. As the copper powder, dendritic electrolytic copper powder was used, and for comparison, ground copper powder, atomized copper powder, copper fiber, copper-impregnated carbon, steel fiber, and graphite material were used. The compositions of these are summarized in Table 1.

【0023】次に、表1に示す成型原料を、添加金属:
コークス粉:バインダーピッチを(a)10:60:3
0、(b)20:50:30、(c)40:30:30
の3種類の配合割合(体積率)で混合し、それぞれ内径
100mmφのステンレス製金型に仕込み、加圧加熱成
型した。なお、配合の体積率は、原料の配合重量を真比
重で除して算出した配合体積より算出した。加圧加熱成
型は、昇温速度10℃/Hrで昇温し、室温から550
℃まで200kg/cmでプレスし、550℃で1時
間保持後プレスしたままで室温まで冷却して行った。
Next, the forming raw material shown in Table 1 was added with the added metal:
Coke powder: binder pitch (a) 10: 60: 3
0, (b) 20:50:30, (c) 40:30:30
Were mixed in three kinds of mixing ratios (volume ratios), charged into stainless steel molds each having an inner diameter of 100 mmφ, and subjected to pressure heating molding. The volume ratio of the blend was calculated from the blend volume calculated by dividing the blend weight of the raw material by the true specific gravity. Pressurized heat molding is performed at a temperature rising rate of 10 ° C./Hr at a temperature of 550 from room temperature.
The test was performed by pressing at 200 kg / cm 2 up to ° C, holding at 550 ° C for 1 hour, and then cooling to room temperature while pressing.

【0024】ついで、得られた複合材を粉コークスにつ
め、窒素雰囲気中、昇温速度12℃/Hrで1040℃
まで昇温し、2時間保持後冷却した。得られた複合材に
ついて、(イ)曲げ強度測定(3点曲げ法、テストピー
スサイズ10mm×10mm×60mm、スパン40m
m)、(ロ)銅板との摩耗試験(摺動速度200km/
Hr、摺動面1×1cm、押付け力2kgf)を行った。
上記(イ)、(ロ)の測定結果を表2(添加金属配合率
10%)、表3(添加金属配合率20%)、表4(添加
金属配合率40%)に示す。
Then, the obtained composite material was packed in powder coke and heated in a nitrogen atmosphere at a temperature rising rate of 12 ° C./hr to 1040 ° C.
The temperature was raised to 2, the temperature was maintained for 2 hours and then cooled. About the obtained composite material, (a) Bending strength measurement (3-point bending method, test piece size 10 mm x 10 mm x 60 mm, span 40 m
m), (b) Abrasion test with copper plate (sliding speed 200 km /
Hr, sliding surface 1 × 1 cm, pressing force 2 kgf).
The measurement results of (a) and (b) above are shown in Table 2 (addition metal content ratio 10%), Table 3 (addition metal content ratio 20%), and Table 4 (addition metal content ratio 40%).

【0025】表2、表3、表4の結果より、樹枝形状の
電解銅粉Aを配合した本発明は、配合比によらず同じ銅
の粉砕銅粉B、アトマイズ銅粉C、銅繊維Dを配合した
ものと比べても曲げ強度、耐摩耗性共に優れることがわ
かる。
From the results shown in Tables 2, 3 and 4, the present invention in which the dendritic electrolytic copper powder A is blended is the same crushed copper powder B, atomized copper powder C and copper fiber D regardless of the blending ratio. It can be seen that the flexural strength and the wear resistance are excellent even when compared with the one in which

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】実施例2 実施例1の供試No.6の複合材よりロウ接試験片(2
5mm×25mm×2.5mm厚)を作成し、相手材と
して試験片と同寸法の鉄板と銅板を用い、ロウ接を行っ
た。
Example 2 Test No. of Example 1 A brazing test piece (2
5 mm × 25 mm × 2.5 mm thickness) was prepared, and an iron plate and a copper plate having the same dimensions as the test piece were used as mating materials, and brazing was performed.

【0031】本実施例では、ロウ材としてアルミ用ハン
ダ(日本アルミット(株)製SPー27)を、フラック
スとして日本アルミット(株)製のSDGフラックスを
用いた。その際、複合材と、金属板のロウ接しようとす
る面に、SDGフラックスを塗布し、350℃に保持し
た窒素雰囲気の横型電気炉に入れ、5分経過したところ
でフラックスを塗布した表面にSPー27ハンダ(直径
約2mmの棒状)をこすりつけて溶かし、表面全体をS
Pー27ハンダで被覆し、炉外へ取出した。次に、複合
材と金属板のハンダを塗布した面どうしを合せ、200
gの重りを載せて、350℃に保持した横型電気炉に入
れ、10分保持後重りを載せたまま炉外へ取出して冷却
した。このロウ接物を、面内で4分割して10mm×1
0mm×5mm厚の剪断強度測定用試験片を4個作成
し、この試験片を引張試験機にかけて剪断試験を行い、
ロウ接面の接合強度を測定した。
In this example, solder for aluminum (SP-27 manufactured by Nippon Aluminum Co., Ltd.) was used as the brazing material, and SDG flux manufactured by Nippon Aluminum Co., Ltd. was used as the flux. At that time, SDG flux was applied to the surface of the metal plate to be brazed with the composite material, and the SDG flux was put into a horizontal electric furnace in a nitrogen atmosphere kept at 350 ° C., and after 5 minutes, SP was applied to the surface to which the flux was applied. -Solder 27 solder (bar shape with a diameter of about 2 mm) and melt it,
It was covered with P-27 solder and taken out of the furnace. Next, combine the solder-coated surfaces of the composite material and the metal plate, and
A weight of g was put on the horizontal electric furnace kept at 350 ° C., and after holding for 10 minutes, the weight was taken out of the furnace and was cooled. This brazing object is divided into 4 in the plane and 10 mm x 1
Four 0 mm x 5 mm thick test pieces for measuring shear strength were prepared and subjected to a shear test by applying the test pieces to a tensile tester.
The bonding strength of the brazing surface was measured.

【0032】また、銅板に対しては軟ロウ材を用いたも
のについてもロウ接を行った。軟ロウとしては、電気配
線用のヤニ入りスズー鉛ハンダ(直径1.5mm)を長
さ3cmに切断し、リング状に曲げて銅板と試験片の間
にはさみ、100gの重りを載せて300℃に加熱し、
窒素雰囲気にした横型電気炉に入れ10分間保持してハ
ンダを溶解した。その後、ロウ接試験片と銅板、重りを
そのままの形で炉外へ取出し、断熱材の上で冷却した。
このロウ接した材料を4個作成し、この試験片を引張試
験機にかけて剪断試験を行い、ロウ接面の接合強度を測
定した。
Brazing was also performed on the copper plate using a soft brazing material. As the soft solder, tin-lead solder (1.5 mm in diameter) containing resin for electrical wiring is cut into a length of 3 cm, bent into a ring shape, sandwiched between a copper plate and a test piece, and a 100 g weight is placed thereon at 300 ° C. Heated to
It was placed in a horizontal electric furnace in a nitrogen atmosphere and held for 10 minutes to melt the solder. Then, the brazing test piece, the copper plate, and the weight were taken out of the furnace as they were, and cooled on the heat insulating material.
Four pieces of this brazed material were prepared, and a shear test was carried out on this test piece using a tensile tester to measure the joint strength of the brazed surface.

【0033】表5より明らかなごとく、電気配線用ハン
ダ、アルミハンダでもロウ接が可能で高い接合強度が得
られることを確認した。
As is clear from Table 5, it was confirmed that soldering for electric wiring and aluminum solder could also be used for soldering and high bonding strength could be obtained.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【発明の効果】以上説明したごとく、この発明の炭素・
金属複合材は、優れた曲げ強度と耐摩耗性を有するとと
もに、銅板や鉄板との接合手段にロウ接方式を採用する
ことができるので、パンタグラフ用カーボン摺板として
極めて好適である。また、その製造方法としても、炭素
材原料と添加金属の混合物を500℃程度の温度で加圧
加熱成型する方法をベースとして製造することができる
ので、製造コストが高くつくことはなく、比較的安価に
高品質の炭素・金属複合材を提供できる。
As described above, the carbon of the present invention
The metal composite material has excellent bending strength and wear resistance, and can adopt a brazing method for joining with a copper plate or an iron plate, and is therefore extremely suitable as a carbon sliding plate for a pantograph. Also, as the manufacturing method thereof, since it can be manufactured based on a method of pressurizing and heating a mixture of a carbon material raw material and an additive metal at a temperature of about 500 ° C., the manufacturing cost does not increase and the manufacturing cost is relatively high. It is possible to provide a high-quality carbon-metal composite material at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明における樹枝形状の電解銅粉の顕微鏡
による粒子構造を示す写真である。
FIG. 1 is a photograph showing a microscopic particle structure of a tree-shaped electrolytic copper powder according to the present invention.

【図2】一般に使用されている粉砕銅粉の顕微鏡による
粒子構造を示す写真である。
FIG. 2 is a photograph showing a microscopic particle structure of commonly used ground copper powder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質マトリックス中に金属粉を含む炭
素・金属複合材において、該金属粉が樹枝形状の電解銅
粉であることを特徴とする炭素・金属複合材。
1. A carbon / metal composite material containing a metal powder in a carbonaceous matrix, wherein the metal powder is a dendritic electrolytic copper powder.
【請求項2】 炭素質マトリックス中に金属粉を含む炭
素・金属複合材の製造方法において、炭素骨材、バイン
ダーピッチ等からなる炭素材原料に、樹枝形状の電解銅
粉を10〜40体積%の配合率で混合し、500〜60
0℃で加圧加熱成型した後、焼成することを特徴とする
炭素・金属複合材の製造方法。
2. A method for producing a carbon-metal composite material containing a metal powder in a carbonaceous matrix, wherein 10-40% by volume of dendritic electrolytic copper powder is added to a carbon material raw material composed of carbon aggregate, binder pitch and the like. Mix at the mixing ratio of 500 to 60
A method for producing a carbon / metal composite material, which comprises press-molding under heating at 0 ° C. and then firing.
JP4350286A 1992-12-03 1992-12-03 Carbon-metal composite material and its production Pending JPH06172029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350286A JPH06172029A (en) 1992-12-03 1992-12-03 Carbon-metal composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350286A JPH06172029A (en) 1992-12-03 1992-12-03 Carbon-metal composite material and its production

Publications (1)

Publication Number Publication Date
JPH06172029A true JPH06172029A (en) 1994-06-21

Family

ID=18409471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350286A Pending JPH06172029A (en) 1992-12-03 1992-12-03 Carbon-metal composite material and its production

Country Status (1)

Country Link
JP (1) JPH06172029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906890A1 (en) * 1997-10-02 1999-04-07 dbb fuel cell engines GmbH Apparatus for the generation of hydrogen, apparatus for reduction of carbon monoxide content, apparatus for oxidation of carbon monoxide, apparatus for catalytic burning and method for the production of a catalyst
CN112646989A (en) * 2020-12-08 2021-04-13 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906890A1 (en) * 1997-10-02 1999-04-07 dbb fuel cell engines GmbH Apparatus for the generation of hydrogen, apparatus for reduction of carbon monoxide content, apparatus for oxidation of carbon monoxide, apparatus for catalytic burning and method for the production of a catalyst
WO1999017867A3 (en) * 1997-10-02 1999-08-19 Dbb Fuel Cell Engines Ges Mit Device for carrying out a heterogenously catalysed reaction and method for producing a catalyst
US6517805B1 (en) 1997-10-02 2003-02-11 Ballard Power Systems Ag Method and apparatus for producing hydrogen
CN112646989A (en) * 2020-12-08 2021-04-13 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement
CN112646989B (en) * 2020-12-08 2022-02-08 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement

Similar Documents

Publication Publication Date Title
CN112028613B (en) Magnesia carbon brick using catalyst-added phenolic resin
CN101525730B (en) Low-pressure auxiliary infiltration preparation method for high volume fraction C/Cu composite material
CN108251672B (en) Method for improving interface bonding strength of copper/graphite composite material
CN108823444B (en) Short-process preparation method of copper-carbon composite material
JPH06172029A (en) Carbon-metal composite material and its production
EP0572044A2 (en) Carbon/metal composite
CN115057692B (en) Aluminum-carbon sliding brick added with ferrotitanium alloy and production method thereof
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS6039737B2 (en) Manufacturing method for highly conductive metal-carbon fiber composite sliding member
CN115894032B (en) Ti (titanium) 3 AlC 2 Preparation method of enhanced carbon-based pantograph slide plate
CN1061960C (en) Carbon-carbon composition material for electric collection
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JP2511705B2 (en) Carbon / metal composite
JPH04280865A (en) Carbon-metal composite material
JP2633107B2 (en) Method for producing boron / carbon composite neutron shielding material
JPH01270571A (en) Production of carbon material for sliding and current collection
JPH06284506A (en) Sliding current collecting material for pantograph
JPH07215775A (en) Production of carbon-carbon composite material
JPH0456787B2 (en)
CN114836661A (en) Double-scale ceramic particle reinforced aluminum-based composite material and preparation method thereof
JPH04300263A (en) Joining between carbon metal composite and metallic
JPH03252357A (en) Production of carbon material for sliding current collection
CN115612947A (en) Powder metallurgy friction block and preparation method thereof
JPH0833109A (en) Current collecting pantograph slider material of copper-infiltrated fe-bas sintered alloy with high wear resistance and electric conductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees