JPH06284506A - Sliding current collecting material for pantograph - Google Patents

Sliding current collecting material for pantograph

Info

Publication number
JPH06284506A
JPH06284506A JP5073710A JP7371093A JPH06284506A JP H06284506 A JPH06284506 A JP H06284506A JP 5073710 A JP5073710 A JP 5073710A JP 7371093 A JP7371093 A JP 7371093A JP H06284506 A JPH06284506 A JP H06284506A
Authority
JP
Japan
Prior art keywords
carbon
sliding current
current collecting
collecting material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5073710A
Other languages
Japanese (ja)
Inventor
Koichiro Mukai
幸一郎 向井
Kenichiro Fujimoto
健一郎 藤本
Hiroshi Tsuchiya
広志 土屋
Shunichi Kubo
俊一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Railway Technical Research Institute
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Railway Technical Research Institute
Priority to JP5073710A priority Critical patent/JPH06284506A/en
Publication of JPH06284506A publication Critical patent/JPH06284506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PURPOSE:To provide a carbon sliding current collecting material, in which brittle fracture characteristics as the weak spot of a conventional carbon sliding current collecting material are improved and which has high strength, a sliding current collecting material for a pantograph. CONSTITUTION:A sliding current collecting material for a pantograph is acquired by joining carbon-metal composite baking materials containing metallic fibers from 5vol% to 60vol% on both side faces of a carbon sliding current collecting material for a core as the core. A pure carbon sliding current collecting material, a carbon sliding current collecting material, in which porous carbon is impregnated with a metal, a carbon sliding current collecting material, in which not more than 20vol% metallic fibers are contained in carbon powder, or a carbon sliding current collecting material, in which metallic powder is compounded, can be used as the carbon sliding current collecting material as the core. Accordingly, the sliding current collecting material has excellent low electric resistance and is superior even in strength and shock resistance while succeeding to the feature of the light-weight carbon sliding current collecting material having performance surpassing in lubricating properties, arc resistance, noise resistance, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パンタグラフ摺板に適
用できる、炭素系のパンタグラフ用摺動集電材料に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based sliding collector material for a pantograph which can be applied to a pantograph sliding plate.

【0002】[0002]

【従来の技術】現在、パンタグラフ用摺動集電材料とし
ては、大きく分類して、鋳造合金、焼結合金等の金属系
材料と炭素系材料の二つがある。
2. Description of the Related Art At present, there are roughly two types of sliding current collector materials for pantographs, namely, metal materials such as casting alloys and sintered alloys and carbon materials.

【0003】金属系摺動集電材料は、電気抵抗が極めて
低く、また、高強度であるという特長を有するが、炭素
系摺動集電材料と比較して、アーク発生量が多く、高強
度故に相手材の摩耗量が増加するという欠点を有してい
る。
The metal-based sliding current collector material has the features of extremely low electric resistance and high strength, but has a higher arc generation amount and higher strength than the carbon-based sliding current collector material. Therefore, it has a drawback that the amount of wear of the mating material increases.

【0004】従来、パンタグラフ用摺動集電材料として
は、主として、銅、銅−鉄系合金あるいは銅−錫−亜鉛
系合金等の鋳造合金や、銅系又は鉄系等の焼結合金等の
金属系材料が用いられているが、車両の冷房等による集
電容量の増大や車両運行速度の高速化等により、近年に
おいてはパンタグラフ用摺動集電材料の使用環境が一段
と過酷になってきているほか、最近では、車両の高速化
に伴って離線率が増加し、機械的摩耗量やアーク摩耗量
が増大してきており、また、寒冷地におけるトロリー線
の氷結がもたらす異常摩耗等の問題や、摺動音が大きい
という騒音公害等の問題も発生している。そこで、これ
らの摩耗に対しては、摺板自体だけでなく、トロリー
線、起電レール等の相手材料の損耗をも少なくする摺動
特性の良好な集電材料が要望されている。また、アーク
発生については、アーク摩耗のみならず電波障害をも引
き起こすため、問題視されている。
Conventionally, as sliding current collectors for pantographs, mainly casting alloys such as copper, copper-iron alloys or copper-tin-zinc alloys, and sintered alloys such as copper or iron alloys have been used. Although metal-based materials are used, the environment in which sliding current collectors for pantographs are used has become more severe in recent years due to the increase in current-collecting capacity due to cooling of vehicles and the increase in vehicle operating speed. In addition, recently, the derailment rate has increased with the speeding up of vehicles, the amount of mechanical wear and the amount of arc wear have increased, and problems such as abnormal wear caused by freezing of trolley wires in cold regions However, there are problems such as noise pollution that the sliding noise is large. In view of these abrasions, therefore, there is a demand for a current collecting material having good sliding characteristics that reduces wear of not only the sliding plate itself, but also other materials such as trolley wires and electromotive rails. Further, the occurrence of an arc is regarded as a problem because it causes not only arc wear but also radio wave interference.

【0005】これら金属系摺動集電材料の欠点を補うこ
とが可能であると期待されているものとして、炭素系材
料がある。この炭素系摺動集電材料は、良好な自己潤滑
性と比較的低い電気抵抗とを有し、耐アーク性にも優れ
ており、軽量であって摺動音も小さいという特長を兼ね
備えており、上記金属系摺動集電材料の欠点をカバーす
ることができる。しかしながら、この炭素系摺動集電材
料は、金属系摺動集電材料と比較すると電気抵抗がかな
り高く、強度も極端に低いことから、大きな力が直接作
用する箇所には使えない。現在、これらの炭素系材料は
モーターブラシ等に広く利用されている。ところで、こ
のような炭素系摺動集電材料を利用している分野でも次
第にその使用条件が厳しくなってきており、現状ではそ
の耐摩耗性の向上や電気抵抗の低下がより一層求められ
ている。また、炭素系摺動集電材料は、炭素単独ではそ
の脆性故に折損し易く、折損した場合には摺動集電材料
が飛散して危険であると同時に、最悪の場合には集電が
不可能となり車両が停止するおそれもある。
Carbon materials are expected to be able to make up for the drawbacks of these metal-based sliding current collector materials. This carbon-based sliding current collector has good self-lubricating properties, relatively low electrical resistance, excellent arc resistance, light weight and low sliding noise. The drawbacks of the metal-based sliding current collector material can be covered. However, this carbon-based sliding current collecting material has considerably higher electric resistance and extremely low strength as compared with the metal-based sliding current collecting material, and therefore cannot be used in places where a large force directly acts. Currently, these carbon-based materials are widely used for motor brushes and the like. By the way, even in the field of using such a carbon-based sliding current collecting material, the usage conditions thereof are becoming more and more severe, and under the present circumstances, further improvement of abrasion resistance and reduction of electric resistance are further required. . Further, the carbon-based sliding current collecting material is easily broken by carbon alone due to its brittleness, and if broken, the sliding current collecting material is scattered, which is dangerous. It becomes possible and the vehicle may stop.

【0006】そこで、現在、このような炭素系摺動集電
材料の欠点を解決すべく各方面で検討が進められてい
る。例えば、(1)炭素系摺動集電材料に金属を含浸さ
せたり(特公昭52-822号公報)あるいは(2)炭素材料
の原料粉末に金属粉を添加する(特開昭60-238,402号公
報)ことにより、電気抵抗を下げると共に強度の向上を
図るという方法が提案されている。しかしながら、これ
ら(1)及び(2)の方法は、強度の向上についてはあ
る程度の効果が期待できるものの、脆性破壊の防止に対
する効果についてはあまり期待できない。
Therefore, at present, investigations are being made in various fields in order to solve the drawbacks of the carbon-based sliding current collector material. For example, (1) a carbon-based sliding current collector material is impregnated with a metal (Japanese Patent Publication No. 52-822) or (2) a metal powder is added to a raw material powder of the carbon material (Japanese Patent Laid-Open No. 60-238,402). Therefore, a method of lowering electric resistance and improving strength has been proposed. However, although the methods (1) and (2) can be expected to have some effect in improving the strength, they cannot be expected to have the effect in preventing brittle fracture.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
の炭素系摺動集電材料の弱点である脆性破壊特性が改善
された高強度の炭素系摺動集電材料、すなわちパンタグ
ラフ用摺動集電材料を提供することにある。
An object of the present invention is to provide a high-strength carbon-based sliding current collecting material having improved brittle fracture characteristics, which is a weak point of conventional carbon-based sliding current collecting materials, that is, a slide for a pantograph. It is to provide a dynamic current collecting material.

【0008】[0008]

【課題を解決するための手段】本発明者らは、炭素材料
中に金属繊維を分散させることによって、電気比抵抗が
著しく低下し、しかも炭素材料の欠点である脆さや欠け
易さが改善された金属−炭素複合焼成材料に着目し、本
発明に到達した。すなわち、この金属−炭素複合焼成材
料を数cmの厚さに加工し、これを、純炭素摺動集電材
料や、多孔質炭素材に金属を含浸させ、あるいは炭素粉
に金属粉や金属繊維を配合して製造された炭素系摺動集
電材料からなり、コアとなるコア用炭素系摺動集電材料
の両側面に接合することにより、これらコア用炭素系摺
動集電材料の強度や耐衝撃性の向上を図ることができる
ことを見出し、本発明を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have remarkably lowered the electric resistivity by dispersing metal fibers in a carbon material and, at the same time, improved the brittleness and fragility of the carbon material. The present invention has been achieved by focusing on the metal-carbon composite fired material. That is, this metal-carbon composite fired material is processed into a thickness of several cm, and this is impregnated with pure carbon sliding current collector material or porous carbon material with metal, or carbon powder with metal powder or metal fiber. The strength of carbon-based sliding current collectors for cores is improved by joining the carbon-based sliding current collectors for cores, which are made of carbon-based sliding current collectors The inventors have found that it is possible to improve the impact resistance and the impact resistance, and have completed the present invention.

【0009】すなわち、本発明は、5vol%以上60
vol%未満の金属繊維を含有した炭素−金属複合焼成
材料を、コアとなるコア用炭素系摺動集電材料の両側面
に接合し、強度、耐衝撃性を改善したパンタグラフ用摺
動集電材料である。ここで、コアとなるコア用炭素系摺
動集電材料としては、純炭素摺動集電材料や、多孔質炭
素に金属を含浸させて得られた炭素系摺動集電材料、炭
素粉に金属繊維を20vol%以下の割合で含有させて
得られた炭素系摺動集電材料、あるいは金属粉を配合し
て得られた炭素系摺動集電材料を用いることができる。
また、このコア用炭素系摺動集電材料の両側面とは、電
車の進行方向を法線ベクトルとする側面、具体的には電
車の進行方向に正対する2つの面をさすものである。つ
まり、通常、電車は往復運転されるため、使用するパン
タグラフについては、その進行方向が変わっても同様の
効果が得られるように、各進行方向に正対する2つの面
が設けられている。
That is, the present invention is 5 vol% or more and 60
Sliding current collector for pantograph with improved strength and impact resistance by bonding carbon-metal composite calcined material containing less than vol% metal fiber to both sides of core carbon-based sliding current collector material for core It is a material. Here, as the carbon-based sliding current collecting material for the core to be the core, there are pure carbon sliding current collecting materials, carbon-based sliding current collecting materials obtained by impregnating porous carbon with metal, and carbon powder. It is possible to use a carbon-based sliding current collecting material obtained by containing metal fibers in a proportion of 20 vol% or less, or a carbon-based sliding current collecting material obtained by mixing metal powder.
Further, the both side surfaces of the carbon-based sliding current collector material for a core refer to side surfaces whose normal vector is the traveling direction of the electric train, specifically, two surfaces which are directly opposed to the traveling direction of the electric train. That is, since the train is normally driven back and forth, the pantograph to be used is provided with two surfaces facing each other so that the same effect can be obtained even if the traveling direction changes.

【0010】以下、本発明の内容を詳述する。本発明で
使用する金属繊維を配合した炭素−金属複合焼成材料の
製造に用いる多孔質粉末の原料は、ピッチコークス、黒
鉛等の炭素を主体とするものの粉末であり、好ましくは
ピッチコークスである。このピッチコークスには、石油
系、石炭系等のピッチを非酸化性雰囲気中400〜55
0℃で熱処理して得られる生コークスと、その生コーク
スを更に1000〜1400℃でか焼して得られるか焼
コークスとがあるが、生コークスは、それ自体がバイン
ダー成分を含有するために成型性に優れており、また、
金属繊維を多量に含有し得る点でも優れている。この生
コークスを使用する場合、生コークス中の揮発分につい
ては、焼成時の割れや膨れが発生する確率を減らして歩
留を上げるため、5〜17wt%、好ましくは8〜14
wt%としたものがよい。また、バインダー成分を含有
しないか焼コークス等の炭素質粉末原料を使用する場合
には、バインダーピッチ等のバインダー成分を添加す
る。
The details of the present invention will be described below. The raw material of the porous powder used in the production of the carbon-metal composite calcined material mixed with the metal fiber used in the present invention is a powder mainly composed of carbon such as pitch coke and graphite, and preferably pitch coke. This pitch coke contains petroleum-based or coal-based pitch in a non-oxidizing atmosphere at 400 to 55
There are raw coke obtained by heat treatment at 0 ° C. and calcined coke obtained by further calcining the raw coke at 1000 to 1400 ° C. Since the raw coke itself contains a binder component. It has excellent moldability, and
It is also excellent in that it can contain a large amount of metal fibers. When this raw coke is used, the volatile content in the raw coke is 5 to 17 wt%, preferably 8 to 14 wt% in order to reduce the probability of cracking or swelling during firing and increase the yield.
What was made into wt% is good. When a carbonaceous powder raw material such as calcined coke containing no binder component is used, a binder component such as binder pitch is added.

【0011】バインダーの添加量は、その種類によって
異なるが、バインダーピッチを使用する場合であって、
炭素質粉末としてか焼コークスあるいはか焼コークスと
黒鉛粉末との混合物のようにバインダー成分を含まない
ものを使用するときは、その添加量は炭素質粉末100
重量部に対して、50〜120重量部、好ましくは70
〜100重量部であり、また、炭素質粉末として生コー
クスと黒鉛粉末との混合物のようにバインダー成分を含
むがその量が不足するようなものを使用するときは、そ
の添加量は炭素質粉末100重量部に対し10〜50重
量部、好ましくは25〜35重量部程度がよい。
The addition amount of the binder varies depending on the kind, but when the binder pitch is used,
When a carbonaceous powder that does not contain a binder component such as calcined coke or a mixture of calcined coke and graphite powder is used, the addition amount is 100 carbonaceous powder.
50 to 120 parts by weight, preferably 70 parts by weight
-100 parts by weight, and when a carbonaceous powder such as a mixture of raw coke and graphite powder that contains a binder component but is insufficient in amount is used, the addition amount is carbonaceous powder. The amount is 10 to 50 parts by weight, preferably 25 to 35 parts by weight, per 100 parts by weight.

【0012】金属繊維としては、銅、鉄、又は銅若しく
は鉄系合金の繊維あるいはこれらの繊維の混合物等が挙
げられ、特に限定するものではないが、強度が高く、電
気比抵抗が低い金属繊維が望ましい。しかし、摺動する
相手材よりも極端に硬いものは相手材の摩耗量を増大さ
せるために好ましくなく、また、低融点の金属では焼成
時に金属が溶け出して焼成温度を高く設定できないため
好ましくない。
Examples of the metal fibers include copper, iron, fibers of copper or iron-based alloys, and mixtures of these fibers, but are not particularly limited, but metal fibers having high strength and low electrical resistivity. Is desirable. However, a material that is extremely harder than the sliding counterpart material is not preferable because it increases the amount of wear of the counterpart material, and a low melting point metal is not preferable because the metal melts out during firing and the firing temperature cannot be set high. .

【0013】金属繊維の形状は、特に限定するものでは
ないが、炭素質マトリックスとの焼結を阻害しないこ
と、配合を均一かつ容易にすること等の理由から、繊維
径1mm以下であって、繊維長10mm以下であるもの
が好ましい。また、断面形状が角ばった多角形となるビ
ビリ切削法により調製された金属繊維を用いると、圧縮
成形時に良好な成形体が得られ易い等の効果が生じる。
The shape of the metal fiber is not particularly limited, but the fiber diameter is 1 mm or less because it does not hinder the sintering with the carbonaceous matrix and makes the blending uniform and easy. A fiber having a fiber length of 10 mm or less is preferable. Further, when the metal fiber prepared by the chattering cutting method in which the cross-sectional shape becomes an angular polygon is used, an effect such that a good molded body can be easily obtained during compression molding occurs.

【0014】金属繊維の添加量は、炭素質粉末原料と金
属繊維の合計に対して、5vol%以上60vol%未
満、好ましくは10〜45vol%の範囲である。金属
繊維の添加量が5vol%未満では電気抵抗が充分に下
がらず、また、60vol%以上であると炭素質粉末原
料の焼結が充分に進まず、強度の低下を招くという問題
が生じる。
The amount of the metal fibers added is in the range of 5 vol% or more and less than 60 vol%, preferably 10 to 45 vol%, based on the total amount of the carbonaceous powder raw material and the metal fibers. If the amount of the metal fiber added is less than 5 vol%, the electrical resistance will not be sufficiently lowered, and if it is more than 60 vol%, the sintering of the carbonaceous powder raw material will not proceed sufficiently and the strength will be lowered.

【0015】次に、炭素質粉末原料と金属繊維との混合
は、ロッキングミキサー、振とう式等のほぼ均一かつラ
ンダムに分散配合できる方法であれば、一般的な方法で
よく、特に限定されるものではないが、混合中に大きな
シェアーが作用し、金属繊維が折れ曲がったり、切断さ
れるような混合方法は好ましくない。
Next, the carbonaceous powder raw material and the metal fiber can be mixed by a general method, as long as it is a method such as a rocking mixer or a shaking method, which can be dispersed and mixed almost uniformly and randomly, and is not particularly limited. Although not a matter of interest, a mixing method in which a large shear force acts during the mixing and the metal fibers are bent or cut is not preferable.

【0016】以上のようにして得られた混合原料を、冷
間静水圧プレス(CIP)等により成型する。冷間静水
圧プレスによる成形を行う際には、所望の形状の厚手の
ゴム型に混合原料を直接装填してもよいが、50〜30
0kgf/cm2 、好ましくは100〜200kgf/
cm2 の圧力で型込め予備成形(一軸プレス)した後
に、冷間静水圧プレス(CIP)により500〜400
0kgf/cm2 、好ましくは1500〜2500kg
f/cm2 で本成形する方が成形が容易である。通常の
型込め成形(一軸プレス)で本成形まで行うと、加圧方
向に垂直な方向からの圧力が不足するため、成形後の金
属繊維の絡み合いが不十分である。しかし冷間静水圧プ
レス(CIP)で本成形を行うと、成形体に全周方向か
ら均等に圧力がかかり、成形体中に存在する金属繊維が
十分に噛み合うために、特に金属繊維を多量に添加した
場合にその効果が高く、焼成後に十分な強度が得られ
る。
The mixed raw material thus obtained is molded by cold isostatic pressing (CIP) or the like. When performing molding by cold isostatic pressing, a thick rubber die having a desired shape may be directly loaded with the mixed raw material, but 50 to 30
0 kgf / cm 2 , preferably 100 to 200 kgf /
500-400 by cold isostatic pressing (CIP) after molding and preforming (uniaxial press) with a pressure of cm 2.
0 kgf / cm 2 , preferably 1500 to 2500 kg
It is easier to perform the main forming at f / cm 2 . Even when the main molding is performed by ordinary mold molding (uniaxial press), the pressure from the direction perpendicular to the pressing direction is insufficient, and thus the entanglement of the metal fibers after molding is insufficient. However, when the main molding is carried out by a cold isostatic press (CIP), pressure is applied evenly to the molded body from the entire circumferential direction, and the metal fibers present in the molded body are sufficiently meshed with each other. The effect is high when added, and sufficient strength is obtained after firing.

【0017】次いで、アルゴン、窒素等の不活性ガス雰
囲気下に金属繊維の融点以下の温度、例えば800〜1
500℃で、常法により焼成して炭化することにより、
本発明の張り合わせに使用する材料を得ることができ
る。
Then, in an atmosphere of an inert gas such as argon or nitrogen, the temperature is lower than the melting point of the metal fiber, for example, 800 to 1.
By firing and carbonizing at 500 ° C. by a conventional method,
It is possible to obtain the material used for the lamination according to the present invention.

【0018】このようにして調製された金属繊維配合の
炭素−金属複合焼成材料を板状に加工し、これを純炭素
摺動集電材料や、多孔質炭素材に金属を含浸させた炭素
系摺動集電材料等のコアとなるコア用炭素系摺動集電材
料の両側面に、フェノール樹脂や樹脂に炭素粉末を配合
した炭素接着材、低融点金属等を用いて接合することに
より、横からの衝撃に強く、脆性破壊し難いパンタグラ
フ用摺動集電材料を得ることができる。
The carbon-metal composite calcined material containing metal fibers prepared in this manner is processed into a plate shape, which is used as a pure carbon sliding current collector material or a carbon-based material obtained by impregnating a porous carbon material with a metal. By joining to both sides of the carbon-based sliding current collector material for the core, which is the core of the sliding current collector, etc., by using a phenol resin or a carbon adhesive containing carbon powder mixed with resin, a low melting point metal, etc. It is possible to obtain a sliding current collector material for a pantograph which is resistant to lateral impact and is less likely to be brittlely broken.

【0019】ここで、接合に用いられる金属繊維配合の
炭素−金属複合焼成材料の厚さは、厚いほど衝撃に対す
る効果が高くなるが、純炭素摺動集電材料や多孔質炭素
に金属を含浸させた炭素系摺動集電材料等のコア用炭素
系摺動集電材料の方が焼結金属製摺動集電材料や金属繊
維配合摺動集電材料に比べトロリーアタックが少ないと
言われていることや、現在の車体に適用されている摺動
集電摺板の幅が約30〜40mmであることを考える
と、挟持する純炭素摺動集電材料や炭素系摺動集電材料
のコア用炭素系摺動集電材料の幅は可能な限り厚い方が
よく、接合する材料の厚さは2〜10mm、好ましくは
3〜10mmの範囲のものを両側面に接合するのがよ
い。2mm未満の厚さでは効果が少ないし、反対に、1
0mmを超えると挟持するコア用炭素系摺動集電材料の
幅が狭くなり、トロリー表面の荒れを減ずる効果が薄れ
る。また、接合する材料としてパンタグラフ用焼結合金
材料等の純金属材料も考えられるが、摺動集電摺板を搭
載するパンタグラフの舟体がアークにより損傷を受け易
くなるために好ましくない。
Here, as the thickness of the carbon-metal composite calcined material containing metal fibers used for joining increases, the effect on impact increases, but a pure carbon sliding current collector or porous carbon is impregnated with metal. It is said that the carbon-based sliding current collector material for the core such as the above-mentioned carbon-based sliding current collector material has less trolley attack compared to the sintered metal sliding current collector and the metal fiber-containing sliding current collector material. Considering that the width of the sliding current collector sliding plate currently applied to the vehicle body is about 30 to 40 mm, the sandwiching pure carbon sliding current collecting material or the carbon-based sliding current collecting material is considered. It is preferable that the width of the carbon-based sliding current collector material for the core is as thick as possible, and the thickness of the material to be bonded is in the range of 2 to 10 mm, preferably 3 to 10 mm, and both sides are preferably bonded. . A thickness of less than 2 mm is less effective, on the contrary, 1
If it exceeds 0 mm, the width of the carbon-based sliding current collector material for the core to be sandwiched becomes narrow, and the effect of reducing the roughness of the trolley surface is diminished. Further, a pure metal material such as a sintered alloy material for pantograph can be considered as a material to be joined, but this is not preferable because the boat body of the pantograph equipped with the sliding current collector slide plate is easily damaged by an arc.

【0020】接合に用いる接着剤としては、フェノール
樹脂の他に、フラン樹脂、エポキシ樹脂等を用いること
ができるが、通電時に摺動集電摺板の温度が百数十度に
上昇する場合も考えられるので、好ましくはフェノール
樹脂やフラン樹脂等のような炭化歩留の高い熱硬化型の
樹脂がよい。その理由は、熱硬化時あるいは1000℃
まで焼成した時に、接合面でのガス、揮発分等の発生に
伴う気孔発生が少なくて強度低下が生じ難いためであ
る。また、接合層での電気抵抗を極力下げるためには、
これらの樹脂に炭素粉末、特に人造黒鉛粉や天然黒鉛粉
等が配合された炭素接着剤が用いられる。また、この接
着剤で接合した摺板を予め約600〜700℃まで焼成
しておくと、仮に摺板の温度が数百℃まで上昇しても、
接着層での炭化反応が既にほぼ終了した状態であるた
め、接合界面での気孔発生の心配がなくなる。一方、接
着用に低融点金属を用いることもできる。一般に銀、
銅、亜鉛、珪素を主成分とした銀ロウ、硬ロウ(Al:
Si:Cu=3.5%:31.5%:65%)等を用い
ることができ、この中でも融点の高い硬ロウ材(m.
p.:550〜600℃)が好ましい。
As the adhesive used for joining, furan resin, epoxy resin or the like can be used in addition to the phenol resin. However, even when the temperature of the sliding current collector sliding plate rises to a hundred and several tens of degrees during energization. Therefore, a thermosetting resin having a high carbonization yield such as a phenol resin or a furan resin is preferable. The reason is that at the time of heat curing or 1000 ℃
This is because, when it is fired, the generation of pores due to the generation of gas, volatile matter, etc. on the joint surface is small, and the strength is less likely to decrease. Further, in order to reduce the electric resistance in the bonding layer as much as possible,
A carbon adhesive in which carbon powder, particularly artificial graphite powder or natural graphite powder, is mixed with these resins is used. Further, if the sliding plate joined with this adhesive is fired up to about 600 to 700 ° C. in advance, even if the temperature of the sliding plate rises to several hundreds of ° C.,
Since the carbonization reaction in the adhesive layer is almost completed, there is no concern about the generation of pores at the bonding interface. On the other hand, a low melting point metal can be used for adhesion. Generally silver,
Silver braze and hard braze (Al: mainly composed of copper, zinc and silicon)
Si: Cu = 3.5%: 31.5%: 65%) or the like can be used. Among them, a hard brazing material having a high melting point (m.
p. : 550 to 600 ° C.) is preferable.

【0021】接合方法としては、樹脂接着剤や炭素接着
剤等を用いる場合、板状に加工した純炭素摺動集電材料
や多孔質炭素に金属を含浸させた炭素系摺動集電材料等
のコア用炭素系摺動集電材料の側面にこれらの接着剤を
へらで塗布するが、この際の塗布厚みについては、可能
な限り薄くする方が接合強度が高くなる傾向があり、好
ましくは5〜200μm、更に好ましくは50〜100
μmの範囲であるのがよい。
As a joining method, when a resin adhesive or a carbon adhesive is used, a plate-shaped pure carbon sliding current collecting material or a carbon-based sliding current collecting material obtained by impregnating porous carbon with a metal is used. These adhesives are applied to the side surfaces of the carbon-based sliding current collector material for a core with a spatula, but with regard to the application thickness at this time, the bonding strength tends to be higher when it is made as thin as possible, 5 to 200 μm, more preferably 50 to 100
The range is preferably μm.

【0022】このように接着剤を塗布した後、これら純
炭素摺動集電材料や炭素系摺動集電材料等のコア用炭素
系摺動集電材料の両側面に板状に加工した金属繊維配合
の炭素−金属複合焼成材料を張り付け、数kg/cm2
の圧力でその両側から金具で軽く挟み込み、次いで約1
50℃に調節した乾燥器中で熱硬化させることによって
接合させることができる。
After the adhesive is applied in this manner, a metal plate-shaped on both sides of the carbon-based sliding current collecting material for core such as pure carbon sliding current collecting material or carbon-based sliding current collecting material Attach carbon-metal composite fired material containing fiber, several kg / cm 2
Lightly sandwich it from both sides with pressure and then about 1
Bonding can be performed by heat curing in a dryer adjusted to 50 ° C.

【0023】また、接着剤がロウ材の場合には、短冊状
に加工した1〜2mm厚さのロウ材を純炭素摺動集電材
料や炭素系摺動集電材料等のコア用炭素系摺動集電材料
と板状に加工した金属繊維配合の炭素−金属複合焼成材
料との間に挟み込み、その両側から軽く挟み付けて電気
炉中に導入し、ロウ材が溶ける金属の融点の温度(55
0〜600℃)まで電気炉中で昇温した後、冷却して接
合する。この温度範囲より高い融点を有するロウ材で
は、コア用炭素系摺動集電材料として多孔質炭素に金属
を含浸させた摺動集電材料を使用した場合、ロウ材を溶
融させる際に挟持されたこのコア用炭素系摺動集電材料
から金属があふれ出るため好ましくない。また、低い温
度では集電時の摺板温度が数百度に上昇したときにロウ
材が溶解して剥離する恐れがある。
When the adhesive is a brazing material, a brazing material having a thickness of 1 to 2 mm processed into a strip shape is used as a core carbon-based material such as a pure carbon sliding current collecting material or a carbon-based sliding current collecting material. It is sandwiched between a sliding current collector and a plate-shaped metal fiber-containing carbon-metal composite calcined material, lightly sandwiched from both sides and introduced into an electric furnace, and the melting point of the metal at which the brazing material melts (55
After the temperature is raised in an electric furnace to 0 to 600 ° C., it is cooled and joined. With a brazing material having a melting point higher than this temperature range, when a sliding current collecting material in which porous carbon is impregnated with a metal is used as the carbon-based sliding current collecting material for the core, it is sandwiched when the brazing material is melted. It is not preferable because the metal overflows from the carbon-based sliding current collector material for the core. Further, at a low temperature, the brazing material may melt and peel off when the temperature of the sliding plate during current collection rises to several hundred degrees.

【0024】このようにして製造されたパンタグラフ用
摺動集電材料は、従来の純炭素摺動集電材料や多孔質炭
素に金属を含浸させたパンタグラフ用摺動集電材料等に
比べて、耐衝撃性の優れた材料となる。
The sliding current collector for pantograph thus produced has the following properties as compared with conventional pure carbon sliding current collectors and pantograph sliding current collectors obtained by impregnating porous carbon with a metal. It becomes a material with excellent impact resistance.

【0025】[0025]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples.

【0026】実施例1 平均粒径8μmに粉砕した揮発分12wt%の自己焼結
性生コークスに、ビビリ切削法により得られた繊維径6
0μm、繊維長3mmの鉄繊維を27vol%添加し、
厚さ40mm×長さ120mm×幅50mmの大きさの
金型を用いて100kg/cm2 の成型圧で仮成型し
た。得られた仮成形体をゴム袋内に装填し、脱気した後
に密閉し、2000kgf/cm2 で冷間静水圧プレス
にて本成形を行った。次いで、窒素雰囲気下に3℃/h
rで1000℃まで昇温して焼成し、金属繊維配合の炭
素−金属複合焼成材料を作製し、これを幅10mm×厚
さ3mm×長さ60mmの大きさに加工した。
Example 1 A self-sintering raw coke having a volatile content of 12 wt% crushed to an average particle size of 8 μm was used to obtain a fiber diameter of 6 obtained by a chattering cutting method.
27 vol% of iron fiber with 0 μm and fiber length of 3 mm was added,
Temporary molding was performed with a molding pressure of 100 kg / cm 2 using a mold having a size of 40 mm thickness × 120 mm length × 50 mm width. The obtained temporary molded body was loaded in a rubber bag, deaerated and then sealed, and main molding was performed by a cold isostatic press at 2000 kgf / cm 2 . Then, under nitrogen atmosphere, 3 ° C / h
The temperature was raised to 1000 ° C. at r and fired to produce a carbon-metal composite fired material containing metal fibers, which was processed into a size of width 10 mm × thickness 3 mm × length 60 mm.

【0027】次に、か焼炭素粉にバインダーピッチを加
え捏合した後、押出成型して1000℃で焼成された純
炭素摺動集電材料を幅10mm×厚さ4mm×長さ60
mmの大きさに加工して、この両側にフェノール樹脂に
炭素粉を配合した炭素接着剤を塗布して張り合わせた。
更に、両側から金具で5kg/cm2 の圧力で締め付
け、150℃にセットした乾燥器中で硬化させ接合し
た。これを、10kgの荷重を取り付けたシャルビー衝
撃試験機(東洋精機製)を使用し、振り上げ角150
度、ノッチ無しで衝撃テストを行った。結果を表1に示
す。
Next, a binder pitch was added to the calcined carbon powder, and the mixture was kneaded. Then, a pure carbon sliding current collector material extruded and fired at 1000 ° C. was formed into a width of 10 mm × a thickness of 4 mm × a length of 60.
It was processed into a size of mm, and a carbon adhesive containing a carbon powder mixed with a phenol resin was applied to both sides of the processed product and laminated.
Further, it was fastened with a metal fitting from both sides at a pressure of 5 kg / cm 2 , and cured and bonded in a dryer set at 150 ° C. Using a Charby impact tester (manufactured by Toyo Seiki) equipped with a load of 10 kg, a swing-up angle of 150
An impact test was conducted without a notch. The results are shown in Table 1.

【0028】実施例2 実施例1と同様の方法で作製された試料を、マッフル炉
に入れてN2 気流下800℃で接合部の接着剤を炭化し
た後、10kgの荷重を取り付けたシャルビー衝撃試験
機(東洋精機製)を使用し、振り上げ角150度、ノッ
チ無しで衝撃テストを行った。結果を表1に示す。
Example 2 A sample prepared by the same method as in Example 1 was placed in a muffle furnace to carbonize the adhesive in the joint at 800 ° C. under N 2 gas flow, and then Charby impact with a load of 10 kg attached. Using a tester (manufactured by Toyo Seiki Co., Ltd.), an impact test was conducted with a swing-up angle of 150 degrees and no notch. The results are shown in Table 1.

【0029】実施例3 挟持する摺板として多孔質炭素に金属を含浸させた炭素
系摺動集電材料を用いた以外は、上記実施例1と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 3 A sample was prepared in the same manner as in Example 1 except that a carbon-based sliding current collector in which porous carbon was impregnated with a metal was used as the sandwiching slide plate, and an impact test was conducted. Carried out. The results are shown in Table 1.

【0030】なお、多孔質炭素に金属を含浸させた炭素
系摺動集電材料は、次のようにして製造したものを用い
た。先ず、か焼ピッチコークスを平均粒径約10μmに
粉砕し、このピッチコークス粉100gに外割で35重
量部のバインダーピッチを捏合した後、再粉砕して平均
粒径10μmの微粉を調製した。この粉体を長さ150
×幅100×厚さ100(単位mm)の金型に入れ、5
0kg/cm2 の圧力で一時成型した後、これをラバー
に詰めCIPで1500kg/cm2 の圧力で成型し
た。これをコークスブリーズ中に詰め、N2 気流下に
0.1℃/minの昇温速度で1500℃まで焼成し
た。このようにして得られた空孔率30vol%多孔質
炭素材を含浸装置内に装填し、一旦数torrに減圧し
た後、950℃で加熱溶解したCu−Sn〔混合比(重
量部);50:50〕合金中に浸漬し、50kg/cm
2 の圧力で加圧含浸して金属含浸摺板を作製した。
As the carbon-based sliding current collector material in which porous carbon was impregnated with a metal, the one manufactured as follows was used. First, calcined pitch coke was crushed to an average particle size of about 10 μm, 100 g of this pitch coke powder was kneaded with 35 parts by weight of binder pitch in an outer ratio, and then re-ground to prepare fine powder having an average particle size of 10 μm. Length of this powder 150
Put in a mold of width x width 100 x thickness 100 (unit mm), 5
After temporarily molding at a pressure of 0 kg / cm 2 , this was filled in rubber and molded by CIP at a pressure of 1500 kg / cm 2 . This was packed in a coke breeze and fired at a temperature rising rate of 0.1 ° C./min to 1500 ° C. under a N 2 gas stream. The porosity 30 vol% porous carbon material thus obtained was loaded into an impregnating apparatus, the pressure was once reduced to several torr, and the Cu-Sn [mixing ratio (parts by weight); : 50] Immersed in alloy, 50 kg / cm
A metal-impregnated sliding plate was produced by pressure impregnation at a pressure of 2 .

【0031】実施例4 挟持する摺板として多孔質炭素に金属を含浸させた炭素
系摺動集電材料を用いた以外は、実施例2と同様の方法
で試料を作製し、衝撃テストを実施した。結果を表1に
示す。なお、多孔質炭素に金属を含浸させた炭素系摺動
集電材料としては、実施例3に記載したものと同じ物を
用いた。
Example 4 A sample was prepared in the same manner as in Example 2 except that a carbon-based sliding current collecting material in which porous carbon was impregnated with a metal was used as a sliding plate to be sandwiched, and an impact test was conducted. did. The results are shown in Table 1. As the carbon-based sliding current collecting material in which porous carbon was impregnated with metal, the same material as that described in Example 3 was used.

【0032】実施例5 挟持する摺板として金属粉含有炭素系摺動集電材料を用
いた以外は、実施例1と同様の方法で試料を作製し、衝
撃テストを実施した。結果を表1に示す。
Example 5 A sample was prepared in the same manner as in Example 1 except that a carbon powder-containing sliding current collector containing metal powder was used as a sandwiching slide plate, and an impact test was conducted. The results are shown in Table 1.

【0033】なお、この金属粉含有炭素系摺動集電材料
は次のようにして製造した。先ず、平均粒径8μmに粉
砕した揮発分12wt%の自己焼結性生コークスと平均
粒径30μmの銅粉とを重量比1:1で混合し、厚さ4
0mm×長さ120mm×幅50mmの大きさの金型を
用い100kg/cm2 の成型圧で仮成型した。得られ
た仮成形体をゴム袋内に装填し、脱気した後に密閉し、
2000kgf/cm2 で冷間静水圧プレスにて本成形
を行った。次いで、窒素雰囲気下に3℃/hrで100
0℃まで昇温して焼成し、金属粉含有炭素系摺動集電材
料を作成した。
The metal powder-containing carbon-based sliding current collector was manufactured as follows. First, a self-sintering raw coke having a volatile content of 12 wt% crushed to an average particle size of 8 μm and copper powder having an average particle size of 30 μm were mixed at a weight ratio of 1: 1 to obtain a thickness of 4
Temporary molding was carried out at a molding pressure of 100 kg / cm 2 using a die having a size of 0 mm × length 120 mm × width 50 mm. The obtained temporary molded body was loaded into a rubber bag, deaerated and then sealed,
Main molding was performed by a cold isostatic press at 2000 kgf / cm 2 . Then, under a nitrogen atmosphere, 100 at 3 ° C./hr.
The temperature was raised to 0 ° C. and firing was performed to prepare a metal powder-containing carbon-based sliding current collector material.

【0034】実施例6 挟持する摺板として金属粉含有炭素系摺動集電材料を用
いた以外は、実施例2と同様の方法で試料を作製し、衝
撃テストを実施した。結果を表1に示す。なお、金属粉
含有摺板としては、実施例5に記載したものと同じ物を
用いた。
Example 6 A sample was prepared in the same manner as in Example 2 except that a carbon powder-containing sliding current collector containing metal powder was used as the sandwiching slide plate, and an impact test was conducted. The results are shown in Table 1. As the metal powder-containing sliding plate, the same one as described in Example 5 was used.

【0035】実施例7 挟持する摺板として金属繊維15vol%配合された炭
素−金属複合焼成パンタグラフ用炭素材料を用いた以外
は、実施例1と同様の方法で試料を作製して衝撃テスト
を実施した。
Example 7 A sample was prepared in the same manner as in Example 1 except that a carbon material for a carbon-metal composite fired pantograph containing 15 vol% of metal fibers was used as a sandwiching slide plate, and an impact test was conducted. did.

【0036】なお、炭素−金属複合焼成材料は、次のよ
うにして作製した。先ず、平均粒径8μmに粉砕した揮
発分12wt%の自己焼結性生コークスに、ビビリ切削
法により得られた繊維径60μm、繊維長3mmの鉄繊
維を15vol%添加し、100kg/cm2 の成型圧
で厚さ40mm×長さ120mm×幅50mmの大きさ
の金型を用い仮成型した。得られた仮成形体をゴム袋内
に装填し、脱気した後に密閉し、2000kgf/cm
2 で冷間静水圧プレスにて本成形を行った。次いで、窒
素雰囲気下に3℃/hrで1000℃まで昇温して焼成
し、金属繊維配合の炭素−金属複合焼成材料を作製し
た。
The carbon-metal composite fired material was prepared as follows. First, 15 vol% of iron fiber having a fiber diameter of 60 μm and a fiber length of 3 mm obtained by the chattering cutting method was added to a self-sintering raw coke having a volatile content of 12 wt% crushed to an average particle size of 8 μm to obtain 100 kg / cm 2 . Temporary molding was performed using a mold having a size of 40 mm thickness × 120 mm length × 50 mm width by molding pressure. 2000 kgf / cm after loading the obtained temporary molded body into a rubber bag, degassing and then sealing.
Main molding was carried out at 2 in a cold isostatic press. Next, in a nitrogen atmosphere, the temperature was raised up to 1000 ° C. at 3 ° C./hr and fired to produce a carbon-metal composite fired material containing metal fibers.

【0037】実施例8 挟持する摺板として金属繊維15vol%が配合された
炭素−金属複合焼成材料を用いた以外は、実施例2と同
様の方法で試料を作製し、衝撃テストを実施した。な
お、炭素−金属複合焼成材料としては、実施例7に記載
した物と同じ物を用いた。
Example 8 A sample was prepared in the same manner as in Example 2 except that a carbon-metal composite calcined material containing 15 vol% of metal fibers was used as a sandwiching slide plate, and an impact test was carried out. As the carbon-metal composite calcined material, the same material as that described in Example 7 was used.

【0038】実施例9 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例1と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 9 A sample was prepared in the same manner as in Example 1 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0039】実施例10 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例2と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 10 A sample was prepared in the same manner as in Example 2 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industries, Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0040】実施例11 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例3と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 11 A sample was prepared in the same manner as in Example 3 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0041】実施例12 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例4と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 12 A sample was prepared in the same manner as in Example 4 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0042】実施例13 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例5と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 13 A sample was prepared in the same manner as in Example 5 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0043】実施例14 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例6と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 14 A sample was prepared in the same manner as in Example 6 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0044】実施例15 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例7と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 15 A sample was prepared in the same manner as in Example 7 except that a thermosetting phenol resin (RM3000 manufactured by Asahi Organic Chemicals Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0045】実施例16 接着剤として熱硬化性フェノール樹脂(旭有機剤工業
製:RM3000)を用いた以外は、実施例8と同様の
方法で試料を作製し、衝撃テストを実施した。結果を表
1に示す。
Example 16 A sample was prepared in the same manner as in Example 8 except that a thermosetting phenolic resin (RM3000 manufactured by Asahi Organic Chemical Industry Co., Ltd.) was used as an adhesive, and an impact test was carried out. The results are shown in Table 1.

【0046】実施例17 接着剤としてロウ材(Al:Si:Cu=3.5%:3
1.5%:65%)を用いた以外は、実施例1と同様の
方法で試料を作製し、テストを実施した。結果を表1に
示す。
Example 17 As an adhesive, a brazing material (Al: Si: Cu = 3.5%: 3)
A sample was prepared and tested in the same manner as in Example 1 except that 1.5%: 65%) was used. The results are shown in Table 1.

【0047】実施例18 接着剤としてロウ材(Al:Si:Cu=3.5%:3
1.5%:65%)を用いた以外は、実施例3と同様の
方法で試料を作製し、テストを実施した。結果を表1に
示す。
Example 18 A brazing material (Al: Si: Cu = 3.5%: 3) as an adhesive.
A sample was prepared and tested in the same manner as in Example 3 except that 1.5%: 65%) was used. The results are shown in Table 1.

【0048】実施例19 接着剤としてロウ材(Al:Si:Cu=3.5%:3
1.5%:65%)を用いた以外は、実施例5と同様の
方法で試料を作製し、テストを実施した。結果を表1に
示す。
Example 19 A brazing material (Al: Si: Cu = 3.5%: 3) as an adhesive.
A sample was prepared and tested in the same manner as in Example 5 except that 1.5%: 65%) was used. The results are shown in Table 1.

【0049】実施例20 接着剤としてロウ材(Al:Si:Cu=3.5%:3
1.5%:65%)を用いた以外は、実施例7と同様の
方法で試料を作製し、テストを実施した。結果を表1に
示す。
Example 20 A brazing material (Al: Si: Cu = 3.5%: 3) as an adhesive
A sample was prepared and tested in the same manner as in Example 7, except that 1.5%: 65%) was used. The results are shown in Table 1.

【0050】比較例1 か焼炭素粉にバインダーピッチを加え熱合した後、押出
成型して1000℃で焼成された市販の純炭素摺板を厚
さ10mm×幅10mm×長さ60mmの大きさに加工
し、これを、10kgの荷重を取り付けたシャルビー衝
撃試験機(東洋精機製)を使用し、振り上げ角150
度、ノッチ無しで衝撃テストを行った。結果を表2に示
す。
COMPARATIVE EXAMPLE 1 A commercially available pure carbon sliding plate was prepared by extruding and calcining at 1000 ° C. after adding a binder pitch to calcined carbon powder and heat-bonding it to a size of 10 mm thick × 10 mm wide × 60 mm long. And processed into a Charby impact tester (manufactured by Toyo Seiki) with a load of 10 kg.
An impact test was conducted without a notch. The results are shown in Table 2.

【0051】比較例2 ピッチコークスを平均粒径20μmに粉砕し、この粉体
100重量部に対してバインダーピッチを40重量部加
え混練熱合した後、平均粒径20μmに再粉砕した。こ
れを100kg/cm2 の成型圧で厚さ40mm×長さ
120mm×幅50mmの大きさの金型を用い仮成型し
た後、得られた仮成形体をゴム袋内に装填し、脱気した
後に密閉し、1000kgf/cm2 で冷間静水圧プレ
スにて本成形を行った。次いで、窒素雰囲気下に3℃/
hrで1500℃まで昇温し焼成して得られた多孔質炭
素材に、銅−錫=1:1(重量比)の合金を、オートク
レーブ中で一旦数torrまで減圧した後50kg/c
2 に加圧するという方法で含浸させた。これを、幅1
0mm×厚さ10mm×長さ60mmの大きさに加工
し、これを、10kgの荷重を取り付けたシャルビー衝
撃試験機(東洋精機製)を使用し、振り上げ角150
度、ノッチ無しで衝撃テストを行った。結果を表2に示
す。
Comparative Example 2 Pitch coke was crushed to an average particle size of 20 μm, 40 parts by weight of binder pitch was added to 100 parts by weight of this powder, the mixture was kneaded and mixed, and then crushed again to an average particle size of 20 μm. This was temporarily molded with a molding pressure of 100 kg / cm 2 using a mold having a thickness of 40 mm × a length of 120 mm × a width of 50 mm, and the obtained temporary molded body was loaded into a rubber bag and deaerated. After that, the container was hermetically sealed and subjected to main molding by a cold isostatic press at 1000 kgf / cm 2 . Then, in a nitrogen atmosphere at 3 ° C /
An alloy of copper-tin = 1: 1 (weight ratio) was added to the porous carbon material obtained by heating up to 1500 ° C. for 1 hr and calcining in an autoclave to several torr and then 50 kg / c.
Impregnation was carried out by pressurizing m 2 . Width 1
It was processed into a size of 0 mm × thickness 10 mm × length 60 mm, using a Charby impact tester (manufactured by Toyo Seiki) equipped with a load of 10 kg, and a swing-up angle of 150
An impact test was conducted without a notch. The results are shown in Table 2.

【0052】比較例3 市販の純炭素摺板を幅10mm×厚さ6mm×長さ60
mmの大きさに加工し、金属繊維配合の炭素−金属複合
材料を幅10mm×厚さ2mm×長さ60mmの大きさ
に加工して、炭素接着剤を塗布して接合した。更に、両
側から金具で5kg/cm2 の圧力で締め付け、150
℃にセットした乾燥器中で硬化接合した。これを、10
kgの荷重を取り付けたシャルビー衝撃試験機(東洋精
機製)を使用し、振り上げ角150度、ノッチ無しで衝
撃テストを行った。結果を表2に示す。
COMPARATIVE EXAMPLE 3 A commercially available pure carbon sliding plate was used, which had a width of 10 mm, a thickness of 6 mm, and a length of 60.
The carbon-metal composite material containing metal fibers was processed into a size of 10 mm in width, 2 mm in thickness, and 60 mm in length, and a carbon adhesive was applied to bond them. In addition, tighten with a metal fitting from both sides at a pressure of 5 kg / cm 2 , 150
Curing and bonding were performed in a dryer set at ℃. This is 10
Using a Charby impact tester (manufactured by Toyo Seiki Co., Ltd.) equipped with a load of kg, an impact test was performed with a swing-up angle of 150 degrees and no notch. The results are shown in Table 2.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】この表1、表2の結果から明らかなよう
に、本発明の方法によって得られたパンタグラフ用摺動
集電材料は、従来の純炭素摺動集電材料や多孔質炭素に
金属を含浸させた炭素系摺動集電材料等を用いた場合に
比べて、その強度アップが図られ、かつ、低い電気抵抗
を有し、しかも、耐衝撃性にも優れたものであることが
判明した。
As is clear from the results of Tables 1 and 2, the sliding collector material for a pantograph obtained by the method of the present invention has a conventional pure carbon sliding collector material or porous carbon containing a metal. Compared to the case of using impregnated carbon-based sliding current collectors, etc., it has been found that the strength is increased, the electrical resistance is low, and the impact resistance is also excellent. did.

【0056】[0056]

【発明の効果】本発明によれば、軽量で潤滑性、耐アー
ク性、低騒音性等において優れた性能を有する炭素系摺
動集電材料の特徴をそのまま継承しつつ、同時に、優れ
た低電気抵抗を有し、しかも、耐衝撃性においても良好
な極めて有用なパンタグラフ用摺動集電材料を提供する
ことができる。
EFFECTS OF THE INVENTION According to the present invention, the characteristics of the carbon-based sliding current collector material, which is lightweight and has excellent performance in terms of lubricity, arc resistance, low noise, etc., are inherited as they are, It is possible to provide a very useful sliding current collector material for a pantograph which has electric resistance and also has good impact resistance.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月10日[Submission date] August 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明者らは、炭素材料
中に金属繊維を分散させることによって、電気比抵抗が
著しく低下し、しかも炭素材料の欠点である脆さや欠け
易さが改善された金属−炭素複合焼成材料に着目し、本
発明に到達した。すなわち、この金属−炭素複合焼成材
料を数mmから15mmの厚さに加工し、これを、純炭
素摺動集電材料や、多孔質炭素材に金属を含浸させ、あ
るいは炭素粉に金属粉や20vol%以下の金属繊維を
配合して製造された炭素系摺動集電材料からなり、コア
となるコア用炭素系摺動集電材料の両側面に接合するこ
とにより、これらコア用炭素系摺動集電材料の強度や耐
衝撃性の向上を図ることができることを見出し、本発明
を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have remarkably lowered the electric resistivity by dispersing metal fibers in a carbon material and, at the same time, improved the brittleness and fragility of the carbon material. The present invention has been achieved by focusing on the metal-carbon composite fired material. That is, this metal-carbon composite fired material is processed to a thickness of several mm to 15 mm , and this is impregnated with a pure carbon sliding current collector material, a porous carbon material with a metal, or carbon powder with a metal powder or A carbon-based sliding current collecting material made of a carbon-based sliding current collecting material produced by blending 20 vol% or less of metal fibers, and the carbon-based sliding current collecting material for a core is bonded to both sides of the carbon-based sliding current collecting material for a core to be bonded to both sides. The inventors have found that the strength and impact resistance of the dynamic current collecting material can be improved, and have completed the present invention.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】実施例7 挟持する摺板として金属繊維15vol%配合された
素−金属複合焼成材料を用いた以外は、実施例1と同様
の方法で試料を作製して衝撃テストを実施した。
Example 7 Charcoal containing 15 vol% of metal fibers as a sliding plate to be sandwiched
A sample was prepared in the same manner as in Example 1 except that the element-metal composite fired material was used, and an impact test was performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 健一郎 神奈川県川崎市中原区井田1618番地、新日 本製鐵株式会社先端技術研究所内 (72)発明者 土屋 広志 東京都国分寺市光町二丁目8番地38、財団 法人鉄道総合技術研究所内 (72)発明者 久保 俊一 東京都国分寺市光町二丁目8番地38、財団 法人鉄道総合技術研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Kenichiro Fujimoto, Inventor Kenichiro Fujimoto, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa, within Advanced Technology Research Laboratories, Nippon Steel Corporation (72) Hiroshi Tsuchiya, Komibun, Kokubunji, Tokyo 2-chome 8th 38, inside the Railway Technical Research Institute (72) Inventor Shunichi Kubo 2-8 38, Hikarimachi, Kokubunji, Tokyo Inside the Railway Technical Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 5vol%以上60vol%未満の金属
繊維を含有する金属−炭素複合焼成材料を、コアとなる
コア用炭素系摺動集電材料の両側面に接合したことを特
徴とするパンタグラフ用摺動集電材料。
1. A pantograph characterized in that a metal-carbon composite calcined material containing 5 vol% or more and less than 60 vol% of metal fibers is bonded to both sides of a carbon-based sliding current collector material for a core. Sliding current collector material.
【請求項2】 コアとなるコア用炭素系摺動集電材料
が、純炭素摺動集電材料である請求項1記載のパンタグ
ラフ用摺動集電材料。
2. The sliding current collector material for a pantograph according to claim 1, wherein the carbon-based sliding current collector material for the core, which is the core, is a pure carbon sliding current collector material.
【請求項3】 コアとなるコア用炭素系摺動集電材料
が、多孔質炭素材に金属を含浸させてなる炭素系摺動集
電材料である請求項1記載のパンタグラフ用摺動集電材
料。
3. The sliding current collector for a pantograph according to claim 1, wherein the carbon-based sliding current collector material for the core, which is the core, is a carbon-based sliding current collector material obtained by impregnating a porous carbon material with a metal. material.
【請求項4】 コアとなるコア用炭素系摺動集電材料
が、金属粉末を含有する炭素系摺動集電材料である請求
項1記載のパンタグラフ用摺動集電材料。
4. The sliding current collector material for a pantograph according to claim 1, wherein the carbon-based sliding current collector material for the core to be the core is a carbon-based sliding current collector material containing a metal powder.
【請求項5】 コアとなるコア用炭素系摺動集電材料
が、20vol%以下の金属繊維を含有する金属−炭素
複合焼成材料である請求項1記載のパンタグラフ用摺動
集電材料。
5. The sliding current collector material for a pantograph according to claim 1, wherein the carbon-based sliding current collector material for the core to be the core is a metal-carbon composite calcined material containing 20 vol% or less of metal fibers.
JP5073710A 1993-03-31 1993-03-31 Sliding current collecting material for pantograph Pending JPH06284506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073710A JPH06284506A (en) 1993-03-31 1993-03-31 Sliding current collecting material for pantograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073710A JPH06284506A (en) 1993-03-31 1993-03-31 Sliding current collecting material for pantograph

Publications (1)

Publication Number Publication Date
JPH06284506A true JPH06284506A (en) 1994-10-07

Family

ID=13526048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073710A Pending JPH06284506A (en) 1993-03-31 1993-03-31 Sliding current collecting material for pantograph

Country Status (1)

Country Link
JP (1) JPH06284506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003157A (en) * 2023-01-10 2023-04-25 北京中铁科新材料技术有限公司 Composition for pantograph copper-impregnated carbon sliding plate and prepared pantograph sliding plate
CN116178017A (en) * 2023-01-31 2023-05-30 安徽锦美碳材科技发展有限公司 Preparation method of directly sintered carbon strip for pantograph carbon slide plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003157A (en) * 2023-01-10 2023-04-25 北京中铁科新材料技术有限公司 Composition for pantograph copper-impregnated carbon sliding plate and prepared pantograph sliding plate
CN116003157B (en) * 2023-01-10 2024-02-02 北京中铁科新材料技术有限公司 Composition for pantograph copper-impregnated carbon sliding plate and prepared pantograph sliding plate
CN116178017A (en) * 2023-01-31 2023-05-30 安徽锦美碳材科技发展有限公司 Preparation method of directly sintered carbon strip for pantograph carbon slide plate

Similar Documents

Publication Publication Date Title
EP2130932B1 (en) Three phase composite material with high thermal conductivity and its production
US5531943A (en) Method of making a carbon/metal composite
CN111286642B (en) Copper-based friction material suitable for carbon-ceramic brake disc and preparation method thereof
CN111360243B (en) High-performance self-lubricating copper-based pantograph slide plate material and preparation method thereof
JP2009248164A (en) Aluminum-graphite-silicon carbide composite and manufacturing method thereof
EP3647390B1 (en) Sintered friction material and production method for sintered friction material
JP2010022142A (en) Current collection material of pantograph contact strip
EP0364972B1 (en) Carbon/metal composite
JPH06284506A (en) Sliding current collecting material for pantograph
JP2010022143A (en) Current collection material of pantograph contact strip
CN111961901B (en) Preparation method of in-situ authigenic WC reinforced WCu dual-gradient-structure composite material
JPH06234061A (en) Pan for current collector
JP3485270B2 (en) Wet friction material
CN113563095B (en) Preparation method of metal ceramic brake pad and carbon ceramic brake disc and friction pair dual
JP2551170B2 (en) Friction material and heat treatment method thereof
JP4573484B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPH01270571A (en) Production of carbon material for sliding and current collection
JPH06172029A (en) Carbon-metal composite material and its production
JPH04207902A (en) Production of carbon material for sliding current collection
JPH0676259B2 (en) Method for producing carbon material for sliding current collection
JP3054280B2 (en) Sliding material
JPH0274894A (en) First wall of nuclear fusion device
JP2916038B2 (en) Method for producing carbon-based current collector sliding material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JPH05105868A (en) Carbonaceous friction material excellent in oxidation resistance